Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Mol Cell ; 66(1): 22-37.e9, 2017 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-28344082

RESUMEN

Circular RNAs (circRNAs) constitute a family of transcripts with unique structures and still largely unknown functions. Their biogenesis, which proceeds via a back-splicing reaction, is fairly well characterized, whereas their role in the modulation of physiologically relevant processes is still unclear. Here we performed expression profiling of circRNAs during in vitro differentiation of murine and human myoblasts, and we identified conserved species regulated in myogenesis and altered in Duchenne muscular dystrophy. A high-content functional genomic screen allowed the study of their functional role in muscle differentiation. One of them, circ-ZNF609, resulted in specifically controlling myoblast proliferation. Circ-ZNF609 contains an open reading frame spanning from the start codon, in common with the linear transcript, and terminating at an in-frame STOP codon, created upon circularization. Circ-ZNF609 is associated with heavy polysomes, and it is translated into a protein in a splicing-dependent and cap-independent manner, providing an example of a protein-coding circRNA in eukaryotes.


Asunto(s)
Proliferación Celular , Desarrollo de Músculos , Proteínas Musculares/biosíntesis , Distrofia Muscular de Duchenne/metabolismo , Mioblastos Esqueléticos/metabolismo , Biosíntesis de Proteínas , ARN/metabolismo , Animales , Genotipo , Células HeLa , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Ratones , Proteínas Musculares/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patología , Distrofia Muscular de Duchenne/fisiopatología , Mioblastos Esqueléticos/patología , Sistemas de Lectura Abierta , Fenotipo , ARN/genética , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Interferencia de ARN , Empalme del ARN , ARN Circular , Análisis de Secuencia de ARN/métodos , Transducción de Señal , Transfección
2.
Cell Mol Life Sci ; 81(1): 326, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085650

RESUMEN

N6-methyladenosine (m6A), the most prevalent internal mRNA modification, plays a critical role in physiological processes by regulating gene expression through modulation of mRNA metabolism at multiple stages. In recent years, m6A has garnered significant attention for a deeper understanding of the initiation, progression, and drug resistance of various cancers, including hematological malignancies. Dysregulation of m6A has been implicated in both cancer promotion and suppression. m6A methylation is a complex regulatory process involving methyltransferases (writers), demethylases (erasers), and proteins that recognize specific m6A modifications (readers). This intricate interplay presents challenges for precisely modulating m6A levels, either globally or at specific sites. This review specifically focuses on the role of m6A in chronic myeloid leukemia (CML), a blood cancer characterized by the BCR-ABL1 fusion. We emphasize its impact on leukemia cell survival and drug resistance mechanisms. Notably, inhibitors targeting m6A regulators show promise in preclinical models, suggesting a potential therapeutic avenue for CML. Integrating our understanding of m6A biology with current treatment strategies may lead to more effective therapies, especially for patients with advanced-stage or resistant CML.


Asunto(s)
Adenosina , Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Adenosina/análogos & derivados , Adenosina/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Resistencia a Antineoplásicos/genética , Animales , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Metilación
3.
Cell Mol Life Sci ; 81(1): 276, 2024 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-38909325

RESUMEN

N6-methyladenosine (m6A) is one of the most prevalent and conserved RNA modifications. It controls several biological processes, including the biogenesis and function of circular RNAs (circRNAs), which are a class of covalently closed-single stranded RNAs. Several studies have revealed that proteotoxic stress response induction could be a relevant anticancer therapy in Acute Myeloid Leukemia (AML). Furthermore, a strong molecular interaction between the m6A mRNA modification factors and the suppression of the proteotoxic stress response has emerged. Since the proteasome inhibition leading to the imbalance in protein homeostasis is strictly linked to the stress response induction, we investigated the role of Bortezomib (Btz) on m6A regulation and in particular its impact on the modulation of m6A-modified circRNAs expression. Here, we show that treating AML cells with Btz downregulated the expression of the m6A regulator WTAP at translational level, mainly because of increased oxidative stress. Indeed, Btz treatment promoted oxidative stress, with ROS generation and HMOX-1 activation and administration of the reducing agent N-acetylcysteine restored WTAP expression. Additionally, we identified m6A-modified circRNAs modulated by Btz treatment, including circHIPK3, which is implicated in protein folding and oxidative stress regulation. These results highlight the intricate molecular networks involved in oxidative and ER stress induction in AML cells following proteotoxic stress response, laying the groundwork for future therapeutic strategies targeting these pathways.


Asunto(s)
Adenosina , Leucemia Mieloide Aguda , Estrés Oxidativo , ARN Circular , Humanos , ARN Circular/genética , ARN Circular/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/farmacología , Estrés Oxidativo/efectos de los fármacos , Bortezomib/farmacología , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/patología , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Proteínas Serina-Treonina Quinasas , Péptidos y Proteínas de Señalización Intracelular
4.
Genes Chromosomes Cancer ; 62(7): 377-391, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36562080

RESUMEN

Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.


Asunto(s)
Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma Pulmonar de Células Pequeñas/genética , Neoplasias Pulmonares/genética , Proliferación Celular/genética , Apoptosis/genética , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Proteínas Proto-Oncogénicas c-akt/genética
5.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37047658

RESUMEN

In recent years, there has been a growing interest in the role of RNA in diseases and cancers [...].


Asunto(s)
Neoplasias , ARN , Humanos , ARN/genética , Neoplasias/genética
6.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36768600

RESUMEN

The field of RNA modification, also referred to as "epitranscriptomics," is gaining more and more interest from the scientific community. More than 160 chemical modifications have been identified in RNA molecules, but the functional significance of most of them still needs to be clarified. In this review, we discuss the role of N6,2'-O-dimethyladenosine (m6Am) in gene expression regulation. m6Am is present in the first transcribed nucleotide close to the cap in many mRNAs and snRNAs in mammals and as internal modification in the snRNA U2. The writer and eraser proteins for these modifications have been recently identified and their deletions have been utilized to understand their contributions in gene expression regulation. While the role of U2 snRNA-m6Am in splicing regulation has been reported by different independent studies, conflicting data were found for the role of cap-associated m6Am in mRNA stability and translation. However, despite the open debate on the role of m6Am in mRNA expression, the modulation of regulators produced promising results in cancer cells. We believe that the investigation on m6Am will continue to yield relevant results in the future.


Asunto(s)
Adenosina , Regulación de la Expresión Génica , Animales , Metilación , Adenosina/genética , Adenosina/metabolismo , ARN Mensajero/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/metabolismo , ARN/metabolismo , Mamíferos/metabolismo
7.
Mol Cell ; 53(3): 506-14, 2014 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-24440503

RESUMEN

The muscle-specific long noncoding RNA linc-MD1 was shown to be expressed during early phases of muscle differentiation and to trigger the switch to later stages by acting as a sponge for miR-133 and miR-135. Notably, linc-MD1 is also the host transcript of miR-133b, and their biogenesis is mutually exclusive. Here, we describe that this alternative synthesis is controlled by the HuR protein, which favors linc-MD1 accumulation through its ability to bind linc-MD1 and repress Drosha cleavage. We show that HuR is under the repressive control of miR-133 and that the sponging activity of linc-MD1 consolidates HuR expression in a feedforward positive loop. Finally, we show that HuR also acts in the cytoplasm, reinforcing linc-MD1 sponge activity by cooperating for miRNA recruitment. An increase in miR-133 synthesis, mainly from the two unrelated miR-133a coding genomic loci, is likely to trigger the exit from this circuitry and progression to later differentiation stages.


Asunto(s)
Proteínas ELAV/fisiología , Desarrollo de Músculos/genética , ARN Largo no Codificante/fisiología , Animales , Diferenciación Celular , Línea Celular , Citoplasma/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Retroalimentación Fisiológica , Ratones , MicroARNs/análisis , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
8.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012237

RESUMEN

Despite its discovery in the early 1970s, m6A modification within mRNA molecules has only powerfully entered the oncology field in recent years. This chemical modification can control all aspects of the maturation of mRNAs, both in the nucleus and in the cytoplasm. Thus, the alteration in expression levels of writers, erasers, and readers may significantly contribute to the alteration of gene expression observed in cancer. In particular, the activation of oncogenic pathways can lead to an alteration of the global rate of mRNA translation or the selective translation of specific mRNAs. In both cases, m6A can play an important role. In this review, we highlight the role of m6A in the regulation of translation by focusing on regulatory mechanisms and cancer-related functions of this novel but still controversial field.


Asunto(s)
Adenosina , Neoplasias , Adenosina/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/terapia , Proteómica , ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
Nucleic Acids Res ; 47(8): 4240-4254, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30809670

RESUMEN

Enzymes of intermediary metabolism are often reported to have moonlighting functions as RNA-binding proteins and have regulatory roles beyond their primary activities. Human serine hydroxymethyltransferase (SHMT) is essential for the one-carbon metabolism, which sustains growth and proliferation in normal and tumour cells. Here, we characterize the RNA-binding function of cytosolic SHMT (SHMT1) in vitro and using cancer cell models. We show that SHMT1 controls the expression of its mitochondrial counterpart (SHMT2) by binding to the 5'untranslated region of the SHMT2 transcript (UTR2). Importantly, binding to RNA is modulated by metabolites in vitro and the formation of the SHMT1-UTR2 complex inhibits the serine cleavage activity of the SHMT1, without affecting the reverse reaction. Transfection of UTR2 in cancer cells controls SHMT1 activity and reduces cell viability. We propose a novel mechanism of SHMT regulation, which interconnects RNA and metabolites levels to control the cross-talk between cytosolic and mitochondrial compartments of serine metabolism.


Asunto(s)
Citosol/enzimología , Glicina Hidroximetiltransferasa/genética , Mitocondrias/enzimología , Proteínas de Unión al ARN/genética , Serina/metabolismo , Regiones no Traducidas 5' , Compartimento Celular/genética , Línea Celular Tumoral , Proliferación Celular , Fibroblastos/citología , Fibroblastos/enzimología , Regulación de la Expresión Génica , Glicina Hidroximetiltransferasa/metabolismo , Humanos , Linfocitos/citología , Linfocitos/enzimología , Mitocondrias/genética , Unión Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo
10.
Int J Mol Sci ; 22(9)2021 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-33946178

RESUMEN

Growth and maturation of hematopoietic stem cells (HSCs) are largely controlled at both transcriptional and post-transcriptional levels. In particular, hematopoietic development requires a tight control of protein synthesis. Furthermore, translational deregulation strongly contributes to hematopoietic malignancies. Researchers have recently identified a new layer of gene expression regulation that consists of chemical modification of RNA species, which led to the birth of the epitranscriptomics field. RNA modifications provide an additional level of control in hematopoietic development by acting as post-transcriptional regulators of lineage-specific genetic programs. Other reviews have already described the important role of the N6-methylation of adenosine (m6A) within mRNA species in regulating hematopoietic differentiation and diseases. The aim of this review is to summarize the current status of the role of RNA modifications in the regulation of ribosome function, beyond m6A. In particular, we discuss the importance of RNA modifications in tRNA and rRNA molecules. By balancing translational rate and fidelity, they play an important role in regulating normal and malignant hematopoietic development.


Asunto(s)
Adenosina/análogos & derivados , Leucemia/genética , Procesamiento Postranscripcional del ARN , ARN/genética , Ribosomas/genética , Adenosina/genética , Animales , Regulación Leucémica de la Expresión Génica , Humanos , ARN Mensajero/genética , ARN Ribosómico/genética , ARN de Transferencia/genética
11.
Nat Rev Genet ; 15(1): 7-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24296535

RESUMEN

Genomes of multicellular organisms are characterized by the pervasive expression of different types of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs) belong to a novel heterogeneous class of ncRNAs that includes thousands of different species. lncRNAs have crucial roles in gene expression control during both developmental and differentiation processes, and the number of lncRNA species increases in genomes of developmentally complex organisms, which highlights the importance of RNA-based levels of control in the evolution of multicellular organisms. In this Review, we describe the function of lncRNAs in developmental processes, such as in dosage compensation, genomic imprinting, cell differentiation and organogenesis, with a particular emphasis on mammalian development.


Asunto(s)
Diferenciación Celular/genética , Compensación de Dosificación (Genética)/genética , Regulación del Desarrollo de la Expresión Génica/genética , Impresión Genómica/genética , Mamíferos/genética , Modelos Genéticos , Organogénesis/genética , ARN Largo no Codificante/genética , Animales , Diferenciación Celular/fisiología , Citoplasma/genética , Mamíferos/crecimiento & desarrollo , Modelos Moleculares , Músculos/fisiología , Especificidad de la Especie
12.
Int J Mol Sci ; 19(8)2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30096915

RESUMEN

We are currently assisting in the explosion of epitranscriptomics, which studies the functional role of chemical modifications into RNA molecules. Among more than 100 RNA modifications, the N6-methyladenosine (m6A), in particular, has attracted the interest of researchers all around the world. m6A is the most abundant internal chemical modification in mRNA, and it can control any aspect of mRNA post-transcriptional regulation. m6A is installed by "writers", removed by "erasers", and recognized by "readers"; thus, it can be compared to the reversible and dynamic epigenetic modifications in histones and DNA. Given its fundamental role in determining the way mRNAs are expressed, it comes as no surprise that alterations to m6A modifications have a deep impact in cell differentiation, normal development and human diseases. Here, we review the proteins involved in m6A modification in mammals, m6A role in gene expression and its contribution to cancer development. In particular, we will focus on acute myeloid leukaemia (AML), which provides an initial indication of how alteration in m6A modification can disrupt normal cellular differentiation and lead to cancer.


Asunto(s)
Adenosina/análogos & derivados , Epigénesis Genética , Leucemia Mieloide Aguda/genética , Procesamiento Postranscripcional del ARN/genética , Adenosina/genética , ADN/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Leucemia Mieloide Aguda/patología , Metilación , ARN Mensajero/genética
13.
Int J Mol Sci ; 19(2)2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29443889

RESUMEN

Long noncoding RNAs (lncRNAs) are important regulators of the epigenetic status of the human genome. Besides their participation to normal physiology, lncRNA expression and function have been already associated to many diseases, including cancer. By interacting with epigenetic regulators and by controlling chromatin topology, their misregulation may result in an aberrant regulation of gene expression that may contribute to tumorigenesis. Here, we review the functional role and mechanisms of action of lncRNAs implicated in the aberrant epigenetic regulation that has characterized cancer development and progression.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , ARN Largo no Codificante/genética , Animales , Código de Histonas , Humanos , ARN Largo no Codificante/metabolismo
14.
Nat Cell Biol ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169219

RESUMEN

Post-transcriptional mechanisms are fundamental safeguards of progenitor cell identity and are often dysregulated in cancer. Here, we identified regulators of P-bodies as crucial vulnerabilities in acute myeloid leukaemia (AML) through genome-wide CRISPR screens in normal and malignant haematopoietic progenitors. We found that leukaemia cells harbour aberrantly elevated numbers of P-bodies and show that P-body assembly is crucial for initiation and maintenance of AML. Notably, P-body loss had little effect upon homoeostatic haematopoiesis but impacted regenerative haematopoiesis. Molecular characterization of P-bodies purified from human AML cells unveiled their critical role in sequestering messenger RNAs encoding potent tumour suppressors from the translational machinery. P-body dissolution promoted translation of these mRNAs, which in turn rewired gene expression and chromatin architecture in leukaemia cells. Collectively, our findings highlight the contrasting and unique roles of RNA sequestration in P-bodies during tissue homoeostasis and oncogenesis. These insights open potential avenues for understanding myeloid leukaemia and future therapeutic interventions.

15.
Int J Mol Sci ; 14(10): 20930-53, 2013 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-24145746

RESUMEN

The coordinated expression and interplay among lineage specific transcription factors and microRNAs contribute to the regulation of gene expression and determination of cell specificity. In hematopoietic stem cells (HSCs), unique combinations of transcription factors largely control growth and maturation of different blood cell lineages through cooperative regulation of specific target genes. MicroRNAs provide an additional level of control beyond transcription factors. By acting as regulators of crucial lineage-specific genetic programs, microRNAs direct early multipotential progenitor cells to adopt a certain cell fate program. Thus, alteration of specific microRNA levels may affect proliferation, differentiation and genetic stability of HSCs, contributing to the onset of myeloproliferative disorders and leukemia. The major aim of this review is to highlight the critical role of microRNA-regulated pathways during the establishment and progression of hematological malignancies, with a particular attention to leukemia, lymphomas and myelodysplastic syndromes. This will give us the opportunity to discuss the potential use of microRNA-based therapeutic approaches in these diseases. MicroRNAs are indeed emerging as relevant tools to improve the efficacy of currently used therapeutic protocols.


Asunto(s)
Neoplasias Hematológicas/genética , MicroARNs/genética , Transducción de Señal/genética , Transcriptoma/genética , Animales , Humanos
16.
Cancer Lett ; 559: 216120, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36893894

RESUMEN

A key mechanism driving colorectal cancer (CRC) development is the upregulation of MYC and its targets, including ornithine decarboxylase (ODC), a master regulator of polyamine metabolism. Elevated polyamines promote tumorigenesis in part by activating DHPS-mediated hypusination of the translation factor eIF5A, thereby inducing MYC biosynthesis. Thus, MYC, ODC and eIF5A orchestrate a positive feedback loop that represents an attractive therapeutic target for CRC therapy. Here we show that combined inhibition of ODC and eIF5A induces a synergistic antitumor response in CRC cells, leading to MYC suppression. We found that genes of the polyamine biosynthesis and hypusination pathways are significantly upregulated in colorectal cancer patients and that inhibition of ODC or DHPS alone limits CRC cell proliferation through a cytostatic mechanism, while combined ODC and DHPS/eIF5A blockade induces a synergistic inhibition, accompanied to apoptotic cell death in vitro and in mouse models of CRC and FAP. Mechanistically, we found that this dual treatment causes complete inhibition of MYC biosynthesis in a bimodal fashion, by preventing translational elongation and initiation. Together, these data illustrate a novel strategy for CRC treatment, based on the combined suppression of ODC and eIF5A, which holds promise for the treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Factores de Iniciación de Péptidos , Poliaminas , Proteínas Proto-Oncogénicas c-myc , Animales , Ratones , Apoptosis , Proliferación Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/farmacología , Poliaminas/metabolismo , Humanos , Factores de Iniciación de Péptidos/genética , Factores de Iniciación de Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor 5A Eucariótico de Iniciación de Traducción
17.
J Cell Physiol ; 227(9): 3291-300, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22170005

RESUMEN

Although ongoing clinical trials utilize systemic administration of bone-marrow mesenchymal stromal cells (BM-MSCs) in Crohn's disease (CD), nothing is known about the presence and the function of mesenchymal stromal cells (MSCs) in the normal human bowel. MSCs are bone marrow (BM) multipotent cells supporting hematopoiesis with the potential to differentiate into multiple skeletal phenotypes. A recently identified new marker, CD146, allowing to prospectively isolate MSCs from BM, renders also possible their identification in different tissues. In order to elucidate the presence and functional role of MSCs in human bowel we analyzed normal adult colon sections and isolated MSCs from them. In colon (C) sections, resident MSCs form a net enveloping crypts in lamina propria, coinciding with structural myofibroblasts or interstitial stromal cells. Nine sub-clonal CD146(+) MSC lines were derived and characterized from colon biopsies, in addition to MSC lines from five other human tissues. In spite of a phenotype qualitative identity between the BM- and C-MSC populations, they were discriminated and categorized. Similarities between C-MSC and BM-MSCs are represented by: Osteogenic differentiation, hematopoietic supporting activity, immune-modulation, and surface-antigen qualitative expression. The differences between these populations are: C-MSCs mean intensity expression is lower for CD13, CD29, and CD49c surface-antigens, proliferative rate faster, life-span shorter, chondrogenic differentiation rare, and adipogenic differentiation completely blocked. Briefly, BM-MSCs, deserve the rank of progenitors, whereas C-MSCs belong to the restricted precursor hierarchy. The presence and functional role of MSCs in human colon provide a rationale for BM-MSC replacement therapy in CD, where resident bowel MSCs might be exhausted or diverted from their physiological functions.


Asunto(s)
Biomarcadores/metabolismo , Diferenciación Celular , Colon/crecimiento & desarrollo , Células Madre Mesenquimatosas/metabolismo , Miofibroblastos , Adipogénesis/fisiología , Biopsia , Células de la Médula Ósea/citología , Antígeno CD146/inmunología , Antígeno CD146/metabolismo , Condrogénesis/fisiología , Colon/citología , Hematopoyesis/fisiología , Humanos , Células Madre Mesenquimatosas/citología , Microscopía Confocal , Osteogénesis/fisiología
18.
PLoS Genet ; 5(10): e1000670, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19798443

RESUMEN

Heterochromatin Protein 1 (HP1a) is a well-known conserved protein involved in heterochromatin formation and gene silencing in different species including humans. A general model has been proposed for heterochromatin formation and epigenetic gene silencing in different species that implies an essential role for HP1a. According to the model, histone methyltransferase enzymes (HMTases) methylate the histone H3 at lysine 9 (H3K9me), creating selective binding sites for itself and the chromodomain of HP1a. This complex is thought to form a higher order chromatin state that represses gene activity. It has also been found that HP1a plays a role in telomere capping. Surprisingly, recent studies have shown that HP1a is present at many euchromatic sites along polytene chromosomes of Drosophila melanogaster, including the developmental and heat-shock-induced puffs, and that this protein can be removed from these sites by in vivo RNase treatment, thus suggesting an association of HP1a with the transcripts of many active genes. To test this suggestion, we performed an extensive screening by RIP-chip assay (RNA-immunoprecipitation on microarrays), and we found that HP1a is associated with transcripts of more than one hundred euchromatic genes. An expression analysis in HP1a mutants shows that HP1a is required for positive regulation of these genes. Cytogenetic and molecular assays show that HP1a also interacts with the well known proteins DDP1, HRB87F, and PEP, which belong to different classes of heterogeneous nuclear ribonucleoproteins (hnRNPs) involved in RNA processing. Surprisingly, we found that all these hnRNP proteins also bind heterochromatin and are dominant suppressors of position effect variegation. Together, our data show novel and unexpected functions for HP1a and hnRNPs proteins. All these proteins are in fact involved both in RNA transcript processing and in heterochromatin formation. This suggests that, in general, similar epigenetic mechanisms have a significant role on both RNA and heterochromatin metabolisms.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Drosophila melanogaster/metabolismo , Eucromatina/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , ARN/metabolismo , Regulación hacia Arriba , Animales , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/genética , Drosophila melanogaster/química , Drosophila melanogaster/genética , Eucromatina/genética , Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas/genética , Unión Proteica , ARN/química , ARN/genética , Procesamiento Postranscripcional del ARN , Estabilidad del ARN
19.
Front Immunol ; 13: 867181, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35529877

RESUMEN

Thymic Epithelial Tumors (TETs) arise from epithelial cells of the thymus and are very rare neoplasms comprising Thymoma, Thymic carcinoma, and Thymic Neuroendocrine tumors that still require in-depth molecular characterization. Long non-coding RNAs (lncRNAs) are emerging as relevant gene expression modulators involved in the deregulation of several networks in almost all types of human cancer, including TETs. LncRNAs act at different control levels in the regulation of gene expression, from transcription to translation, and modulate several pathways relevant to cell fate determination under normal and pathological conditions. The activity of lncRNAs is strongly dependent on their expression, localization, and post-transcriptional modifications. Starting from our recently published studies, this review focuses on the involvement of lncRNAs in the acquisition of malignant traits by neoplastic thymic epithelial cells, and describes the possible use of these molecules as targets for the design of novel therapeutic approaches specific for TET. Furthermore, the involvement of lncRNAs in myasthenia gravis (MG)-related thymoma, which is still under investigation, is discussed.


Asunto(s)
Neoplasias Glandulares y Epiteliales , ARN Largo no Codificante , Timoma , Neoplasias del Timo , Células Epiteliales/metabolismo , Humanos , Neoplasias Glandulares y Epiteliales/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Timoma/genética , Timoma/patología , Neoplasias del Timo/genética , Neoplasias del Timo/patología
20.
Commun Biol ; 5(1): 598, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35710947

RESUMEN

Vascular Endothelial Growth Factor A (VEGFA) is the most commonly expressed angiogenic growth factor in solid tumors and is generated as multiple isoforms through alternative mRNA splicing. Here, we show that lncRNA MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) and ID4 (inhibitor of DNA-binding 4) protein, previously referred to as regulators of linear isoforms of VEGFA, induce back-splicing of VEGFA exon 7, producing circular RNA circ_0076611. Circ_0076611 is detectable in triple-negative breast cancer (TNBC) cells and tissues, in exosomes released from TNBC cells and in the serum of breast cancer patients. Circ_0076611 interacts with a variety of proliferation-related transcripts, included MYC and VEGFA mRNAs, and increases cell proliferation and migration of TNBC cells. Mechanistically, circ_0076611 favors the expression of its target mRNAs by facilitating their interaction with components of the translation initiation machinery. These results add further complexity to the multiple VEGFA isoforms expressed in cancer cells and highlight the relevance of post-transcriptional regulation of VEGFA expression in TNBC cells.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias de la Mama Triple Negativas , Humanos , MicroARNs/genética , Isoformas de Proteínas/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA