Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 95(48): 17586-17594, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37976440

RESUMEN

Over the past decade, the separation efficiency achieved by linear IMS instruments has increased substantially, with state-of-the-art IM technologies, such as the trapped ion mobility (TIMS), the cyclic traveling wave ion mobility (cTWIMS), and the structure for lossless ion manipulation (SLIM) platforms commonly demonstrating resolving powers in excess of 200. However, for complex sample analysis that require front end separation, the achievement of such high resolving power in TIMS is significantly hampered, since the ion mobility range must be broad enough to analyze all the classes of compounds of interest, whereas the IM analysis time must be short enough to cope with the time scale of the preseparation technique employed. In this paper, we introduce the concept of sliding windows in ion mobility (SWIM) for chromatography hyphenated TIMS applications that bypasses the need to use a wide and fixed IM range by using instead narrow and mobile ion mobility windows that adapt to the analytes' ion mobility during chromatographic separation. GC-TIMS-MS analysis of a mixture of 174 standards from several halogenated persistent organic pollutant (POP) classes, including chlorinated and brominated dioxins, biphenyls, and PBDEs, demonstrated that the average IM resolving power could be increased up to 40% when the SWIM mode was used, thereby greatly increasing the method selectivity for the analysis of complex samples.

2.
Plant Biotechnol J ; 21(9): 1773-1784, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37266972

RESUMEN

Production of recombinant pharmaceutical glycoproteins has been carried out in multiple expression systems. However, N-glycosylation, which increases heterogeneity and raises safety concerns due to the presence of non-human residues, is usually not controlled. The presence and composition of N-glycans are also susceptible to affect protein stability, function and immunogenicity. To tackle these issues, we are developing glycoengineered Nicotiana tabacum Bright Yellow-2 (BY-2) cell lines through knock out and ectopic expression of genes involved in the N-glycosylation pathway. Here, we report on the generation of BY-2 cell lines producing deglycosylated proteins. To this end, endoglycosidase T was co-expressed with an immunoglobulin G or glycoprotein B of human cytomegalovirus in BY-2 cell lines producing only high mannose N-glycans. Endoglycosidase T cleaves high mannose N-glycans to generate single, asparagine-linked, N-acetylglucosamine residues. The N-glycosylation profile of the secreted antibody was determined by mass spectrometry analysis. More than 90% of the N-glycans at the conserved Asn297 site were deglycosylated. Likewise, extensive deglycosylation of glycoprotein B, which possesses 18 N-glycosylation sites, was observed. N-glycan composition of gB glycovariants was assessed by in vitro enzymatic mobility shift assay and proven to be consistent with the expected glycoforms. Comparison of IgG glycovariants by differential scanning fluorimetry revealed a significant impact of the N-glycosylation pattern on the thermal stability. Production of deglycosylated pharmaceutical proteins in BY-2 cells expands the set of glycoengineered BY-2 cell lines.


Asunto(s)
Manosa , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Manosa/metabolismo , Proteínas Recombinantes/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Glicósido Hidrolasas/metabolismo , Polisacáridos/metabolismo , Preparaciones Farmacéuticas/metabolismo
3.
Anal Chem ; 94(26): 9316-9326, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35604839

RESUMEN

MALDI mass spectrometry imaging (MALDI MSI) is a powerful analytical method for achieving 2D localization of compounds from thin sections of typically but not exclusively biological samples. The dynamically harmonized ICR cell (ParaCell) was recently introduced to achieve extreme spectral resolution capable of providing the isotopic fine structure of ions detected in complex samples. The latest improvement in the ICR technology also includes 2ω detection, which significantly reduces the transient time while preserving the nominal mass resolving power of the ICR cell. High-resolution MS images acquired on FT-ICR instruments equipped with 7T and 9.4T superconducting magnets and the dynamically harmonized ICR cell operating at suboptimal parameters suffered severely from the pixel-to-pixel shifting of m/z peaks due to space-charge effects. The resulting profile average mass spectra have depreciated mass measurement accuracy and mass resolving power under the instrument specifications that affect the confidence level of the identified ions. Here, we propose an analytical workflow based on the monitoring of the total ion current to restrain the pixel-to-pixel m/z shift. Adjustment of the laser parameters is proposed to maintain high spectral resolution and mass accuracy measurement within the instrument specifications during MSI analyses. The optimized method has been successfully employed in replicates to perform high-quality MALDI MS images at resolving power (FWHM) above 1,000,000 in the lipid mass range across the whole image for superconducting magnets of 7T and 9.4T using 1 and 2ω detection. Our data also compare favorably with MALDI MSI experiments performed on higher-magnetic-field superconducting magnets, including the 21T MALDI FT-ICR prototype instrument of the NHMFL group at Tallahassee, Florida.


Asunto(s)
Ciclotrones , Diagnóstico por Imagen , Análisis de Fourier , Iones , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos
4.
Anal Chem ; 93(4): 2342-2350, 2021 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-33470796

RESUMEN

Peptidoglycan (PGN) is an essential structure found in the bacterial cell wall. During the bacterial life cycle, PGN continuously undergoes biosynthesis and degradation to ensure bacterial growth and division. The resulting PGN fragments (muropeptides and peptides), which are generated by the bacterial autolytic system, are usually transported into the cytoplasm to be recycled. On the other hand, PGN fragments can act as messenger molecules involved in the bacterial cell wall stress response as in the case of ß-lactamase induction in the presence of ß-lactam antibiotic or in triggering mammalian innate immune response. During their cellular life, bacteria modulate their PGN degradation by their autolytic system or their recognition by the mammalian innate immune system by chemically modifying their PGN. Among these modifications, the amidation of the ε-carboxyl group of meso-diaminopimelic acid present in the PGN peptide chain is frequently observed. Currently, the detection and quantitation of PGN-derived peptides is still challenging because of the difficulty in separating these highly hydrophilic molecules by RP-HPLC as these compounds are eluted closely after the column void volume or coeluted in many cases. Here, we report the use of capillary zone electrophoresis coupled via an electrospray-based CE-MS interface to high-resolution mass spectrometry for the quantitation of three PGN peptides of interest and their amidated derivatives in bacterial cytoplasmic extracts. The absolute quantitation of the tripeptide based on the [13C,15N] isotopically labeled standard was also performed in crude cytoplasmic extracts of bacteria grown in the presence or absence of a ß-lactam antibiotic (cephalosporin C). Despite the high complexity of the samples, the repeatability of the CZE-MS quantitation results was excellent, with relative standard deviations close to 1%. The global reproducibility of the method including biological handling was better than 20%.


Asunto(s)
Bacillus subtilis/metabolismo , Citoplasma/química , Electroforesis Capilar/métodos , Péptidos/química , Peptidoglicano/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Bacillus subtilis/efectos de los fármacos , Cefalosporinas/farmacología , Peptidoglicano/metabolismo
5.
Anal Bioanal Chem ; 413(10): 2821-2830, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33125540

RESUMEN

Lipids are biomolecules of crucial importance involved in critical biological functions. Yet, lipid content determination using mass spectrometry is still challenging due to their rich structural diversity. Preferential ionisation of the different lipid species in the positive or negative polarity is common, especially when using soft ionisation mass spectrometry techniques. Here, we demonstrate the potency of a dual-polarity approach using surface-assisted laser desorption/ionisation coupled to Fourier transform-ion cyclotron resonance (SALDI FT-ICR) mass spectrometry imaging (MSI) combined with Kendrick mass defect data filtering to (i) identify the lipids detected in both polarities from the same tissue section and (ii) show the complementarity of the dual-polarity data, both regarding the lipid coverage and the spatial distributions of the various lipids. For this purpose, we imaged the same mouse brain section in the positive and negative ionisation modes, on alternate pixels, in a SALDI FT-ICR MS imaging approach using gold nanoparticles (AuNPs) as dual-polarity nanosubstrates. Our study demonstrates, for the first time, the feasibility of (i) a dual-polarity SALDI-MSI approach on the same tissue section, (ii) using AuNPs as nanosubstrates combined with a FT-ICR mass analyser and (iii) the Kendrick mass defect data filtering applied to SALDI-MSI data. In particular, we show the complementarity in the lipids detected both in a given ionisation mode and in the two different ionisation modes. Graphical abstract.


Asunto(s)
Química Encefálica , Lípidos/análisis , Animales , Análisis de Fourier , Oro/química , Espectrometría de Masas/métodos , Nanopartículas del Metal/química , Ratones
6.
Anal Bioanal Chem ; 413(10): 2831-2844, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33517478

RESUMEN

MALDI mass spectrometry imaging (MSI) allows the mapping and the tentative identification of compounds based on their m/z value. In typical MSI, a spectrum is taken at incremental 2D coordinates (pixels) across a sample surface. Single pixel mass spectra show the resolving power of the mass analyzer. Mass shift, i.e., variations of the m/z of the same ion(s), may occur from one pixel to another. The superposition of shifted masses from individual pixels peaks apparently degrades the resolution and the mass accuracy in the average spectrum. This leads to low confidence annotations and biased localization in the image. Besides the intrinsic performances of the analyzer, the sample properties (local composition, thickness, matrix deposition) and the calibration method are sources of mass shift. Here, we report a critical analysis and recommendations to mitigate these sources of mass shift. Mass shift 2D distributions were mapped to illustrate its effect and explore systematically its origin. Adapting the sample preparation, carefully selecting the data acquisition settings, and wisely applying post-processing methods (i.e., m/z realignment or individual m/z recalibration pixel by pixel) are key factors to lower the mass shift and to improve image quality and annotations. A recommended workflow, resulting from a comprehensive analysis, was successfully applied to several complex samples acquired on both MALDI ToF and MALDI FT-ICR instruments.

7.
Drug Discov Today Technol ; 39: 81-88, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34906328

RESUMEN

Mass spectrometry imaging (MSI) has become a powerful method for mapping metabolite distribution in a tissue. Applied to bacterial colonies, MSI has a bright future, both for the discovery of new bioactive compounds and for a better understanding of bacterial antibiotic resistance mechanisms. Coupled with separation techniques such as ion mobility mass spectrometry (IM-MS), the identification of metabolites directly on the image is now possible and does not require additional analysis such as HPLC-MS/MS. In this article, we propose to apply a semi-targeted workflow for rapid IM-MSI data analysis focused on the search for bioactive compounds. First, chemically-related compounds showing a repetitive mass unit (i.e. lipids and lipopeptides) were targeted based on the Kendrick mass defect analysis. The detected groups of potentially bioactive compounds were then confirmed by fitting their measured ion moibilites to their measured m/z values. Using both their m/z and ion mobility values, the selected groups of compounds were identified using the available databases and finally their distribution was observed on the image. Using this workflow on a co-culture of bacteria, we were able to detect and localize bioactive compounds involved in the microbial interaction.


Asunto(s)
Lipopéptidos , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
8.
Anal Chem ; 92(3): 2425-2434, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31885261

RESUMEN

Disulfide bonds between cysteine residues are commonly involved in the stability of numerous peptides and proteins and are crucial for providing biological activities. In such peptides, the appropriate cysteine connectivity ensures the proper conformation allowing an efficient binding to their molecular targets. Disulfide bond connectivity characterization is still challenging and is a critical issue in the analysis of structured peptides/proteins targeting pharmaceutical or pharmacological utilizations. This study describes the development of new and fast gas-phase and in-solution electrophoretic methods coupled to mass spectrometry to characterize the cysteine connectivity of disulfide bonds. For this purpose, disulfide isomers of three peptides bearing two intramolecular disulfide bonds but different cysteine connectivity have been investigated. Capillary zone electrophoresis and ion mobility both coupled to mass spectrometry were used to perform the separation in both aqueous and gas phases, respectively. The separation efficiency of each technique has been critically evaluated and compared. Finally, theoretical calculations were performed to support and explain the experimental data based on the predicted physicochemical properties of the different peptides.


Asunto(s)
Cisteína/análisis , Disulfuros/química , Péptidos/química , Electroforesis Capilar , Espectrometría de Movilidad Iónica , Espectrometría de Masas , Programas Informáticos
9.
Mass Spectrom Rev ; 38(3): 291-320, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30707468

RESUMEN

Here we present a guide to ion mobility mass spectrometry experiments, which covers both linear and nonlinear methods: what is measured, how the measurements are done, and how to report the results, including the uncertainties of mobility and collision cross section values. The guide aims to clarify some possibly confusing concepts, and the reporting recommendations should help researchers, authors and reviewers to contribute comprehensive reports, so that the ion mobility data can be reused more confidently. Starting from the concept of the definition of the measurand, we emphasize that (i) mobility values (K0 ) depend intrinsically on ion structure, the nature of the bath gas, temperature, and E/N; (ii) ion mobility does not measure molecular surfaces directly, but collision cross section (CCS) values are derived from mobility values using a physical model; (iii) methods relying on calibration are empirical (and thus may provide method-dependent results) only if the gas nature, temperature or E/N cannot match those of the primary method. Our analysis highlights the urgency of a community effort toward establishing primary standards and reference materials for ion mobility, and provides recommendations to do so. © 2019 The Authors. Mass Spectrometry Reviews Published by Wiley Periodicals, Inc.

10.
Anal Chem ; 91(20): 13112-13118, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509388

RESUMEN

Kendrick mass defect (KMD) analysis is widely used for helping the detection and identification of chemically related compounds based on exact mass measurements. We report here the use of KMD as a criterion for filtering complex mass spectrometry data set. The method allow automated, easy and efficient data processing, enabling the reconstruction of 2D distributions of families of homologous compounds from MSI images. We show that KMD filtering, based on in-house software, is suitable and robust for high resolution (full width at half-maximum, fwhm, at m/z 410 of 20 000) and very high-resolution (fwhm, at m/z 410 of 160 000) MSI data. This method has been successfully applied to two different types of samples, bacteria cocultures, and brain tissue sections.


Asunto(s)
Compuestos Orgánicos/clasificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/estadística & datos numéricos , Algoritmos , Animales , Bacillus/química , Encéfalo/diagnóstico por imagen , Ratones , Peso Molecular , Compuestos Orgánicos/química , Prueba de Estudio Conceptual , Pseudomonas/química , Programas Informáticos
11.
Electrophoresis ; 40(20): 2672-2682, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31169927

RESUMEN

Peptidoglycan or murein is an essential polymer found in bacterial cell wall. It is a dynamic structure that is continuously remodeled or modified during bacterial cell growth or in presence of cell wall stresses. These modifications are still poorly understood mainly due to the peptidoglycan, which is rather non-soluble, and the difficulties to separate the hydrophilic glycopeptides (muropeptides) by reversed phase liquid chromatography, generated by the enzymatic digestion using mutanolysin, an N-acetyl-muramidase, cleaving the ß1→4 bound between N-acetylglucosamine and N-acetylmuramic acid. Here, we report the use of CZE-MS for an easy and fast screening of muropeptides generated by the action of muramidase on the Bacillus licheniformis cell wall. Electron transfer and CID-MS were also used to unambiguously identify and localize the presence or the absence of amidation and acetylation moieties on muropeptide variants. The reference method to analyse muropeptides by reversed phase chromatography was also tested and the advantages and disadvantages of both methods were evaluated.


Asunto(s)
Bacillus licheniformis/química , Electroforesis Capilar/métodos , Espectrometría de Masas/métodos , Peptidoglicano/análisis , Peptidoglicano/química , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa
12.
Rapid Commun Mass Spectrom ; 33 Suppl 2: 34-48, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30677180

RESUMEN

RATIONALE: Mass spectrometry (MS) is the reference method for the screening of ultra-trace residues of pesticides in food because MS offers the required selectivity/sensitivity to gather information and enable the analyst to make informed decisions during the identification process. Here we present and discuss the use of collision cross section (CCS) values in addition to mass accuracy and retention times in a pesticide screening method that integrates all the features offered by coupling ultra-performance liquid chromatography (UPLC) with ion mobility mass spectrometry (IMS-MS). METHODS: All experiments were carried out using UHPLC coupled to a travelling wave ion mobility mass spectrometer equipped with an electrospray ionization (ESI) source working in positive mode. An in-house library containing 200 pesticides was built using standard solutions and used as reference for a TWCCS calibration study. Matrix extracts were analyzed to evaluate the performance of different screening workflows based on TWCCS, mass accuracy and retention times. RESULTS: The results proved that TWCCS values are very consistent, as the measured values do not differ more than 1% from the in-house reference data library and emphasized the importance of the first low m/z mobility calibration point to guarantee full independence from instrument parameters and calibrant. The screening procedure was simplified to a single step by fully exploiting the content of ion mobility without generating any false detections, either positive or negative, from spiked samples and a previous proficiency test. CONCLUSIONS: The screening approach proposed in this study is unconventional and based on large mass accuracy (20 ppm) and retention time windows (0.5 min) to capture, in a first step, a maximum of detected compounds. Compounds of interest are then identified by comparing measured collision cross sections with the measured reference library collision cross sections (with relative error tolerance lower than 2%).


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Residuos de Plaguicidas/análisis , Contaminación de Alimentos/análisis
13.
Methods ; 144: 125-133, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29601857

RESUMEN

Ion Mobility (IM) coupled to Mass Spectrometry (MS) has been used for several decades, bringing a fast separation dimension to the MS detection. IM-MS is a convenient tool for structural elucidation. The folding of macromolecules is often assessed with the support of computational chemistry. However, this strategy is strongly dependent on computational initial guesses. Here, we propose the analysis of the Collision Cross-Section (CCS) trends of synthetic homopolymers based on a fitting method which does not rely on computational chemistry a prioris of the three-dimensional structures. The CCS trends were evaluated as a function of the polymer chain length and the charge state. This method is also applicable to mobility trends. It leads to two parameters containing all information available through IM(-MS) measurements. One parameter can be interpreted as an apparent density. The second parameter is related to the shape of the ions and leads us to introduce the concept of trends with constant apparent density. Based on the two fitting parameters, a method for IM trend predictions is elaborated. Experimental deviations from the predictions facilitate detecting structural rearrangements and three-dimensional structure differences of the cationized polymer ions. This leads for instance to an easy identification and prediction of the presence of different polymer topologies in complex polymer mixtures. The classification of predicted trends could as well allow for software-assisted data processing. Finally, we suggest the link between the CCS trends of homopolymers and those obtained from (monodisperse) biomolecules to interpret potential folding differences during IM-MS studies.


Asunto(s)
Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masas/métodos , Polímeros/química , Modelos Químicos , Modelos Moleculares , Estructura Molecular
14.
Chemphyschem ; 19(21): 2921-2930, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30071143

RESUMEN

Ion mobility spectrometry (IMS) is a gas-phase separation technique based on ion mobility differences in an electric field. It is largely used for the detection of specific ions such as small molecule explosives. IMS detection system includes the use of e. g. a Faraday cupor mass spectrometry (MS). The presence of interfering ion signals in standalone IMS may lead to the detection of false positives or negatives due to e. g. lacking resolving power. In this case, selective mobility shifts obtained using shift reagents (SR), i. e. ligands complexing a specific target, can bring help. The effectiveness of an SR strategy relies on the SR-target ion selectivity. The crucial step lies in the SR design. The aim of this paper is to present an efficient interplay of experimental ion mobility mass spectrometry (IMMS) and predictive computational chemistry using various levels of computational efforts for rationally designing target-specific SR. Mass spectrometry is used to evaluate the efficiency of the SR selectivity with identification and semi-quantification of free and complexed ions. Minimal computational efforts allow the design of the SR, predicting the SR-target ion relative stabilities, and predicting the ion mobility shifts. We demonstrate our approach using crown ethers and ß-cyclodextrin to selectively shift interfering perchlorate, amino acids and diaminonaphthalene isomers. We also release the software ParsIMoS for the straightforward use of ion mobility calculator IMoS.

15.
Anal Chem ; 89(22): 12076-12086, 2017 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-29064225

RESUMEN

Ion mobility (IM) is now a well-established and fast analytical technique. The IM hardware is constantly being improved, especially in terms of the resolving power. The Drift Tube (DTIMS), the Traveling Wave (TWIMS), and the Trapped Ion Mobility Spectrometry (TIMS) coupled to mass spectrometry are used to determine the Collision Cross-Sections (CCS) of ions. In analytical chemistry, the CCS is approached as a descriptor for ion identification and it is also used in physical chemistry for 3D structure elucidation with computational chemistry support. The CCS is a physical descriptor extracted from the reduced mobility (K0) measurements obtainable only from the DTIMS. TWIMS and TIMS routinely require a calibration procedure to convert measured physical quantities (drift time for TWIMS and elution voltage for TIMS) into CCS values. This calibration is a critical step to allow interinstrument comparisons. The previous calibrating substances lead to large prediction bands and introduced rather large uncertainties during the CCS determination. In this paper, we introduce a new IM calibrant (CCS and K0) using singly charged sodium adducts of poly(ethylene oxide) monomethyl ether (CH3O-PEO-H) for positive ionization in both helium and nitrogen as drift gas. These singly charged calibrating ions make it possible to determine the CCS/K0 of ions having higher charge states. The fitted calibration plots exhibit larger coverage with less data scattering and significantly improved prediction bands and uncertainties. The reasons for the improved CCS/K0 accuracy, advantages, and limitations of the calibration procedures are also discussed. A generalized IM calibration strategy is suggested.

16.
Transgenic Res ; 26(3): 375-384, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28332009

RESUMEN

Nicotiana tabacum BY-2 suspension cells have several advantages that make them suitable for the production of full-size monoclonal antibodies which can be purified directly from the culture medium. Carbohydrate characterization of an antibody (Lo-BM2) expressed in N. tabacum BY-2 cells showed that the purified Lo-BM2 displays N-glycan homogeneity with a high proportion (>70%) of the complex GnGnXF glycoform. The stable co-expression of a human ß-1,4-galactosyltransferase targeted to different Golgi sub-compartments altered Lo-BM2N-glycosylation and resulted in the production of an antibody that exhibited either hybrid structures containing a low abundance of the plant epitopes (α-1,3-fucose and ß-1,2-xylose), or a large amount of galactose-extended N-glycan structures. These results demonstrate the suitability of stable N-glycoengineered N. tabacum BY-2 cell lines for the production of human-like antibodies.


Asunto(s)
Inmunoglobulina G/metabolismo , N-Acetil-Lactosamina Sintasa/genética , Nicotiana/genética , Plantas Modificadas Genéticamente/genética , Cromatografía de Afinidad , Regulación de la Expresión Génica , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/aislamiento & purificación , N-Acetil-Lactosamina Sintasa/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo
17.
Phys Chem Chem Phys ; 19(23): 15570, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28569908

RESUMEN

Correction for 'Supramolecular influence on cis-trans isomerization probed by ion mobility spectrometry' by Izabella Czerwinska et al., Phys. Chem. Chem. Phys., 2016, 18, 32331-32336.

18.
Anal Chem ; 88(23): 11639-11646, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27934120

RESUMEN

Ion mobility spectrometry (IMS) is a gas phase separation technique, which relies on differences in collision cross section (CCS) of ions. Ionic clouds of unresolved conformers overlap if the CCS difference is below the instrumental resolution expressed as CCS/ΔCCS. The experimental arrival time distribution (ATD) peak is then a superimposition of the various contributions weighted by their relative intensities. This paper introduces a strategy for accurate drift time determination using traveling wave ion mobility spectrometry (TWIMS) of poorly resolved or unresolved conformers. This method implements through a calibration procedure the link between the peak full width at half-maximum (fwhm) and the drift time of model compounds for wide range of settings for wave heights and velocities. We modified a Gaussian equation, which achieves the deconvolution of ATD peaks where the fwhm is fixed according to our calibration procedure. The new fitting Gaussian equation only depends on two parameters: The apex of the peak (A) and the mean drift time value (µ). The standard deviation parameter (correlated to fwhm) becomes a function of the drift time. This correlation function between µ and fwhm is obtained using the TWIMS calibration procedure which determines the maximum instrumental ion beam diffusion under limited and controlled space charge effect using ionic compounds which are detected as single conformers in the gas phase. This deconvolution process has been used to highlight the presence of poorly resolved conformers of crown ether complexes and peptides leading to more accurate CCS determinations in better agreement with quantum chemistry predictions.

19.
Electrophoresis ; 37(7-8): 936-46, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26846463

RESUMEN

The current trend for increasing technical complexity in the field of CE-ESI-MS interfaces has incited for more accessible alternatives. In this work, a simple low sheath-flow ESI interface operating in the submicroliter nanospray regime without nebulizing gas assistance was evaluated. The use of sheath liquid enabled improving the ionization of the analytes, while the absence of nebulizing gas minimized sample dilution and loss of efficiency. After a rapid qualification, the effect of main operational parameters such as sheath liquid composition and flow rate, working distance and ESI potential was studied. Simulation of the mixing processes inside the Taylor cone proved its size to be of utmost importance in band broadening processes. As a proof of concept, the interface was eventually applied to a set of representative basic drugs analyzed by CE-TOF/MS. Limits of detection reached the 25-100 ppb range with suitable robustness and repeatability results. This design has demonstrated good performance while being simple and accessible to the user.


Asunto(s)
Electroforesis Capilar/instrumentación , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Electroforesis Capilar/métodos , Diseño de Equipo , Límite de Detección , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos
20.
Phys Chem Chem Phys ; 18(47): 32331-32336, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27853790

RESUMEN

We used tandem ion mobility spectrometry measurements to investigate how the photo-isomerization of a chromophore (a methylpyridinium derivative) is affected by the complexation with a crown ether. A dramatic blue-shift of the photo-isomerization spectrum was observed upon complexation, which could be well reproduced by ab initio calculations. Our results support that the observed changes in the photo-physical properties of the chromophore originate from the charge-solvation of its pyridinium moiety by the host cage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA