Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 29(4): 5006-5017, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33726044

RESUMEN

Position sensing is essential to testify the validity of the mechanical design and verify the performance in micromanipulation. A practical system for non-contact micro-motion measurement of compliant nanopositioning stages and micromanipulators is proposed using computer micro-vision. The micro-motion measurement method integrates optical microscopy and an optical flow-based technique, in which the motions of complaint mechanisms are precisely detected and measured. Simulations are carried out to validate the robustness of the proposed method, while the micro-vision system and a laser interferometer measurement system are also built up for a series of experiments. The experimental results demonstrate that the proposed measurement system possesses high stability, extensibility, and precision with 0.06 µm absolute accuracy and 0.05 µm standard deviation.

2.
Nanotechnology ; 29(22): 225705, 2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-29498626

RESUMEN

The adhesion and friction between two Al2O3 nanowires (NWs) was characterized by the use of optical microscopy based nanomanipulation, with which peeling, shearing and sliding was performed. The elastically deformed shape of the NWs during peeling and shearing was used to calculate the adhesion and frictional forces; force sensing was not required. The obtained adhesion stress between two Al2O3 NWs varied from 0.14 to 0.25 MPa, lower than that observed for carbon nanotube junctions, and was attributed to van der Waals attraction. Stick-slip was observed during the shearing and sliding of two NWs, and was the consequence of discrete contact between surface asperities. The obtained static and kinetic frictional stresses varied from 0.7 to 1.3 MPa and 0.4 to 0.8 MPa, respectively; significantly greater than the obtained adhesion stress.

3.
Appl Opt ; 55(7): 1641-8, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26974624

RESUMEN

Discrepancies of speckle images under dynamic measurement due to the different viewing angles will deteriorate the correspondence in 3D digital image correlation (3D-DIC) for vibration measurement. Facing this kind of bottleneck, this paper presents two types of robust 3D-DIC methods for vibration measurement, SSD-robust and SWD-robust, which use a sum of square difference (SSD) estimator plus a Geman-McClure regulating term and a Welch estimator plus a Geman-McClure regulating term, respectively. Because the regulating term with an adaptive rejecting bound can lessen the influence of the abnormal pixel data in the dynamical measuring process, the robustness of the algorithm is enhanced. The robustness and precision evaluation experiments using a dual-frequency laser interferometer are implemented. The experimental results indicate that the two presented robust estimators can suppress the effects of the abnormality in the speckle images and, meanwhile, keep higher precision in vibration measurement in contrast with the traditional SSD method; thus, the SWD-robust and SSD-robust methods are suitable for weak image noise and strong image noise, respectively.

4.
Nanoscale Adv ; 6(13): 3251-3284, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38933866

RESUMEN

The frictional behavior of one-dimensional (1D) materials, including nanotubes, nanowires, and nanofibers, significantly influences the efficient fabrication, functionality, and reliability of innovative devices integrating 1D components. Such devices comprise piezoelectric and triboelectric nanogenerators, biosensing and implantable devices, along with biomimetic adhesives based on 1D arrays. This review compiles and critically assesses recent experimental techniques for exploring the frictional behavior of 1D materials. Specifically, it underscores various measurement methods and technologies employing atomic force microscopy, electron microscopy, and optical microscopy nanomanipulation. The emphasis is on their primary applications and challenges in measuring and characterizing the frictional behavior of 1D materials. Additionally, we discuss key accomplishments over the past two decades in comprehending the frictional behaviors of 1D materials, with a focus on factors such as materials combination, interface roughness, environmental humidity, and non-uniformity. Finally, we offer a brief perspective on ongoing challenges and future directions, encompassing the systematic investigation of the testing environment and conditions, as well as the modification of surface friction through surface alterations.

5.
Nanomaterials (Basel) ; 13(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37947753

RESUMEN

There was an unclear passage in the original publication [...].

6.
Micromachines (Basel) ; 13(7)2022 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-35888856

RESUMEN

A graphene-based transmission line with independent amplitude and phase variation capability is proposed. Variation of graphene's tunable conductivity by an applied DC bias is exploited in designing an attenuator and a phase shifter. The attenuator and phase shifter are separated from each other by an interdigitated capacitor to ensure independent control of each section through an applied DC bias. The phase shifter is designed by optimizing lengths of a tapered line and an open stub for a maximum variation of input reactance with a change in graphene resistance. The attenuator is designed by two pairs of grounded vias connected to the transmission line through graphene. Variation of graphene resistance controls the signal passing through graphene pads into the ground causing attenuation. An independent variation of 5 dB of attenuation is measured along with an independent phase variation of 23 degrees in the frequency range of 4 GHz to 4.5 GHz.

7.
Nanomaterials (Basel) ; 12(3)2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-35159713

RESUMEN

Despite considerable research efforts, the influence of contact line tension during wetting at the nanoscale and its experimental determination remain challenging tasks. So far, molecular dynamics simulations and atomic force microscope measurements have contributed to the understanding of these phenomena. However, a direct measurement of the size dependence of the contact angle and the magnitude of the apparent line tension has not been realized so far. Here, we show that the contact angle is indeed dependent on the drop size for small drop diameters and determine the magnitude of the apparent line tension via liquid-metal based measurements of advancing and receding contact angle inside a scanning electron microscope. For this purpose, a robotic setup inside an electron microscope chamber and oxide-free Galinstan droplets-produced via an electromigration-based and focused ion beam irradiation-assisted process-are employed. Using the first-order correction of Young's equation, we find an apparent line tension value of 4.02 × 10-7 J/m for Galinstan© on stainless steel.

8.
Rev Sci Instrum ; 91(4): 043701, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32357744

RESUMEN

van der Waals forces, electrostatic interactions, and capillary forces are the dominant force interactions at the micro- and nanoscale. This complex ensemble of surface forces is oftentimes summarized as adhesion and is important for various applications and research fields. So far, numerous measurement techniques have evolved in this field. However, there is still a lack of experimental insight into the complex interplay of van der Waals, electrostatic, and capillary forces for small force ranges below 10 nN, as this is the order of magnitude of the latter, which can shadow other interactions in ambient and even inert gas environments. To exclude capillary forces and thus to turn the van der Waals and electrostatic forces into the most significant interactions, we develop an interferometric force spectroscopy setup based on a scanning probe technique, featuring a sub-nanonewton resolution, and integrate it into the vacuum chamber of a scanning electron microscope. In this work, we describe the setup integration, show the long-term drift behavior and resolution capabilities, and conduct first measurements of adhesion energies between a silica colloidal probe and a silicon substrate. The presented setup shows its capability to reliably measure adhesive interactions in vacuum and an ambient environment with a sub-nanonewton resolution proving its potential to allow for the investigation of the separate contribution of capillary, van der Waals, and electrostatic interactions to adhesion and for a systematic experimental validation of the established adhesion theories and approximations on the micro- and nanoscale.

9.
Micromachines (Basel) ; 10(12)2019 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-31835719

RESUMEN

Micromechanically exfoliating graphene on S i / S i O 2 substrates is commonplace for graphene researchers, but locating actual graphene flakes on these substrates is a high-effort and tiresome task. The main purpose of this work was to establish a completely automated procedure to identify those graphene flakes with as little human interaction as possible, improving on the limitations of current methods. Furthermore, automatic electrical characterization of the identified flakes was performed. The proposed micro-robotic automation sequence consists of three main steps. To start, a sample surface plane is calculated, based on multiple foci points across the substrate. Secondly, flakes on the substrate are identified in the hue, saturation, and value (HSV) color space, with an implementation to fit the measurement probe, used to avoid undersized samples and adjust the flake orientation. Finally, electrical characterization is performed based on four point probe measurements with the Van der Pauw method. Results of the successfully implemented automation sequence are presented together with flake electrical properties and validation.

10.
Micromachines (Basel) ; 10(11)2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718070

RESUMEN

This paper reports the mechanical design, waveform investigation and experimental validation of an flexible-structure-based inertia-drive linear motor. The flexible structure is designed and verified with finite element analysis to meet the bandwidth requirement for high-frequency actuation. In order to improve the output velocity, non-resonance low-harmonic driving waveform is implemented and evaluated. Experimental results show that the motor is capable of an output velocity of 2.41 mm/s with the waveform, compared to 0.73 mm/s with the classic saw-tooth waveform actuation. The improvement of the non-resonance low-harmonic waveform for the flexible-structure-based motor is confirmed.

11.
Nanomaterials (Basel) ; 9(10)2019 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-31635089

RESUMEN

The focused ion beam (FIB) has proven to be an extremely powerful tool for the nanometer-scale machining and patterning of nanostructures. In this work, we experimentally study the behavior of AISI 420 martensitic stainless steel when bombarded by Ga+ ions in a FIB system. The results show the formation of nanometer sized spiky structures. Utilizing the nanospiking effect, we fabricated a single-tip needle with a measured 15.15 nanometer curvature radius and a microneedle with a nanometer sized spiky surface. The nanospikes can be made straight or angled, depending on the incident angle between the sample and the beam. We also show that the nanospiking effect is present in ferritic AISI 430 stainless steel. The weak occurrence of the nanospiking effect in between nano-rough regions (nano-cliffs) was also witnessed for austenitic AISI 316 and martensitic AISI 431 stainless steel samples.

12.
Rev Sci Instrum ; 87(11): 115003, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910461

RESUMEN

For the piezo-driven microgripper, one issue is to enlarge the grasping stroke and realize parallel grasping movement in the compact design. Piezoelectric stack actuator (PSA) and piezoelectric cantilever actuator (PCA) are two kinds of typical piezoelectric actuators. In this study, a novel microgripper hybrid driven by a PSA and two PCAs is proposed, which can be a better solution for the issue, compared with the previous microgripper using PSA-driven multi-stages displacement amplification mechanism (DAM) or using longer and narrower PCAs. A compact one-stage orthogonal DAM is proposed for the PSA in the microgripper, which can enlarge the grasping stroke and realize parallel grasping movement. The proposed orthogonal DAM is a triangulation amplification-based mechanism with undetermined structural parameters. Bidirectional symmetric input forces/displacements are not required in the proposed design. The number of the undetermined parameters and the solution principle are analyzed. Finite element analysis is used to verify the proposed DAM. The gripper arms are designed as two PCAs, for which the grasping and parasitic movements of the free end are modeled. Piezoelectric-static coupling finite element analysis is used to verify the models. The PCAs-driven grasping with considerable parasitic movement can be used in the coarse positioning. The integration of the hybrid-driven microgripper is presented, and its performances are presented and verified by experiments.

13.
Rev Sci Instrum ; 87(5): 055106, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27250469

RESUMEN

This paper designs and analyzes a new kind of flexure hinge obtained by using a topology optimization approach, namely, a quasi-V-shaped flexure hinge (QVFH). Flexure hinges are formed by three segments: the left and right segments with convex shapes and the middle segment with straight line. According to the results of topology optimization, the curve equations of profiles of the flexure hinges are developed by numerical fitting. The in-plane dimensionless compliance equations of the flexure hinges are derived based on Castigliano's second theorem. The accuracy of rotation, which is denoted by the compliance of the center of rotation that deviates from the midpoint, is derived. The equations for evaluating the maximum stresses are also provided. These dimensionless equations are verified by finite element analysis and experimentation. The analytical results are within 8% uncertainty compared to the finite element analysis results and within 9% uncertainty compared to the experimental measurement data. Compared with the filleted V-shaped flexure hinge, the QVFH has a higher accuracy of rotation and better ability of preserving the center of rotation position but smaller compliance.

14.
Rev Sci Instrum ; 84(8): 085004, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24007099

RESUMEN

This paper designs and analyzes the hybrid flexure hinge composed of half a hyperbolic flexure hinge and half a corner-filleted flexure hinge. As it is transversely asymmetric, it has different performance when the fixed and free ends switch. Considering the diversion of rotation center from midpoint, closed-form equations are formulated to characterize both the active rotation and all other in-plane parasitic motion by the Castigliano's second theorem. The maximum stress is evaluated as well. These equations are verified by the finite element analysis and experimentation. The compliance precision ratios are proposed to indicate flexure hinges' ability of preserving the rotation center when they have the same displacement at the free end. The hybrid flexure hinges are compared with five kinds of common notch flexure hinges (circular, corner-filleted, elliptical, hyperbolic, and parabolic flexure hinges) quantitatively based on compliance, precision, compliance precision ratios, and the maximum stress. Conclusions are drawn regarding the performance of these six kinds of flexure hinges.

15.
Rev Sci Instrum ; 84(8): 085002, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24007097

RESUMEN

This paper describes the design, modeling, and testing of a novel flexure-based microgripper for a large jaw displacement with high resolution. Such a microgripper is indispensable in micro∕nano manipulation. In achieving a large jaw displacement, double amplification mechanisms, namely, Scott-Russell mechanism and leverage mechanism arranged in series, are utilized to overcome the limited output of microgrippers driven by piezoelectric actuators. The mechanical performance of the microgripper is analyzed using the pseudo rigid body model approach. Finite element analysis is conducted to evaluate the performance and validate the established models for further optimum design of the microgripper. The prototype of the developed microgripper is fabricated, with which experimental tests are carried out. The experimental results show that the developed microgripper is capable of handling various sized micro-objects with a maximum jaw displacement of 134 µm and a high amplification ratio of 15.5.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA