Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Mol Cell Biochem ; 470(1-2): 63-75, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32405972

RESUMEN

Casein-kinase CK2 is a Ser/Thr protein kinase that fosters cell survival and proliferation of malignant cells. The CK2 holoenzyme, formed by the association of two catalytic alpha/alpha' (CK2α/CK2α') and two regulatory beta subunits (CK2ß), phosphorylates diverse intracellular proteins partaking in key cellular processes. A handful of such CK2 substrates have been identified as targets for the substrate-binding anticancer peptide CIGB-300. However, since CK2ß also contains a CK2 phosphorylation consensus motif, this peptide may also directly impinge on CK2 enzymatic activity, thus globally modifying the CK2-dependent phosphoproteome. To address such a possibility, firstly, we evaluated the potential interaction of CIGB-300 with CK2 subunits, both in cell-free assays and cellular lysates, as well as its effect on CK2 enzymatic activity. Then, we performed a phosphoproteomic survey focusing on early inhibitory events triggered by CIGB-300 and identified those CK2 substrates significantly inhibited along with disturbed cellular processes. Altogether, we provided here the first evidence for a direct impairment of CK2 enzymatic activity by CIGB-300. Of note, both CK2-mediated inhibitory mechanisms of this anticancer peptide (i.e., substrate- and enzyme-binding mechanism) may run in parallel in tumor cells and help to explain the different anti-neoplastic effects exerted by CIGB-300 in preclinical cancer models.


Asunto(s)
Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Quinasa de la Caseína II/metabolismo , Neoplasias Pulmonares/metabolismo , Péptidos Cíclicos/farmacología , Dominio Catalítico , Línea Celular Tumoral , Sistema Libre de Células , Regulación Neoplásica de la Expresión Génica , Humanos , Microscopía Fluorescente , Fosforilación , Unión Proteica , Proteoma , Proteínas Recombinantes/metabolismo
2.
Cancer Cell Int ; 17: 42, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28373828

RESUMEN

BACKGROUND: Lung cancer is the most frequently diagnosed cancer and the leading cause of cancer-related deaths worldwide. Up to 80% of cancer patients are classified as non-small-cell lung cancer (NSCLC) and cisplatin remains as the gold standard chemotherapy treatment, despite its limited efficacy due to both intrinsic and acquired resistance. The CK2 is a Ser/Thr kinase overexpressed in various types of cancer, including lung cancer. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to CK2 substrates thus preventing the enzyme activity. The aim of this work was to analyze the effects of CIGB-300 treatment targeting CK2-dependent signaling pathways in NSCLC cell lines and whether it may help improve current chemotherapy treatment. METHODS: The human NSCLC cell lines NCI-H125 and NIH-A549 were used. Tumor spheroids were obtained through the hanging-drop method. A cisplatin resistant A549 cell line was obtained by chronic administration of cisplatin. Cell viability, apoptosis, immunoblotting, immunofluorescence and luciferase reporter assays were used to assess CIGB-300 effects. A luminescent assay was used to monitor proteasome activity. RESULTS: We demonstrated that CIGB-300 induces an anti-proliferative response both in monolayer- and three-dimensional NSCLC models, presenting rapid and complete peptide uptake. This effect was accompanied by the inhibition of the CK2-dependent canonical NF-κB pathway, evidenced by reduced RelA/p65 nuclear levels and NF-κB protein targets modulation in both lung cancer cell lines, as well as conditionally reduced NF-κB transcriptional activity. In addition, NF-κB modulation was associated with enhanced proteasome activity, possibly through its α7/C8 subunit. Neither the peptide nor a classical CK2 inhibitor affected cytoplasmic ß-CATENIN basal levels. Given that NF-κB activation has been linked to cisplatin-induced resistance, we explored whether CIGB-300 could bring additional therapeutic benefits to the standard cisplatin treatment. We established a resistant cell line that showed higher p65 nuclear levels after cisplatin treatment as compared with the parental cell line. Remarkably, the cisplatin-resistant cell line became more sensitive to CIGB-300 treatment. CONCLUSIONS: Our data provide new insights into CIGB-300 mechanism of action and suggest clinical potential on current NSCLC therapy.

3.
Mol Pharm ; 11(6): 1798-807, 2014 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-24773585

RESUMEN

CIGB-300 is a cyclic synthetic peptide that induces apoptosis in malignant cells, elicits antitumor activity in cancer animal models, and shows tumor reduction signs when assayed in first-in-human phase I trial in patients with cervical tumors. CIGB-300 impairs phosphorylation by casein kinase 2 through targeting the substrate's phosphoacceptor domain. CIGB-300 was linked to the cell penetrating peptide Tat to facilitate the delivery into cells. Previously, we showed that CIGB-300 had a differential antiproliferative behavior in different tumor cell lines. In this work, we studied differential antiproliferative behavior in terms of cellular uptake, intracellular transportation, and degradation in tumor cell lines with dissimilar sensitivity to CIGB-300. The internalization of CIGB-300 was studied in different malignant cell lines. We found that the cell membrane heparan sulfate proteoglycans act as main receptors for extracellular CIGB-300 uptake. The most sensitive tumor cell lines showed higher intracellular incorporation of CIGB-300 in comparison to less sensitive cell lines. Furthermore, CIGB-300 uptake is time- and concentration-dependent in all studied cell lines. It was shown that CIGB-300 has the ability to penetrate cells mainly by direct membrane translocation. However, a minor proportion of the peptide uses an energy-dependent endocytic pathway mechanism to gain access into cells. CIGB-300 is internalized and transported into cells preferentially by caveolae-mediated endocytosis. Lysosomes are involved in CIGB-300 degradation; highly sensitive cell lines showed degradation at earlier times compared to low sensitive cells. Altogether, our data suggests a mechanism of internalization, vesicular transportation, and degradation for CIGB-300 in tumor cells.


Asunto(s)
Transporte Biológico/fisiología , Péptidos Cíclicos/metabolismo , Péptidos/metabolismo , Caveolas/metabolismo , Línea Celular Tumoral , Membrana Celular/metabolismo , Endocitosis/fisiología , Células HL-60 , Células HeLa , Proteoglicanos de Heparán Sulfato/metabolismo , Humanos , Lisosomas/metabolismo
4.
Medicina (B Aires) ; 74(1): 69-76, 2014.
Artículo en Español | MEDLINE | ID: mdl-24561847

RESUMEN

Telomerase is the enzyme responsible for the maintenance of telomere length by adding guanine-rich repetitive sequences. Its activity can be seen in gametes, stem cells and tumor cells. In human somatic cells the proliferative potential is limited, reaching senescence after 50-70 cell divisions, because the DNA polymerase is not able to copy the DNA at the ends of chromosomes. By contrast, in most tumor cells the replicative potential is unlimited due to the maintenance of the telomeric length given by telomerase. Telomeres have additional proteins that regulate the binding of telomerase, likewise telomerase associates, with a protein complex that regulates its activity. This work focuses on the structure and function of the telomere/telomerase complex and how changes in its behavior lead to the development of different diseases, mainly cancer. Development of inhibitors of the telomere/telomerase complex could be a target with promising possibilities.


Asunto(s)
Neoplasias/genética , Telomerasa/genética , Telómero/fisiología , Animales , División Celular/fisiología , Senescencia Celular/genética , Humanos , Neoplasias/enzimología , Telomerasa/metabolismo , Proteína 1 de Unión a Repeticiones Teloméricas/fisiología , Proteína 2 de Unión a Repeticiones Teloméricas/fisiología
5.
Breast Cancer Res Treat ; 142(1): 9-18, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24122393

RESUMEN

Desmopressin (DDAVP), a synthetic peptide analog of vasopressin, is a safe antidiuretic and hemostatic compound that acts as a selective agonist for the vasopressin V2 membrane receptor. It is known that DDAVP can inhibit progression of residual metastatic cells and also improves chemotherapy effects in preclinical breast cancer models. Here, we explored the effects of DDAVP on tumor angiogenesis using the aggressive F3II mammary carcinoma in syngeneic Balb/c mice. Intravenous administration of the compound (2 µg/kg) markedly decreased vascularization of growing subcutaneous tumors, as well as inhibited the early angiogenic response around intradermal inoculation sites. In vitro studies confirmed the presence of vasopressin V2 receptors on F3II cells and a modest antiproliferative activity of DDAVP. Interestingly, conditioned media from F3II monolayers exposed to low doses of DDAVP (100 nM) significantly increased angiostatin formation in the presence of purified plasminogen. Such increase was associated with an enhancement of tumor-secreted urokinase-type plasminogen activator, suggesting the proteolytic conversion of plasminogen to angiostatin in vitro. Similar results were observed with the MCF-7 human breast carcinoma, a cell line known to express the vasopressin V2 receptor. No direct effects of DDAVP (100 nM­1 µM) were found on capillary-like tube formation by human microvascular cells HMVEC. Our studies showed that DDAVP induces anti-angiogenic effects that may be associated with the generation of angiostatin by tumor cells. Further preclinical studies with DDAVP and other vasopressin analogs are warranted to determine their potential in cancer management.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Desamino Arginina Vasopresina/farmacología , Neovascularización Patológica/tratamiento farmacológico , Inhibidores de la Angiogénesis/administración & dosificación , Angiostatinas/metabolismo , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desamino Arginina Vasopresina/administración & dosificación , Modelos Animales de Enfermedad , Células Endoteliales/efectos de los fármacos , Femenino , Humanos , Ratones , Proteolisis/efectos de los fármacos , Receptores de Vasopresinas/metabolismo , Carga Tumoral/efectos de los fármacos
6.
J Pept Sci ; 18(4): 215-23, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22407768

RESUMEN

CIGB-300 is a novel anticancer peptide that impairs the casein kinase 2-mediated phosphorylation by direct binding to the conserved phosphoacceptor site on their substrates. Previous findings indicated that CIGB-300 inhibits tumor cell proliferation in vitro and induces tumor growth delay in vivo in cancer animal models. Interestingly, we had previously demonstrated that the putative oncogene B23/nucleophosmin (NPM) is the major intracellular target for CIGB-300 in a sensitive human lung cancer cell line. However, the ability of this peptide to target B23/NPM in cancer cells with differential CIGB-300 response phenotype remained to be determined. Interestingly, in this work, we evidenced that CIGB-300's antiproliferative activity on tumor cells strongly correlates with its nucleolar localization, the main subcellular localization of the previously identified B23/NPM target. Likewise, using CIGB-300 equipotent doses (concentration that inhibits 50% of proliferation), we demonstrated that this peptide interacts and inhibits B23/NPM phosphorylation in different cancer cell lines as evidenced by in vivo pull-down and metabolic labeling experiments. Moreover, such inhibition was followed by a fast apoptosis on CIGB-300-treated cells and also an impairment of cell cycle progression mainly after 5 h of treatment. Altogether, our data not only validates B23/NPM as a main target for CIGB-300 in cancer cells but also provides the first experimental clues to explain their differential antiproliferative response. Importantly, our findings suggest that further improvements to this cell penetrating peptide-based drug should entail its more efficient intracellular delivery at such subcellular localization.


Asunto(s)
Antineoplásicos/farmacología , Nucléolo Celular/efectos de los fármacos , Péptidos Cíclicos/farmacología , Antineoplásicos/metabolismo , Apoptosis , Quinasa de la Caseína II/antagonistas & inhibidores , Puntos de Control del Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Proteínas Nucleares/metabolismo , Nucleofosmina , Péptidos Cíclicos/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional/efectos de los fármacos
7.
Exp Cell Res ; 317(12): 1677-88, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21565189

RESUMEN

We have previously demonstrated that a proapoptotic cyclic peptide CIGB-300, formerly known as P15-Tat delivered into the cells by the cell-penetrating peptide Tat, was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice or by systemic administration. In this work, we studied the role of CIGB-300 on the main events that take place in angiogenesis. At non-cytotoxic doses, CIGB-300 was able to inhibit adhesion, migration, and tubular network formation induced by human umbilical vein endothelial cells (HUVEC) growing upon Matrigel in vitro. Likewise, we evaluated the cellular penetration and localization into the HUVEC cells of CIGB-300. Our results confirmed a quick cellular penetration and a cytoplasmic accumulation in the early minutes of incubation and a translocation into the nuclei beginning at 12h of treatment, with a strong presence in the perinuclear area. A microarray analysis was used to determine the genes affected by the treatment. We observed that CIGB-300 significantly decreased four genes strongly associated with tubulogenesis, growth, and differentiation of endothelial cells. The CIGB-300 was tested in vivo on chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. The results suggested that CIGB-300 has a potential as an antiangiogenic treatment. The mechanism of action may be associated with partial inhibition of VEGF and Notch pathways.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Neovascularización Patológica/prevención & control , Péptidos Cíclicos/farmacología , Animales , Biomarcadores/metabolismo , Western Blotting , Adhesión Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Membrana Corioalantoides/efectos de los fármacos , Membrana Corioalantoides/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Análisis de Secuencia por Matrices de Oligonucleótidos , Venas Umbilicales/citología , Venas Umbilicales/efectos de los fármacos , Venas Umbilicales/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
8.
JCO Clin Cancer Inform ; 6: e2200093, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36455174

RESUMEN

PURPOSE: The aim of the present work was to investigate the role of apoptosis inhibitor BIRC6 (baculoviral IAP repeat-containing protein 6) in breast cancer (BC), focusing particularly on its involvement in the metastatic cascade. METHODS: We analyzed BIRC6 mRNA expression levels and copy number variations in three BC databases from The Cancer Genome Atlas comparing clinical and molecular attributes. Genomic analysis was performed using the cBioPortal platform, whereas transcriptomic studies (mRNA expression levels, correlation heatmaps, survival plots, and gene ontology) were performed using USC Xena and R. Statistical significance was set at P < .05. RESULTS: Our bioinformatic analyses showed that there was a differential expression of BIRC6 in cancer samples when compared with normal samples. Copy number variations that involve amplification and gain of BIRC6 gene were correlated with negative hormone receptor tumors, higher prognostic indexes, younger age at diagnosis, and both chemotherapy and radiotherapy administration. Transcriptomic and gene ontology analyses showed that, under conditions of high BIRC6 mRNA levels, there are differential expression patterns in apoptotic, proliferation, and metastatic pathways. CONCLUSION: In summary, our in silico data suggest that BIRC6 plays an antiapoptotic, pro-proliferative, and apparent prometastatic role and could be a relevant molecular target for treatment of BC tumors.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/genética , Variaciones en el Número de Copia de ADN , Apoptosis/genética , Bases de Datos Factuales , ARN Mensajero/genética , Proteínas Inhibidoras de la Apoptosis/genética
9.
Acta Vet Hung ; 59(1): 69-76, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21354942

RESUMEN

A case of feline multicentric lymphoma is reported in an 8-year-old male cat weighing 4.7 kg. At the time of the clinical consultation the animal presented weight loss, anorexia and generalised lymphadenomegaly. After careful clinical observation and a detailed laboratory workup, the diagnosis of small cleaved cell lymphoma was established. It was classified as a stage III b multicentric lymphoma. Chemotherapy was initiated according to a classical COP protocol to which atorvastatin was added. After 34 months, the cat continues to enjoy an excellent quality of life with no clinical or haematological signs of lymphoma. This is the first report in clinical veterinary medicine about a new effective adjuvant therapy in feline multicentric lymphoma. Further studies are needed to confirm that the addition of atorvastatin can provide a regular, safe and improved treatment in feline lymphoma cases.


Asunto(s)
Enfermedades de los Gatos/tratamiento farmacológico , Ácidos Heptanoicos/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Linfoma/veterinaria , Pirroles/uso terapéutico , Animales , Atorvastatina , Gatos , Quimioterapia Adyuvante , Linfoma/tratamiento farmacológico , Linfoma/patología , Masculino
10.
Sci Rep ; 10(1): 14689, 2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32895446

RESUMEN

CK2 is a serine/threonine kinase that is overexpressed in breast cancer and its inhibition is associated to reduced tumor growth and disease progression. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to protein kinase CK2 catalytic subunit alpha and to CK2 substrates thus preventing the enzyme activity. Our aim was to evaluate the potential therapeutic benefits of CIGB-300 on breast cancer disease using experimental models with translational relevance. We demonstrated that CIGB-300 reduces breast cancer cell growth in MDA-MB-231, MCF-7 and F3II cells, exerting a pro-apoptotic action and cell cycle arrest. We also found that CIGB-300 decreased cell adhesion, migration and clonogenic capacity of malignant cells. Effect on experimental breast cancer lung metastasis was evaluated after surgical removal of primary F3II tumors or after tail vein injection of tumor cells, also we evaluated CIGB-300 effect on spontaneous lung metastasis in an orthotopic model. Systemic CIGB-300 treatment inhibited breast cancer colonization of the lung, reducing the size and number of metastatic lesions. The present preclinical study establishes for the first time the efficacy of CIGB-300 on breast cancer. These encouraging results suggest that CIGB-300 could be used for the management of breast cancer as an adjuvant therapy after surgery, limiting tumor metastatic spread and thus protecting the patient from distant recurrence.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Quinasa de la Caseína II/antagonistas & inhibidores , Invasividad Neoplásica/prevención & control , Péptidos Cíclicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Quinasa de la Caseína II/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/prevención & control , Neoplasias Pulmonares/secundario , Células MCF-7 , Ratones Endogámicos BALB C , Invasividad Neoplásica/patología , Péptidos Cíclicos/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico
11.
J Food Sci ; 85(7): 2186-2197, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32567699

RESUMEN

Yerba Mate (Ilex paraguariensis St. Hill. Aquifoliaceae) is a native South American tree and has a large amount of bioactive compounds. Colorectal cancer (CRC) is one of the so-called westernized diseases and is the third most common cancer in both men and women. Efficient strategies for the treatment of CRC are extensively being explored including dietary intervention. The objective of our research was to evaluate the effects of Yerba Mate extract on cell proliferation, invasive capacity of tumor cells, and angiogenesis. For this, in vitro and in vivo experimentation was carried out using CRC models. The extract was generated by aqueous extraction and prepared according to traditional American procedure of preparing mate infusion. In vitro results showed that the Yerba Mate extract inhibits CT26 and COLO 205 cell proliferation with IC50 values of 0.25 and 0.46 mg/mL, respectively. We demonstrated by TUNEL assay that one of the mechanisms by which Yerba Mate extract decreases cell proliferation is by induction of apoptosis. In a murine syngeneic tumor model, oral administration of Yerba Mate extract in a dose of 1.6 g/kg/day significantly inhibited angiogenesis and tumor growth without affecting biological parameters or body weight. Our findings suggest that Yerba Mate may be a promising agent for the treatment of colon cancer and could be used as an herbal medicine or functional food ingredient. PRACTICAL APPLICATION: Considering the chemical composition and presence of phenolic compounds with their free-radical scavenging activities and bioactivities against colon cancer cells, Yerba Mate can be a promising candidate as healthy food sources in human nutrition, and also be considered a natural source of potential antitumor agents. Taking into account the economic importance of Yerba Mate in Argentina, this vegetable would have a greater commercial value as a functional food.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Neoplasias del Colon/tratamiento farmacológico , Ilex paraguariensis/química , Extractos Vegetales/administración & dosificación , Animales , Antineoplásicos Fitogénicos/química , Argentina , Peso Corporal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/fisiopatología , Humanos , Ratones , Fenoles/administración & dosificación , Fenoles/química , Fitoterapia , Extractos Vegetales/química
12.
Int J Cancer ; 122(1): 57-62, 2008 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-17847034

RESUMEN

The antitumor efficacy of the CK2 inhibitors so far described has not been extensively evaluated in cancer animal models. We have previously demonstrated that a proapoptotic cyclic peptide termed P15 delivered into the cells by the Tat Cell Penetrating Peptide was able to abrogate the CK2-mediated phosphorylation and induce tumor regression when injected directly into solid tumors in mice. Here we explored the antitumor effect by systemic administration of P15-Tat in a consecutive 5-day schedule through either intraperitoneal or intravenous route. Importantly, significant delay of tumor growth was observed at 2 mg/kg (p < 0.05), 10 mg/kg (p < 0.01) or 40 mg/kg (p < 0.001) after P15-Tat administration both in syngeneic murine tumors and human tumors xenografted in nude mice. In line with this, the systemic administration of P15-Tat induced apoptosis in the tumor as evidenced by in situ DNA fragmentation. Furthermore, we evidenced that 99mTc-labeled P15-Tat peptide was certainly accumulated on the tumors after administration by both routes. This report becomes the first describing the antitumor effect induced by systemic administration of a peptide that targets the acidic phosphorylation domain for CK2 substrates. Also, our data reinforces the perspectives of P15-Tat for the cancer targeted therapy.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma de Pulmón de Células no Pequeñas/patología , Quinasa de la Caseína II/metabolismo , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/farmacología , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Carcinoma de Pulmón de Células no Pequeñas/enzimología , Línea Celular Tumoral , Femenino , Productos del Gen tat/genética , Humanos , Neoplasias Pulmonares/enzimología , Neoplasias Pulmonares/terapia , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Péptidos Cíclicos/farmacología , Fosforilación/efectos de los fármacos , Distribución Tisular , Trasplante Heterólogo
13.
Nanomedicine (Lond) ; 13(22): 2835-2849, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30430901

RESUMEN

AIM: To develop and characterize the antitumor activity of poly(D,L-lactic-co-glycolic acid) nanoparticles loaded with hemostatic and anticancer drug desmopressin (dDAVP). MATERIALS & METHODS: After full physicochemical characterization, anticancer activity of dDAVP-loaded poly(D,L-lactic-co-glycolic acid) nanoparticles (NPdDAVP) was evaluated in vitro and in vivo on a highly aggressive breast cancer model. RESULTS: After efficiently loading desmopressin in poly(D,L-lactic-co-glycolic acid) matrix, NPdDAVP exhibited suitable physicochemical characteristics for biomedical applications. NPdDAVP displayed a potent cytostatic effect in vitro, inhibiting tumor cell proliferation and colony forming ability. Moreover, intravenous treatment using nanoparticulated-dDAVP inhibited tumor progression and prolonged survival in animals bearing rapidly-growing mammary tumors. CONCLUSION: Within the framework of promising dDAVP repurposing studies, these findings support further preclinical development of the NPdDAVP for the management of highly aggressive cancer.


Asunto(s)
Antineoplásicos/farmacología , Desamino Arginina Vasopresina/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos/métodos , Liberación de Fármacos , Femenino , Humanos , Ratones Endogámicos BALB C , Tamaño de la Partícula , Polímeros/química , Propiedades de Superficie
14.
Lung Cancer ; 107: 14-21, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27319334

RESUMEN

OBJECTIVES: Casein kinase 2 (CK2) is overexpressed in several types of cancer. It has more than 300 substrates mainly involved in DNA reparation and replication, chromatin remodeling and cellular growth. In recent years CK2 became an interesting target for anticancer drug development. CIGB-300 is a peptidic inhibitor of CK2 activity, designed to bind to the phospho-acceptor domain of CK2 substrates, impairing the correct phosphorylation by the enzyme. The aim of this work was to explore the antitumor effects of this inhibitor in preclinical lung cancer models. MATERIALS AND METHODS: Human H125 and murine 3LL Lewis lung carcinoma cell lines were used to evaluate the effect of CIGB-300 treatment in vitro. For this purpose, adhesion, migration and invasion capabilities of cancer cells were tested. Proteolytic activity of tumor cell-secreted uPA and MMP after CIGB-300 incubation was also analyzed. In vivo anticancer efficacy of the peptide was evaluated using experimental and spontaneous lung colonization assays in C57BL/6 mice. Finally, in order to test the effect of CIGB-300 on tumor cell-induced angiogenesis, a modified Matrigel plug assay was conducted. RESULTS AND CONCLUSION: We demonstrate that treatment with low micromolar concentrations of CIGB-300 caused a drastic reduction of adhesion, migration and invasion of lung cancer cells. Reduced invasiveness after CIGB-300 incubation was associated with decreased proteolytic activity of tumor cell-conditioned medium. In vivo, intravenous administration of CIGB-300 (10mg/kg) markly decreased lung colonization and metastasis development of 3LL cells. Interestingly, after 5days of systemic treatment with CIGB-300, tumor cell-driven neovascularization was significantly reduced in comparison to control group. Altogether our data suggest an important role of CK2 in lung tumor development, suggesting a potential use of CIGB-300 as a novel therapeutic agent against lung cancer.


Asunto(s)
Quinasa de la Caseína II/antagonistas & inhibidores , Línea Celular Tumoral/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Metástasis de la Neoplasia/tratamiento farmacológico , Péptidos Cíclicos/farmacología , Administración Intravenosa , Inhibidores de la Angiogénesis/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Quinasa de la Caseína II/metabolismo , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Humanos , Neoplasias Pulmonares/metabolismo , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/tratamiento farmacológico , Péptidos Cíclicos/administración & dosificación , Péptidos Cíclicos/metabolismo , Fosforilación/efectos de los fármacos
15.
Oncol Rep ; 16(4): 885-91, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16969510

RESUMEN

Tumor invasion, angiogenesis and metastasis involve secretion of proteolytic enzymes and cell migration into blood vessels. Tumor cells are capable of degrading the extracellular matrix via a proteolytic cascade that includes urokinase-type plasminogen activator (uPA) and matrix metalloproteases (MMPs). We have investigated the antitumor and antiangiogenic properties of soy isoflavone genistein in B16 melanoma and F3II mammary carcinoma mouse models. At non-cytotoxic concentrations (0.1-50 microM) genistein induced dose-dependent spindle-cell morphology and significantly reduced motility in both cell lines. Genistein inhibited uPA secreted by F3II cell monolayers, while inducing an increase in the proteolytic activity of B16 cells. On the contrary, the compound did not modify the MMP-9 and -2 produced by tumor cells. In vivo, i.p. administration of genistein at a dose of 10 mg/kg/day reduced tumor-induced angiogenesis in syngeneic mice implanted with B16 or F3II cells. Similar antiangiogenic effects were obtained with a soybean-based diet. This data suggest that tumor cell migration and proteolysis may be associated with the antitumor and antiangiogenic activity of soy isoflavone genistein.


Asunto(s)
Antineoplásicos/farmacología , Genisteína/farmacología , Glycine max/química , Isoflavonas/uso terapéutico , Neoplasias Mamarias Animales/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Inhibidores de la Angiogénesis/farmacología , Animales , Medios de Cultivo Condicionados/metabolismo , Modelos Animales de Enfermedad , Humanos , Melanoma Experimental , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica
16.
In Vivo ; 20(6B): 881-5, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-17203783

RESUMEN

Desmopressin (DDAVP) is a synthetic vasopressin analog capable of inducing an increase in the plasma levels of von Willebrand factor and coagulation factor VIII. DDAVP has been used during surgery to prevent bleeding in patients with coagulation defects. We have previously demonstrated that adjuvant perioperative DDAVP therapy inhibits lung and lymph node metastasis in a breast cancer model. Here the effect of DDAVP on experimental lung colonization of B16 melanoma cells was investigated in a transgenic mice model with high levels of tissue inhibitor of metalloproteinases-1 (TIMP-1) in the systemic circulation. Transgenic C57BL/6j-CBA mice overexpressing human TIMP-1 in the liver under the control of the mouse albumin promoter/enhancer were employed. Treatment with DDAVP (2 microg/kg/dose) at the time of intravenous injection of B16 cells significantly inhibited the formation of lung metastases in TIMP-1 transgenic animals (p = 0.021), while no significant effect was obtained in control hybrid mice. The inhibition was not due to direct cytotoxic effects of DDAVP on tumor cells and no expression of vasopressin receptors was detected in B16 cells. Our data indicate that DDAVP therapy may impair successful implantation of circulating melanoma cells and suggest that high levels of circulating TIMP-1 display a cooperative role in the antitumor activity of the compound.


Asunto(s)
Desamino Arginina Vasopresina/uso terapéutico , Neoplasias Pulmonares/prevención & control , Melanoma Experimental/prevención & control , Inhibidor Tisular de Metaloproteinasa-1/genética , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Desamino Arginina Vasopresina/farmacología , Relación Dosis-Respuesta a Droga , Expresión Génica/genética , Hemostáticos/farmacología , Hemostáticos/uso terapéutico , Humanos , Neoplasias Pulmonares/secundario , Metaloproteinasa 2 de la Matriz/sangre , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/sangre , Metaloproteinasa 9 de la Matriz/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Ratones Transgénicos , Receptores de Vasopresinas/genética
18.
Clin Exp Metastasis ; 19(6): 551-9, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12405293

RESUMEN

Lovastatin is a competitive inhibitor of 3-hydroxy 3-methylglutaryl coenzyme A reductase, the key regulatory enzyme of cholesterol biosynthesis. This enzyme catalyzes the formation of mevalonate, which is also the precursor of isoprenoid moieties, such as farnesol and geraniol, that are incorporated into several molecules essential for tumor cell signaling. Here, we describe that pretreatment with a non-cytotoxic concentration of lovastatin (10 microM) dramatically inhibited the metastatic ability of F311 mammary carcinoma cells in syngeneic BALB/c mice. Similarly, daily i.p. treatment of animals with a well-tolerated dose of lovastatin (10 mg/kg/day) significantly reduced the number of experimental lung metastases. In vitro, incubation of F3II monolayers in the presence of lovastatin caused a rounded-cell morphology. Immunofluorescence analysis revealed a lack of cortical actin organization, micrutubule disruption and inhibition of integrin-mediated focal contacts in lovastatin-treated cells. Exposure of F3II cells to lovastatin significantly inhibited tumor cell adhesion and migration, and coincubation with the cholesterol precursor mevalonate prevented these effects. Lovastatin reduced membrane localization of Rho protein, a signaling molecule involved in the regulation of actin-based cell motility that needs geranylation for membrane association and activation. In addition, lovastatin induced a dose-dependent inhibition in the secretion of urokinase, a key proteolytic enzyme during tumor invasion and metastasis, and a significant increase of tissue-type plasminogen activator, a marker of good prognosis in mammary cancer. These data suggest that antimetastatic properties of lovastatin are strongly associated with alterations in cytoskeleton organization and the consequent modulation of adhesion, motility and proteolysis.


Asunto(s)
Antineoplásicos/uso terapéutico , Citoesqueleto/patología , Lovastatina/uso terapéutico , Neoplasias Pulmonares/secundario , Neoplasias Mamarias Experimentales/patología , Metástasis de la Neoplasia/prevención & control , Animales , Citoesqueleto/efectos de los fármacos , Neoplasias Pulmonares/prevención & control , Ratones , Ratones Endogámicos BALB C , Células Tumorales Cultivadas
19.
Anticancer Res ; 24(3a): 1737-43, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15274349

RESUMEN

We analyzed the effect of nafoxidine on the earlier biological processes of angiogenesis and explored the role of different signaling pathways involved in the in vitro response of endothelial cells (HUVEC). Nafoxidine significantly inhibited adhesion, spreading, migration and invasion of HUVEC at concentrations ranging from 1 to 2.5 microM. Endothelial cord formation on Matrigel was inhibited by nafoxidine and cotreatment with phorbol-12-myristate-13-acetate (PMA) clearly prevented the antiangiogenic effect of the antiestrogen. On the contrary, cotreatment with the PKC inhibitor bisindolylmaleimide potentiated inhibition of cord formation. PMA also inhibited the nafoxidine-induced secretion of metalloproteinase-2 and tissue inhibitor of metalloproteinases-1 in HUVEC monolayers. Cotreatment with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine and the cAMP analog N6,2'-o-dibutyryladenosine 3',5'-cyclic monophosphate prevented the inhibition of endothelial cord formation induced by nafoxidine. Our work presents evidence about the signaling pathways involved in the antiangiogenic effect of nafoxidine, suggesting that PKC-dependent signaling pathways are essential in angiogenesis during endothelial cord formation.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Endotelio Vascular/efectos de los fármacos , Nafoxidina/farmacología , Proteína Quinasa C/fisiología , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Endotelio Vascular/citología , Endotelio Vascular/enzimología , Endotelio Vascular/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Venas Umbilicales/citología
20.
Mol Clin Oncol ; 2(6): 935-944, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25279177

RESUMEN

CIGB-300 is a novel clinical-stage synthetic peptide that impairs the casein kinase 2 (CK2)-mediated phosphorylation of B23/nucleophosmin in different experimental settings and cancer models. As a single agent, CIGB-300 induces apoptosis in vitro and in vivo and modulates an array of proteins that are mainly involved in drug resistance, cell proliferation and apoptosis, as determined by proteomic analysis. However, the clinical oncology practice and cumulative knowledge on tumor biology suggest that drug combinations are more likely to cope with tumor complexity compared to single agents. In this study, we investigated the antiproliferative effect of CIGB-300 when combined with different anticancer drugs, such as cisplatin (alkylating), paclitaxel (antimitotic), doxorubicin (antitopoisomerase II) or 5-fluorouracil (DNA/RNA antimetabolite) in cell lines derived from lung and cervical cancer. Of note, using a Latin square design and subsequent analysis by CalcuSyn software, we observed that paclitaxel and cisplatin exhibited the best synergistic/additive profile when combined with CIGB-300, according to the combination and dose reduction indices. Such therapeutically favorable profiles may be explained by a direct cytotoxic effect and also by the observed cell cycle impairment following incubation of tumor cells with selected drug combinations. Importantly, on in vivo dose-finding schedules in human cervical tumors xenografted in nude mice, we observed that concomitant administration of CIGB-300 and cisplatin increased mice survival compared to single-agent treatment. Collectively, these findings provide a rationale for combining the anti-CK2 CIGB-300 peptide with currently available anticancer agents in the clinical setting and indicate platins and taxanes as compounds with major perspectives.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA