RESUMEN
BACKGROUND: Uropathogenic Escherichia coli (UPEC) is the main etiological agent behind community-acquired and hospital-acquired urinary tract infections (UTIs), which are among the most prevalent human infections. The management of UPEC infections is becoming increasingly difficult owing to multi-drug resistance, biofilm formation, and the possession of an extensive virulence arsenal. This study aims to characterize UPEC isolates in Tanta, Egypt, with regard to their antimicrobial resistance, phylogenetic profile, biofilm formation, and virulence, as well as the potential associations among these factors. METHODS: One hundred UPEC isolates were obtained from UTI patients in Tanta, Egypt. Antimicrobial susceptibility was assessed using the Kirby-Bauer method. Extended-spectrum ß-lactamases (ESBLs) production was screened using the double disk synergy test and confirmed with PCR. Biofilm formation was evaluated using the microtiter-plate assay and microscopy-based techniques. The phylogenetic groups of the isolates were determined. The hemolytic activity, motility, siderophore production, and serum resistance of the isolates were also evaluated. The clonal relatedness of the isolates was assessed using ERIC-PCR. RESULTS: Isolates displayed elevated resistance to cephalosporins (90-43%), sulfamethoxazole-trimethoprim (63%), and ciprofloxacin (53%). Ninety percent of the isolates were multidrug-resistant (MDR)/ extensively drug-resistant (XDR) and 67% produced ESBLs. Notably, there was an inverse correlation between biofilm formation and antimicrobial resistance, and 31%, 29%, 32%, and 8% of the isolates were strong, moderate, weak, and non-biofilm producers, respectively. Beta-hemolysis, motility, siderophore production, and serum resistance were detected in 64%, 84%, 65%, and 11% of the isolates, respectively. Siderophore production was correlated to resistance to multiple antibiotics, while hemolysis was more prevalent in susceptible isolates and associated with stronger biofilms. Phylogroups B2 and D predominated, with lower resistance and stronger biofilms in group B2. ERIC-PCR revealed considerable diversity among the isolates. CONCLUSION: This research highlights the dissemination of resistance in UPEC in Tanta, Egypt. The evident correlation between biofilm and resistance suggests a resistance cost on bacterial cells; and that isolates with lower resistance may rely on biofilms to enhance their survival. This emphasizes the importance of considering biofilm formation ability during the treatment of UPEC infections to avoid therapeutic failure and/or infection recurrence.
Asunto(s)
Infecciones por Escherichia coli , Infecciones Urinarias , Escherichia coli Uropatógena , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Egipto , Virulencia/genética , Filogenia , Hemólisis , Farmacorresistencia Bacteriana/genética , Factores de Virulencia/genética , Infecciones Urinarias/microbiología , Infecciones por Escherichia coli/tratamiento farmacológico , Hospitales , Biopelículas , Sideróforos/uso terapéuticoRESUMEN
COVID-19 is an infectious disease caused by SARS-CoV-2 and has spread globally, resulting in the ongoing coronavirus pandemic. The current study aimed to analyze the clinical and epidemiological features of COVID-19 in Egypt. Oropharyngeal swabs were collected from 197 suspected patients who were admitted to the Army Hospital and confirmation of the positivity was performed by rRT-PCR assay. Whole genomic sequencing was conducted using Illumina iSeq 100® System. The average age of the participants was 48 years, of which 132 (67%) were male. The main clinical symptoms were pneumonia (98%), fever (92%), and dry cough (66%). The results of the laboratory showed that lymphocytopenia (79.2%), decreased levels of haemoglobin (77.7%), increased levels of interleukin 6, C-reactive protein, serum ferritin, and D-dimer (77.2%, 55.3%, 55.3%, and 25.9%, respectively), and leukocytopenia (25.9%) were more common. The CT findings showed that scattered opacities (55.8%) and ground-glass appearance (27.9%) were frequently reported. The recovered validated sequences (n = 144) were submitted to NCBI Virus GenBank. All sequenced viruses have at least 99% identity to Wuhan-Hu-1. All variants were GH clade, B.1 PANGO lineage, and L.GP.YP.HT haplotype. The most predominant subclade was D614G/Q57H/V5F/G823S. Our findings have aided in a deep understanding of COVID-19 evolution and identifying strains with unique mutational patterns in Egypt.
RESUMEN
Moloney leukemia virus 10 (MOV10) is an RNA helicase that has been shown to affect the replication of several viruses. The effect of MOV10 on Hepatitis B virus (HBV) infection is not known and its role on the replication of this virus is poorly understood. We investigated the effect of MOV10 down-regulation and MOV10 over-expression on HBV in a variety of cell lines, as well as in an infection system using a replication competent virus. We report that MOV10 down-regulation, using siRNA, shRNA, and CRISPR/Cas9 gene editing technology, resulted in increased levels of HBV DNA, HBV pre-genomic RNA, and HBV core protein. In contrast, MOV10 over-expression reduced HBV DNA, HBV pre-genomic RNA, and HBV core protein. These effects were consistent in all tested cell lines, providing strong evidence for the involvement of MOV10 in the HBV life cycle. We demonstrated that MOV10 does not interact with HBV-core. However, MOV10 binds HBV pgRNA and this interaction does not affect HBV pgRNA decay rate. We conclude that the restriction of HBV by MOV10 is mediated through effects at the level of viral RNA.