Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Semin Cancer Biol ; 95: 103-119, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543179

RESUMEN

Olive oil (OO) is the main source of added fat in the Mediterranean diet (MD). It is a mix of bioactive compounds, including monounsaturated fatty acids, phytosterols, simple phenols, secoiridoids, flavonoids, and terpenoids. There is a growing body of evidence that MD and OO improve obesity-related factors. In addition, obesity has been associated with an increased risk for several cancers: endometrial, oesophageal adenocarcinoma, renal, pancreatic, hepatocellular, gastric cardia, meningioma, multiple myeloma, colorectal, postmenopausal breast, ovarian, gallbladder, and thyroid cancer. However, the epidemiological evidence linking MD and OO with these obesity-related cancers, and their potential mechanisms of action, especially those involving the gut microbiota, are not clearly described or understood. The goals of this review are 1) to update the current epidemiological knowledge on the associations between MD and OO consumption and obesity-related cancers, 2) to identify the gut microbiota mechanisms involved in obesity-related cancers, and 3) to report the effects of MD and OO on these mechanisms.


Asunto(s)
Dieta Mediterránea , Microbioma Gastrointestinal , Neoplasias , Humanos , Aceite de Oliva/uso terapéutico , Obesidad/complicaciones , Neoplasias/epidemiología , Neoplasias/etiología , Neoplasias/prevención & control
2.
BMC Med ; 22(1): 221, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38825687

RESUMEN

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MetS) are implicated in the aetiology of non-communicable diseases. Our study aimed to evaluate associations between NAFLD and MetS with overall and cause-specific mortality. METHODS: We used dietary, lifestyle, anthropometric and metabolic biomarker data from a random subsample of 15,784 EPIC cohort participants. NAFLD was assessed using the fatty liver index (FLI) and MetS using the revised definition. Indices for metabolic dysfunction-associated fatty liver disease (MAFLD) were calculated. The individual associations of these indices with overall and cause-specific mortality were assessed using multivariable Cox proportional hazards models to estimate hazard ratios (HRs) and 95% confidence intervals (95%CIs). As a subobjective, risk associations with adaptations of new classifications of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic and alcohol-related liver disease (MetALD) were also assessed. RESULTS: Among the 15,784 sub-cohort participants, a total of 1997 deaths occurred (835 due to cancer, 520 to CVD, 642 to other causes) over a median 15.6 (IQR, 12.3-17.1) years of follow-up. Compared to an FLI < 30, FLI ≥ 60 was associated with increased risks of overall mortality (HR = 1.44, 95%CI = 1.27-1.63), and deaths from cancer (HR = 1.32, 95%CI = 1.09-1.60), CVD (HR = 2.06, 95% CI = 1.61-2.63) or other causes (HR = 1.21, 95%CI = 0.97-1.51). Mortality risk associations were also elevated for individuals with MAFLD compared to those without. Individuals with MetS were at increased risk of all mortality endpoints, except cancer-specific mortality. MASLD and MetALD were associated with higher risk of overall mortality. CONCLUSIONS: Our findings based on a prospective cohort suggest that individuals with hepatic steatosis or metabolic dysfunction have a higher overall and cause-specific mortality risk.


Asunto(s)
Síndrome Metabólico , Enfermedad del Hígado Graso no Alcohólico , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Síndrome Metabólico/mortalidad , Enfermedad del Hígado Graso no Alcohólico/mortalidad , Adulto , Anciano , Factores de Riesgo , Estudios de Cohortes , Hígado Graso/mortalidad
3.
BMC Med ; 21(1): 418, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37993940

RESUMEN

BACKGROUND: Whether cancer risk associated with a higher body mass index (BMI), a surrogate measure of adiposity, differs among adults with and without cardiovascular diseases (CVD) and/or type 2 diabetes (T2D) is unclear. The primary aim of this study was to evaluate separate and joint associations of BMI and CVD/T2D with the risk of cancer. METHODS: This is an individual participant data meta-analysis of two prospective cohort studies, the UK Biobank (UKB) and the European Prospective Investigation into Cancer and nutrition (EPIC), with a total of 577,343 adults, free of cancer, T2D, and CVD at recruitment. We used Cox proportional hazard regressions to estimate multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between BMI and incidence of obesity-related cancer and in turn overall cancer with a multiplicative interaction between BMI and the two cardiometabolic diseases (CMD). HRs and 95% CIs for separate and joint associations for categories of overweight/obesity and CMD status were estimated, and additive interaction was quantified through relative excess risk due to interaction (RERI). RESULTS: In the meta-analysis of both cohorts, BMI (per ~ 5 kg/m2) was positively associated with the risk of obesity-related cancer among participants without a CMD (HR: 1.11, 95%CI: 1.07,1.16), among participants with T2D (HR: 1.11, 95% CI: 1.05,1.18), among participants with CVD (HR: 1.17, 95% CI: 1.11,1.24), and suggestively positive among those with both T2D and CVD (HR: 1.09, 95% CI: 0.94,1.25). An additive interaction between obesity (BMI ≥ 30 kg/m2) and CVD with the risk of overall cancer translated into a meta-analytical RERI of 0.28 (95% CI: 0.09-0.47). CONCLUSIONS: Irrespective of CMD status, higher BMI increased the risk of obesity-related cancer among European adults. The additive interaction between obesity and CVD suggests that obesity prevention would translate into a greater cancer risk reduction among population groups with CVD than among the general population.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Neoplasias , Humanos , Adulto , Índice de Masa Corporal , Factores de Riesgo , Estudios Prospectivos , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/epidemiología , Bancos de Muestras Biológicas , Obesidad/complicaciones , Obesidad/epidemiología , Neoplasias/epidemiología , Neoplasias/complicaciones , Enfermedades Cardiovasculares/etiología , Reino Unido/epidemiología
4.
Semin Cancer Biol ; 73: 178-195, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33249203

RESUMEN

Virgin olive oil is a characteristic component and the main source of fat of the Mediterranean diet. It is a mix of high-value health compounds, including monounsaturated fatty acids (mainly oleic acid), simple phenols (such as hydroxytyrosol and tyrosol), secoiridoids (such as oleuropein, oleocanthal), flavonoids, and terpenoids (such as squalene). Olive oil consumption has been shown to improve different aspects of human health and has been associated with a lower risk of cancer. However, the underlying cellular mechanisms involved in such effects are still poorly defined, but seem to be related to a promotion of apoptosis, modulation of epigenetic patterns, blockade of cell cycle, and angiogenesis regulation. The aim of this review is to update the current associations of cancer risk with the Mediterranean diet, olive oil consumption and its main components. In addition, the identification of key olive oil components involved in anticarcinogenic mechanisms and pathways according to experimental models is also addressed.


Asunto(s)
Dieta Mediterránea , Neoplasias/epidemiología , Neoplasias/fisiopatología , Aceite de Oliva , Animales , Humanos , Incidencia
5.
Int J Mol Sci ; 19(10)2018 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-30347638

RESUMEN

Recent evidence, including massive gene-expression analysis and a wide-variety of other multi-omics approaches, demonstrates an interplay between gut microbiota and the regulation of plasma lipids. Gut microbial metabolism of choline and l-carnitine results in the formation of trimethylamine (TMA) and concomitant conversion into trimethylamine-N-oxide (TMAO) by liver flavin monooxygenase 3 (FMO3). The plasma level of TMAO is determined by the genetic variation, diet and composition of gut microbiota. Multiple studies have demonstrated an association between TMAO plasma levels and the risk of atherothrombotic cardiovascular disease (CVD). We aimed to review the molecular pathways by which TMAO production and FMO3 exert their proatherogenic effects. TMAO may promote foam cell formation by upregulating macrophage scavenger receptors, deregulating enterohepatic cholesterol and bile acid metabolism and impairing macrophage reverse cholesterol transport (RCT). Furthermore, FMO3 may promote dyslipidemia by regulating multiple genes involved in hepatic lipogenesis and gluconeogenesis. FMO3 also impairs multiple aspects of cholesterol homeostasis, including transintestinal cholesterol export and macrophage-specific RCT. At least part of these FMO3-mediated effects on lipid metabolism and atherogenesis seem to be independent of the TMA/TMAO formation. Overall, these findings have the potential to open a new era for the therapeutic manipulation of the gut microbiota to improve CVD risk.


Asunto(s)
Colesterol/metabolismo , Microbioma Gastrointestinal , Hígado/metabolismo , Síndrome Metabólico/metabolismo , Metilaminas/metabolismo , Animales , Gluconeogénesis/genética , Humanos , Lipogénesis/genética , Síndrome Metabólico/genética
7.
Eur J Nutr ; 56(1): 119-131, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26541328

RESUMEN

PURPOSE: To investigate the effect of virgin olive oil phenolic compounds (PC) alone or in combination with thyme PC on blood lipid profile from hypercholesterolemic humans, and whether the changes generated are related with changes in gut microbiota populations and activities. METHODS: A randomized, controlled, double-blind, crossover human trial (n = 12) was carried out. Participants ingested 25 mL/day for 3 weeks, preceded by 2-week washout periods, three raw virgin olive oils differing in the concentration and origin of PC: (1) a virgin olive oil (OO) naturally containing 80 mg PC/kg, (VOO), (2) a PC-enriched virgin olive oil containing 500 mg PC/kg, from OO (FVOO), and (3) a PC-enriched virgin olive oil containing a mixture of 500 mg PC/kg from OO and thyme, 1:1 (FVOOT). Blood lipid values and faecal quantitative changes in microbial populations, short chain fatty acids, cholesterol microbial metabolites, bile acids, and phenolic metabolites were analysed. RESULTS: FVOOT decreased seric ox-LDL concentrations compared with pre-FVOOT, and increased numbers of bifidobacteria and the levels of the phenolic metabolite protocatechuic acid compared to VOO (P < 0.05). FVOO did not lead to changes in blood lipid profile nor quantitative changes in the microbial populations analysed, but increased the coprostanone compared to FVOOT (P < 0.05), and the levels of the faecal hydroxytyrosol and dihydroxyphenylacetic acids, compared with pre-intervention values and to VOO, respectively (P < 0.05). CONCLUSION: The ingestion of a PC-enriched virgin olive oil, containing a mixture of olive oil and thyme PC for 3 weeks, decreases blood ox-LDL in hypercholesterolemic humans. This cardio-protective effect could be mediated by the increases in populations of bifidobacteria together with increases in PC microbial metabolites with antioxidant activities.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Aceite de Oliva/administración & dosificación , Fenoles/administración & dosificación , Thymus (Planta)/química , Anciano , Antioxidantes/administración & dosificación , HDL-Colesterol/sangre , LDL-Colesterol/sangre , Estudios Cruzados , Dieta , Método Doble Ciego , Heces/química , Heces/microbiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Aceite de Oliva/química , Cooperación del Paciente , Triglicéridos/sangre
8.
Curr Opin Lipidol ; 27(1): 47-53, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26655289

RESUMEN

PURPOSE OF REVIEW: The functional capacities of high-density lipoproteins (HDLs) reflect the physiological role of the particle better than the quantity of HDL cholesterol. Owing to its phenolic compounds, the consumption of virgin olive oil has emerged as a promising therapy to promote these capacities. This review highlights the human studies that explain these benefits and explores some possible mechanisms. RECENT FINDINGS: The consumption of olive oil phenolic compounds increased the ability of HDLs to pick up cholesterol excess in peripheral cells (the cholesterol efflux capacity). Olive oil phenolic compounds have also been shown to improve HDL antioxidant capacities and some anti-inflammatory traits. These changes respond to an improvement of HDL oxidative status and composition. SUMMARY: Novel strategies to increase HDL functional capacities are in demand from clinicians. The attainment of a fully-functional HDL through dietary or lifestyle changes is a priority in cardiovascular research. Within this context, the consumption of virgin olive oil, because of its phenolic compounds, may be a relevant protective approach. Further studies in large-scale, randomized controlled trials are, however, required to confirm these effects in HDL functionality.


Asunto(s)
HDL-Colesterol/metabolismo , Aceite de Oliva/metabolismo , Fenoles/metabolismo , Animales , Humanos
9.
Br J Nutr ; 116(3): 534-46, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27264785

RESUMEN

Prospective studies assessing the association between fibre intake or fibre-rich food consumption and the risk of CVD have often been limited by baseline assessment of diet. Thus far, no study has used yearly repeated measurements of dietary changes during follow-up. Moreover, previous studies included healthy and selected participants who did not represent subjects at high cardiovascular risk. We used yearly repeated measurements of diet to investigate the association between fibre intake and CVD in a Mediterranean cohort of elderly adults at high cardiovascular risk. We followed-up 7216 men (55-80 years) and women (60-80 years) initially free of CVD for up to 7 years in the PREvención con DIeta MEDiterránea study (registered as ISRCTN35739639). A 137-item validated FFQ was repeated yearly to assess diet. The primary end point, confirmed by a blinded ad hoc Event Adjudication Committee, was a composite of cardiovascular death, myocardial infarction and stroke. Time-dependent Cox's regression models were used to estimate the risk of CVD according to baseline dietary exposures and to their yearly updated changes. We found a significant inverse association for fibre (P for trend=0·020) and fruits (P for trend=0·024) in age-sex adjusted models, but the statistical significance was lost in fully adjusted models. However, we found a significant inverse association with CVD incidence for the sum of fruit and vegetable consumption. Participants who consumed in total nine or more servings/d of fruits plus vegetables had a hazard ratio 0·60 (95 % CI 0·40, 0·96) of CVD in comparison with those consuming <5 servings/d.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Dieta , Fibras de la Dieta/administración & dosificación , Conducta Alimentaria , Frutas , Verduras , Granos Enteros , Anciano , Anciano de 80 o más Años , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Encuestas sobre Dietas , Femenino , Humanos , Incidencia , Masculino , Región Mediterránea/epidemiología , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo
10.
J Nutr ; 145(8): 1692-7, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26136585

RESUMEN

BACKGROUND: Olive oil polyphenols have shown protective effects on cardiovascular risk factors. Their consumption decreased oxidative stress biomarkers and improved some features of the lipid profile. However, their effects on LDL concentrations in plasma and LDL atherogenicity have not yet been elucidated. OBJECTIVE: Our objective was to assess whether the consumption of olive oil polyphenols could decrease LDL concentrations [measured as apolipoprotein B-100 (apo B-100) concentrations and the total number of LDL particles] and atherogenicity (the number of small LDL particles and LDL oxidizability) in humans. METHODS: The study was a randomized, cross-over controlled trial in 25 healthy European men, aged 20-59 y, in the context of the EUROLIVE (Effect of Olive Oil Consumption on Oxidative Damage in European Populations) study. Volunteers ingested 25 mL/d raw low-polyphenol-content olive oil (LPCOO; 366 mg/kg) or high-polyphenol-content olive oil (HPCOO; 2.7 mg/kg) for 3 wk. Interventions were preceded by 2-wk washout periods. Effects of olive oil polyphenols on plasma LDL concentrations and atherogenicity were determined in the sample of 25 men. Effects on lipoprotein lipase (LPL) gene expression were assessed in another sample of 18 men from the EUROLIVE study. RESULTS: Plasma apo B-100 concentrations and the number of total and small LDL particles decreased (mean ± SD: by 5.94% ± 16.6%, 11.9% ± 12.0%, and 15.3% ± 35.1%, respectively) from baseline after the HPCOO intervention. These changes differed significantly from those after the LPCOO intervention, which resulted in significant increases of 6.39% ± 16.6%, 4.73% ± 22.0%, and 13.6% ± 36.4% from baseline (P < 0.03). LDL oxidation lag time increased by 5.0% ± 10.3% from baseline after the HPCOO intervention, which was significantly different only relative to preintervention values (P = 0.038). LPL gene expression tended to increase by 26% from baseline after the HPCOO intervention (P = 0.08) and did not change after the LPCOO intervention. CONCLUSION: The consumption of olive oil polyphenols decreased plasma LDL concentrations and LDL atherogenicity in healthy young men. This trial was registered at www.controlled-trials.com as ISRCTN09220811.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Lipoproteínas LDL/sangre , Aceites de Plantas/química , Polifenoles/farmacología , Adulto , Estudios Cruzados , Humanos , Masculino , Persona de Mediana Edad , Aceite de Oliva , Polifenoles/química , Adulto Joven
11.
Arterioscler Thromb Vasc Biol ; 34(9): 2115-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25060792

RESUMEN

OBJECTIVE: Olive oil polyphenols have shown beneficial properties against cardiovascular risk factors. Their consumption has been associated with higher cholesterol content in high-density lipoproteins (HDL). However, data on polyphenol effects on HDL quality are scarce. We, therefore, assessed whether polyphenol-rich olive oil consumption could enhance the HDL main function, its cholesterol efflux capacity, and some of its quality-related properties, such HDL polyphenol content, size, and composition. APPROACH AND RESULTS: A randomized, crossover, controlled trial with 47 healthy European male volunteers was performed. Participants ingested 25 mL/d of polyphenol-poor (2.7 mg/kg) or polyphenol-rich (366 mg/kg) raw olive oil in 3-week intervention periods, preceded by 2-week washout periods. HDL cholesterol efflux capacity significantly improved after polyphenol-rich intervention versus the polyphenol-poor one (+3.05% and -2.34%, respectively; P=0.042). Incorporation of olive oil polyphenol biological metabolites to HDL, as well as large HDL (HDL2) levels, was higher after the polyphenol-rich olive oil intervention, compared with the polyphenol-poor one. Small HDL (HDL3) levels decreased, the HDL core became triglyceride-poor, and HDL fluidity increased after the polyphenol-rich intervention. CONCLUSIONS: Olive oil polyphenols promote the main HDL antiatherogenic function, its cholesterol efflux capacity. These polyphenols increased HDL size, promoted a greater HDL stability reflected as a triglyceride-poor core, and enhanced the HDL oxidative status, through an increase in the olive oil polyphenol metabolites content in the lipoprotein. Our results provide for the first time a first-level evidence of an enhancement in HDL function by polyphenol-rich olive oil.


Asunto(s)
Colesterol/sangre , Grasas Insaturadas en la Dieta/farmacología , Lipoproteínas HDL/efectos de los fármacos , Aceites de Plantas/química , Polifenoles/farmacología , Adulto , Línea Celular Tumoral , Estudios Cruzados , Relación Dosis-Respuesta a Droga , Humanos , Lipoproteínas HDL/metabolismo , Macrófagos/metabolismo , Masculino , Aceite de Oliva , Triglicéridos/sangre
12.
Antioxidants (Basel) ; 12(3)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36978963

RESUMEN

This study analyzed the correlations between the acute and habitual intake of dietary tyrosols, their main food sources, and 24 h urine excretions of tyrosol (Tyr) and hydroxytyrosol (OHTyr) in participants from the European Prospective Investigation into Cancer and Nutrition study (EPIC). Participants (n = 419) were healthy men and women aged from 34 to 73 years from 8 EPIC centers belonging to France, Italy, and Germany. Acute and habitual dietary data were collected using a standardized 24 h dietary recall software and validated country-specific dietary questionnaires, respectively. The intake of 13 dietary tyrosols was estimated using the Phenol-Explorer database. Excretions of Tyr and OHTyr in a single 24 h urine sample were analyzed using tandem mass spectrometry. Urinary excretions of Tyr, OHTyr, and their sum (Tyr + OHTyr) correlated more strongly with their corresponding acute (rhopartial~0.63) rather than habitual intakes (rhopartial~0.47). In addition, individual and combined urinary excretions of Tyr and OHTyr were weakly to moderately correlated with the acute and habitual intake of other individual tyrosol precursors (rhopartial = 0.10-0.44) and especially with major food sources, such as wine (rhopartial = 0.41-0.58), olive oil (rhopartial = 0.25-0.44), and beer (rhopartial = 0.14-0.23). Urinary Tyr + OHTyr excretions were similarly correlated with the acute intake of total tyrosols but differently correlated with food sources among countries. Based on these results, we conclude that 24 h urinary excretions of Tyr + OHTyr could be proposed as biomarkers of total tyrosol intake, preferably for acute intakes.

13.
Nat Commun ; 14(1): 8316, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097578

RESUMEN

Accumulation of lipid-laden macrophages within the arterial neointima is a critical step in atherosclerotic plaque formation. Here, we show that reduced levels of the cellular plasticity factor ZEB1 in macrophages increase atherosclerotic plaque formation and the chance of cardiovascular events. Compared to control counterparts (Zeb1WT/ApoeKO), male mice with Zeb1 ablation in their myeloid cells (Zeb1∆M/ApoeKO) have larger atherosclerotic plaques and higher lipid accumulation in their macrophages due to delayed lipid traffic and deficient cholesterol efflux. Zeb1∆M/ApoeKO mice display more pronounced systemic metabolic alterations than Zeb1WT/ApoeKO mice, with higher serum levels of low-density lipoproteins and inflammatory cytokines and larger ectopic fat deposits. Higher lipid accumulation in Zeb1∆M macrophages is reverted by the exogenous expression of Zeb1 through macrophage-targeted nanoparticles. In vivo administration of these nanoparticles reduces atherosclerotic plaque formation in Zeb1∆M/ApoeKO mice. Finally, low ZEB1 expression in human endarterectomies is associated with plaque rupture and cardiovascular events. These results set ZEB1 in macrophages as a potential target in the treatment of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Humanos , Masculino , Ratones , Apolipoproteínas E/genética , Aterosclerosis/genética , Aterosclerosis/metabolismo , Regulación hacia Abajo , Lipoproteínas LDL/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Placa Aterosclerótica/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
14.
Antioxidants (Basel) ; 11(10)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36290685

RESUMEN

Phenol-rich foods consumption such as virgin olive oil (VOO) has been shown to have beneficial effects on cardiovascular diseases. The broader biochemical impact of VOO and phenol-enriched OOs remains, however, unclear. A randomized, double-blind, cross-over, controlled trial was performed with thirty-three hypercholesterolemic individuals who ingested for 3-weeks (25 mL/day): (1) an OO enriched with its own olive oil phenolic compounds (PCs) (500 ppm; FOO); (2) an OO enriched with its own olive oil PCs (250 ppm) plus thyme PCs (250 ppm; FOOT); and (3) a VOO with low phenolic content (80 ppm). Serum lipid and glycemic profiles, serum 1H-NMR spectroscopy-based metabolomics, endothelial function, blood pressure, and cardiovascular risk were measured. We combined OPLS-DA with machine learning modelling to identify metabolites discrimination of the treatment groups. Both phenol-enriched OO interventions decreased the levels of glutamine, creatinine, creatine, dimethylamine, and histidine in comparison to VOO one. In addition, FOOT decreased the plasma levels of glycine and DMSO2 compared to VOO, while FOO decreased the circulating alanine concentrations but increased the plasma levels of acetone and 3-HB compared to VOO. Based on these findings, phenol-enriched OOs were shown to result in a favorable shift in the circulating metabolic phenotype, inducing a reduction in metabolites associated with cardiometabolic diseases.

15.
Front Nutr ; 9: 982369, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118743

RESUMEN

Background: The Mediterranean diet (MD) has been proposed as a healthy diet with a potential to lower the incidence of several types of cancer, but there is no data regarding thyroid cancer (TC). We investigated the association between MD adherence, and its components, and the differentiated TC risk within the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. Methods: Over 450,000 men and women from nine European countries were followed up for a mean of 14.1 years, during which 712 differentiated TC cases were identified. Adherence to MD was estimated using the relative MD (rMED) score, an 18-point scale including alcohol, and the adapted rMED (arMED) score, a 16-point scale excluding alcohol. Hazard ratios (HRs) and 95% confidence intervals (CIs) were estimated using Cox regression models adjusted for potential confounding factors. Results: Adherence to the arMED score was not associated with the risk of differentiated TC (HRhigh vs. low adherence = 0.94, 95% CI: 0.70-1.25; p-trend 0.27), while a suggestive, but non-statistically significant inverse relationship was observed with rMED (HRhigh vs. low adherence = 0.88, 95% CI: 0.68-1.14; p-trend 0.17). Low meat (HRlow vs. high meat intake = 0.81, 95% CI: 0.67-0.99; p-trend = 0.04) and moderate alcohol (HRmoderate vs. non-moderate intake = 0.88, 95% CI: 0.75-1.03) intake were related with lower differentiated TC risk. Conclusions: Our study shows that a high adherence to MD is not strongly related to differentiated TC risk, although further research is required to confirm the impact of MD and, especially, meat intake in TC risk.

16.
Mol Nutr Food Res ; 65(9): e2001192, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33561904

RESUMEN

SCOPE: The lipidomic analysis of high-density lipoprotein (HDL) could be useful to identify new biomarkers of HDL function. METHODS AND RESULTS: A randomized, controlled, double-blind, crossover trial (33 hypercholesterolaemic subjects) is performed with a control virgin olive oil (VOO), VOO enriched with its own phenolic compounds (FVOO), or VOO enriched with additional phenolic compounds from thyme (FVOOT) for 3 weeks. HDL lipidomic analyses are performed using the Lipidyzer platform. VOO and FVOO intake increase monounsaturated-fatty acids (FAs) and decrease saturated and polyunsaturated FAs in triacylglyceride (TAG) species, among others species. In contrast, FVOOT intake does not induce these FAs changes. The decrease in TAG52:3(FA16:0) after VOO intake and the decrease in TAG52:5(FA18:2) after FVOO intake are inversely associated with changes in HDL resistance to oxidation. After FVOO intake, the decrease in TAG54:6(FA18:2) in HDL is inversely associated with changes in HDL cholesterol efflux capacity. CONCLUSION: VOO and FVOO consumption has an impact on the HDL lipidome, in particular TAG species. Although TAGs are minor components of HDL mass, the observed changes in TAG modulated HDL functionality towards a cardioprotective mode. The assessment of the HDL lipidome is a valuable approach to identify and characterize new biomarkers of HDL function.


Asunto(s)
HDL-Colesterol/sangre , Hipercolesterolemia/sangre , Lipidómica/métodos , Aceite de Oliva/farmacología , Fenoles/farmacología , Estudios Cruzados , Método Doble Ciego , Humanos , Triglicéridos/sangre
17.
Nutrients ; 12(3)2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-32110861

RESUMEN

The atherogenicity of low-density lipoprotein (LDL) and triglyceride-rich lipoproteins (TRLs) may be more significant than LDL cholesterol levels. Clinical trials which have led to increased high-density lipoprotein (HDL) cholesterol have not always seen reductions in cardiovascular disease (CVD). Furthermore, genetic variants predisposing individuals to high HDL cholesterol are not associated with a lower risk of suffering a coronary event, and therefore HDL functionality is considered to be the most relevant aspect. Virgin olive oil (VOO) is thought to play a protective role against CVD. This review describes the effects of VOO and phenol-enriched VOOs on lipoprotein atherogenicity and HDL atheroprotective properties. The studies have demonstrated a decrease in LDL atherogenicity and an increase in the HDL-mediated macrophage cholesterol efflux capacity, HDL antioxidant activity, and HDL anti-inflammatory characteristics after various VOO interventions. Moreover, the expression of cholesterol efflux-related genes was enhanced after exposure to phenol-enriched VOOs in both post-prandial and sustained trials. Improvements in HDL antioxidant properties were also observed after VOO and phenol-enriched VOO interventions. Furthermore, some studies have demonstrated improved characteristics of TRL atherogenicity under postprandial conditions after VOO intake. Large-scale, long-term randomized clinical trials, and Mendelian analyses which assess the lipoprotein state and properties, are required to confirm these results.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Lipoproteínas/efectos adversos , Aceite de Oliva/uso terapéutico , Fenoles/química , Animales , Antioxidantes/uso terapéutico , Ensayos Clínicos como Asunto , Humanos
18.
Nutrients ; 12(8)2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32718098

RESUMEN

There is extensive information of the beneficial effects of virgin olive oil (VOO), especially on cardiovascular diseases. Some VOO healthy properties have been attributed to their phenolic-compounds (PCs). The aim of this review is to present updated data on the effects of olive oil (OO) PCs on the gut microbiota, lipid metabolism, immune system, and obesity, as well as on the crosstalk among them. We summarize experiments and clinical trials which assessed the specific effects of the olive oil phenolic-compounds (OOPCs) without the synergy with OO-fats. Several studies have demonstrated that OOPC consumption increases Bacteroidetes and/or reduces the Firmicutes/Bacteroidetes ratio, which have both been related to atheroprotection. OOPCs also increase certain beneficial bacteria and gut-bacteria diversity which can be therapeutic for lipid-immune disorders and obesity. Furthermore, some of the mechanisms implicated in the crosstalk between OOPCs and these disorders include antimicrobial-activity, cholesterol microbial metabolism, and metabolites produced by bacteria. Specifically, OOPCs modulate short-chain fatty-acids produced by gut-microbiota, which can affect cholesterol metabolism and the immune system, and may play a role in weight gain through promoting satiety. Since data in humans are scarce, there is a necessity for more clinical trials designed to assess the specific role of the OOPCs in this crosstalk.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Sistema Inmunológico/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Obesidad/tratamiento farmacológico , Aceite de Oliva/farmacología , Fenoles/farmacología , Enfermedades Cardiovasculares/prevención & control , Colesterol , Humanos , Lípidos , Aceite de Oliva/química
19.
Mol Nutr Food Res ; 64(15): e2000049, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32562310

RESUMEN

SCOPE: We investigate the postprandial modulation of cardiovascular-related microRNAs elicited by extra virgin olive oil (EVOOs) containing different levels of their own polyphenols. METHODS AND RESULTS: It is randomized, postprandial, parallel, double-blind study. Twelve healthy participants consumed 30 mL of EVOO containing low (L-EVOO; 250 mg total phenols kg-1 of oil), medium (M-EVOO; 500 mg total phenols kg-1 of oil), and high (H-EVOO; 750 mg total phenols kg-1 of oil) enriched EVOOs. Postprandial plasma microRNAs levels are analyzed by real-time quantitative PCR. The results show that L-EVOO intake is associated with decreased let-7e-5p and miR-328a-3p levels and increased miR-17-5p and miR-20a-5p, concentrations. M-EVOO decreases plasma let-7e-5p and increases miR-17-5p, miR-20a-5p, and miR-192-5p levels. Finally, H-EVOO decreases let-7e-5p, miR-10a-5p, miR-21-5p, and miR-26b-5p levels. CONCLUSION: During the postprandial state, the levels of let-7e-5p decrease with EVOO regardless of polyphenol content suggesting a general response to the fatty acid composition of EVOO or/and the presence of at least 250 mg polyphenol kg-1 olive oil. Moreover, the miR-17-92 cluster increases by low and medium polyphenol content suggesting a role in fatty acid metabolism and nutrient sensing. Thus, postprandial modulation of circulating microRNAs levels could be a potential mechanism for the cardiovascular benefits associated with EVOO intake.


Asunto(s)
Enfermedades Cardiovasculares/genética , Ácidos Nucleicos Libres de Células/sangre , MicroARNs/sangre , Aceite de Oliva/farmacología , Fenoles/farmacología , Adulto , Glucemia/análisis , Simulación por Computador , Método Doble Ciego , Endotelio Vascular/fisiología , Femenino , Alimentos Fortificados , Humanos , Lípidos/sangre , Masculino , Persona de Mediana Edad , Aceite de Oliva/química , Fenoles/química , Periodo Posprandial
20.
Biomedicines ; 8(8)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756328

RESUMEN

The intake of olive oil (OO) enriched with phenolic compounds (PCs) promotes ex vivo HDL-mediated macrophage cholesterol efflux in humans. We aimed to determine the effects of PC-enriched virgin OO on reverse cholesterol transport (RevCT) from macrophages to feces in vivo. Female C57BL/6 mice were given intragastric doses of refined OO (ROO) and a functional unrefined virgin OO enriched with its own PC (FVOO) for 14 days. Our experiments included two independent groups of mice that received intragastric doses of the phenolic extract (PE) used to prepare the FVOO and the vehicle solution (saline), as control, for 14 days. FVOO intake led to a significant increase in serum HDL cholesterol and its ability to induce macrophage cholesterol efflux in vitro when compared with ROO group. This was concomitant with the enhanced macrophage-derived [3H]cholesterol transport to feces in vivo. PE intake per se also increased HDL cholesterol levels and significantly promoted in vivo macrophage-to-feces RevCT rate when compared with saline group. PE upregulated the expression of the main macrophage transporter involved in macrophage cholesterol efflux, the ATP binding cassettea1. Our data provide direct evidence of the crucial role of OO PCs in the induction of macrophage-specific RevCT in vivo.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA