Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(28): 18623-18641, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37404199

RESUMEN

Post-lithium batteries are emerging as viable solutions for sustainable energy transition. Effective deployment in the market calls for great research efforts in the identification of novel component materials and the assessment of related working principles. Computational modelling can be a key player in boosting innovation and development by enabling rational strategies for the design of appropriately tuned materials with optimized activity towards battery operating processes. By gaining access to the structural and electronic features of functional electrodes, state-of-the-art DFT methods can unveil the subtle structure-property relationship that affects the uptake, transport, and storage efficiency. Hereby, we aim at reviewing the research status of theoretical advances in the field of Na-ion batteries (NIBs) and illustrating to what extent atomistic insights into sodiation/desodiation mechanisms of nanostructured materials can assist the development of effective anodes and cathodes for stable and highly performing devices. Thanks to increasing computer power and fruitful cooperation between theory and experiments, the route for effective design methodologies is being paved and will feed the upcoming developments in NIB technology.

2.
Nano Lett ; 22(11): 4437-4444, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35609011

RESUMEN

CsPbBr3 nanocrystals (NCs) passivated by conventional lipophilic capping ligands suffer from colloidal and optical instability under ambient conditions, commonly due to the surface rearrangements induced by the polar solvents used for the NC purification steps. To avoid onerous postsynthetic approaches, ascertained as the only viable stability-improvement strategy, the surface passivation paradigms of as-prepared CsPbBr3 NCs should be revisited. In this work, the addition of an extra halide source (8-bromooctanoic acid) to the typical CsPbBr3 synthesis precursors and surfactants leads to the in situ formation of a zwitterionic ligand already before cesium injection. As a result, CsPbBr3 NCs become insoluble in nonpolar hexane, with which they can be washed and purified, and form stable colloidal solutions in a relatively polar medium (dichloromethane), even when longly exposed to ambient conditions. The improved NC stability stems from the effective bidentate adsorption of the zwitterionic ligand on the perovskite surfaces, as supported by theoretical investigations. Furthermore, the bidentate functionalization of the zwitterionic ligand enables the obtainment of blue-emitting perovskite NCs with high PLQYs by UV-irradiation in dichloromethane, functioning as the photoinduced chlorine source.

3.
Inorg Chem ; 61(22): 8402-8405, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35609175

RESUMEN

X-ray diffraction data demonstrate that the adduct formed upon the reaction of dirhodium(II,II) tetraacetate with RNase A reacts with imidazole, leading to the formation of an unexpected product with the imidazole that binds the dirhodium center at an equatorial site rather than an axial site. The origin of this result has been dissected using quantum-chemical calculations.


Asunto(s)
Compuestos Organometálicos , Cristalografía por Rayos X , Imidazoles , Modelos Moleculares , Compuestos Organometálicos/química , Ribonucleasa Pancreática
4.
J Chem Theory Comput ; 19(15): 5210-5220, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37433035

RESUMEN

Li-air batteries are a promising energy storage technology for large-scale applications, but the release of highly reactive singlet oxygen (1O2) during battery operation represents a main concern that sensibly limits their effective deployment. An in-depth understanding of the reaction mechanisms underlying the 1O2 formation is crucial to prevent its detrimental reactions with the electrolyte species. However, describing the elusive chemistry of highly correlated species such as singlet oxygen represents a challenging task for state-of-the-art theoretical tools based on density functional theory. Thus, in this study, we apply an embedded cluster approach, based on CASPT2 and effective point charges, to address the evolution of 1O2 at the Li2O2 surface during oxidation, i.e., the battery charging process. Based on recent hypothesis, we depict a feasible O22-/O2-/O2 mechanisms occurring from the (112̅0)-Li2O2 surface termination. Our highly accurate calculations allow for the identification of a stable superoxide as local minimum along the potential energy surface (PES) for 1O2 release, which is not detected by periodic DFT. We find that 1O2 release proceeds via a superoxide intermediate in a two-step one-electron process or another still accessible pathway featuring a one-step two-electron mechanism. In both cases, it represents a feasible product of Li2O2 oxidation upon battery charging. Thus, tuning the relative stability of the intermediate superoxide species can enable key strategies aiming at controlling the detrimental development of 1O2 for new and highly performing Li-air batteries.

5.
Chem Commun (Camb) ; 59(34): 5055-5058, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37039093

RESUMEN

The main stability and performance issues of perovskite solar cells arise from the interfaces between the perovskite and the hole transport material. Here we address these interface issues by means of state-of-the-art first-principles calculations, providing new insights into charge transfer times and mechanisms and how they depend on the perovskite chemical composition and local interfacial environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA