Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 23(20): 9587-9593, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37823538

RESUMEN

Competition between exchange interactions and magnetocrystalline anisotropy may bring new magnetic states that are of great current interest. An applied hydrostatic pressure can further be used to tune their balance. In this work, we investigate the magnetization process of a biaxial antiferromagnet in an external magnetic field applied along the easy axis. We find that the single metamagnetic transition of the Ising type observed in this material under ambient pressure transforms under hydrostatic pressure into two transitions, a first-order spin-flop transition followed by a second-order transition toward a polarized ferromagnetic state near saturation. This reversible tuning into a new magnetic phase is obtained in layered bulk CrSBr at low temperature by varying the interlayer distance using high hydrostatic pressure, which efficiently acts on the interlayer magnetic exchange and is probed by magneto-optical spectroscopy.

2.
Nano Lett ; 22(23): 9741-9747, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36458929

RESUMEN

We report on magneto-optical studies of the quasi-two-dimensional van der Waals antiferromagnet FePS3. Our measurements reveal an excitation that closely resembles the antiferromagnetic resonance mode typical of easy-axis antiferromagnets; nevertheless, it displays an unusual, four-times larger Zeeman splitting in an applied magnetic field. We identify this excitation with an |Sz| = 4 multipolar magnon─a single-ion 4-magnon bound state─that corresponds to a full reversal of a single magnetic moment of the Fe2+ ion. We argue that condensation of multipolar magnons in large-spin materials with a strong magnetic anisotropy can produce new exotic states.

3.
Nano Lett ; 21(6): 2519-2525, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33683895

RESUMEN

We investigate the origin of emission lines apparent in the low-temperature photoluminescence spectra of n-doped WS2 monolayer embedded in hexagonal BN layers using external magnetic fields and first-principles calculations. Apart from the neutral A exciton line, all observed emission lines are related to the negatively charged excitons. Consequently, we identify emissions due to both the bright (singlet and triplet) and dark (spin- and momentum-forbidden) negative trions as well as the phonon replicas of the latter optically inactive complexes. The semidark trions and negative biexcitons are distinguished. On the basis of their experimentally extracted and theoretically calculated g-factors, we identify three distinct families of emissions due to exciton complexes in WS2: bright, intravalley, and intervalley dark. The g-factors of the spin-split subbands in both the conduction and valence bands are also determined.

4.
Phys Chem Chem Phys ; 22(34): 19155-19161, 2020 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-32812577

RESUMEN

The spectral signatures associated with different negatively charged exciton complexes (trions) in a WS2 monolayer encapsulated in hBN are analyzed from low temperature and polarization resolved reflectance contrast (RC) and photoluminescence (PL) experiments, with an applied magnetic field. Based on results obtained from the RC experiment, we show that the valley Zeeman effect affects the optical response of both the singlet and the triplet trion species through the evolution of their energy and of their relative intensity, when applying an external magnetic field. Our analysis allows us to estimate a free electron concentration of ∼1.3 × 1011 cm-2. The observed evolutions based on PL experiments on the same sample are different and can hardly be understood within the same simple frame, highlighting the complexity of relaxation processes involved in the PL response.

5.
Nano Lett ; 17(3): 1425-1430, 2017 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-28211273

RESUMEN

We report on experimental investigations of an electrically driven WSe2 based light-emitting van der Waals heterostructure. We observe a threshold voltage for electroluminescence significantly lower than the corresponding single particle band gap of monolayer WSe2. This observation can be interpreted by considering the Coulomb interaction and a tunneling process involving excitons, well beyond the picture of independent charge carriers. An applied magnetic field reveals pronounced magneto-oscillations in the electroluminescence of the free exciton emission intensity with a 1/B periodicity. This effect is ascribed to a modulation of the tunneling probability resulting from the Landau quantization in the graphene electrodes. A sharp feature in the differential conductance indicates that the Fermi level is pinned and allows for an estimation of the acceptor binding energy.

6.
Nano Lett ; 16(9): 5333-9, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27517124

RESUMEN

By implementing four-wave mixing (FWM) microspectroscopy, we measure coherence and population dynamics of the exciton transitions in monolayers of MoSe2. We reveal their dephasing times T2 and radiative lifetime T1 in a subpicosecond (ps) range, approaching T2 = 2T1 and thus indicating radiatively limited dephasing at a temperature of 6 K. We elucidate the dephasing mechanisms by varying the temperature and by probing various locations on the flake exhibiting a different local disorder. At the nanosecond range, we observe the residual FWM produced by the incoherent excitons, which initially disperse toward the dark states but then relax back to the optically active states within the light cone. By introducing polarization-resolved excitation, we infer intervalley exciton dynamics, revealing an initial polarization degree of around 30%, constant during the initial subpicosecond decay, followed by the depolarization on a picosecond time scale. The FWM hyperspectral imaging reveals the doped and undoped areas of the sample, allowing us to investigate the neutral exciton, the charged one, or both transitions at the same time. In the latter, we observe the exciton-trion beating in the coherence evolution indicating their coherent coupling.

7.
Nano Lett ; 16(6): 3710-6, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27164265

RESUMEN

Graphene layers are known to stack in two stable configurations, namely, ABA or ABC stacking, with drastically distinct electronic properties. Unlike the ABA stacking, little has been done to experimentally investigate the electronic properties of ABC graphene multilayers. Here, we report on the first magneto optical study of a large ABC domain in a graphene multilayer flake, with ABC sequences exceeding 17 graphene sheets. ABC-stacked multilayers can be fingerprinted with a characteristic electronic Raman scattering response, which persists even at room temperatures. Tracing the magnetic field evolution of the inter Landau level excitations from this domain gives strong evidence for the existence of a dispersionless electronic band near the Fermi level, characteristic of such stacking. Our findings present a simple yet powerful approach to probe ABC stacking in graphene multilayer flakes, where this highly degenerated band appears as an appealing candidate to host strongly correlated states.

9.
Nano Lett ; 14(8): 4548-53, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24955484

RESUMEN

We probe electronic excitations between Landau levels in freestanding N-layer graphene over a broad energy range, with unprecedented spectral and spatial resolution, using micro magneto-Raman scattering spectroscopy. A characteristic evolution of electronic bands in up to five Bernal-stacked graphene layers is evidenced and shown to remarkably follow a simple theoretical approach, based on an effective bilayer model. (N > 3)-layer graphenes appear as appealing candidates in the quest for novel phenomena, particularly in the quantum Hall effect regime. Our work paves the way toward minimally invasive investigations of magneto-excitons in other emerging low-dimensional systems, with a spatial resolution down to 1 µm.

10.
Nano Lett ; 14(3): 1460-6, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24490748

RESUMEN

We report a comprehensive study of the tuning with electric fields of the resonant magneto-exciton optical phonon coupling in gated graphene. For magnetic fields around B ∼ 25 T that correspond to the range of the fundamental magneto-phonon resonance, the electron-phonon coupling can be switched on and off by tuning the position of the Fermi level in order to Pauli block the two fundamental inter-Landau level excitations. The effects of such a profound change in the electronic excitation spectrum are traced through investigations of the optical phonon response in polarization resolved magneto-Raman scattering experiments. We report on the observation of a splitting of the phonon feature with satellite peaks developing at particular values of the Landau level filling factor on the low or on the high energy side of the phonon, depending on the relative energy of the discrete electronic excitation and of the optical phonon. Shifts of the phonon energy as large as ±60 cm(-1) are observed close to the resonance. The intraband electronic excitation, the cyclotron resonance, is shown to play a relevant role in the observed spectral evolution of the phonon response.

11.
Nano Lett ; 14(9): 5194-200, 2014 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-25158099

RESUMEN

Semiconducting carbon nanotubes (CNTs) provide an exceptional platform for studying one-dimensional excitons (bound electron-hole pairs), but the role of defects and quenching centers in controlling emission remains controversial. Here we show that, by wrapping the CNT in a polymer sheath and cooling to 4.2 K, ultranarrow photoluminescence (PL) emission line widths below 80 µeV can be seen from individual solution processed CNTs. Hyperspectral imaging of the tubes identifies local emission sites and shows that some previously dark quenching segments can be brightened by the application of high magnetic fields, and their effect on exciton transport and dynamics can be studied. Using focused high intensity laser irradiation, we introduce a single defect into an individual nanotube which reduces its quantum efficiency by the creation of a shallow bound exciton state with enhanced electron-hole exchange interaction. The emission intensity of the nanotube is then reactivated by the application of the high magnetic field.

12.
ACS Nano ; 16(8): 12656-12665, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35867668

RESUMEN

Magnetic layered materials have emerged recently as promising systems to introduce magnetism in structures based on two-dimensional (2D) materials and to investigate exotic magnetic ground states in the 2D limit. In this work, we apply high hydrostatic pressures up to P ≈ 8.7 GPa to the bulk layered antiferromagnet FePS3 to tune the collective lattice excitations (phonons) in resonance with magnetic excitations (magnons). Close to P = 4 GPa, the magnon-phonon resonance is achieved, and the strong coupling between these collective modes leads to the formation of new quasiparticles, the magnon-polarons, evidenced in our low-temperature Raman scattering experiments by a particular avoided crossing behavior between the phonon and the doubly degenerate antiferromagnetic magnon. At the pressure-induced magnon-phonon resonance, three distinct coupled modes emerge. As it is mainly defined by intralayer properties, we show that the energy of the magnon is nearly pressure-independent. We additionally apply high magnetic fields up to B = 30 T to fully identify and characterize the magnon excitations and to explore the different magnon-polaron regimes for which the phonon has an energy lower than, equal to, or higher than the magnon energy. The description of our experimental data requires introducing a phonon-phonon coupling not taken into account in actual calculations.

13.
Nat Commun ; 12(1): 3489, 2021 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108469

RESUMEN

Materials combining semiconductor functionalities with spin control are desired for the advancement of quantum technologies. Here, we study the magneto-optical properties of novel paramagnetic Ruddlesden-Popper hybrid perovskites Mn:(PEA)2PbI4 (PEA = phenethylammonium) and report magnetically brightened excitonic luminescence with strong circular polarization from the interaction with isolated Mn2+ ions. Using a combination of superconducting quantum interference device (SQUID) magnetometry, magneto-absorption and transient optical spectroscopy, we find that a dark exciton population is brightened by state mixing with the bright excitons in the presence of a magnetic field. Unexpectedly, the circular polarization of the dark exciton luminescence follows the Brillouin-shaped magnetization with a saturation polarization of 13% at 4 K and 6 T. From high-field transient magneto-luminescence we attribute our observations to spin-dependent exciton dynamics at early times after excitation, with first indications for a Mn-mediated spin-flip process. Our findings demonstrate manganese doping as a powerful approach to control excitonic spin physics in Ruddlesden-Popper perovskites, which will stimulate research on this highly tuneable material platform with promise for tailored interactions between magnetic moments and excitonic states.

14.
Nat Commun ; 11(1): 1603, 2020 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-32231215

RESUMEN

The pure Kitaev honeycomb model harbors a quantum spin liquid in zero magnetic fields, while applying finite magnetic fields induces a topological spin liquid with non-Abelian anyonic excitations. This latter phase has been much sought after in Kitaev candidate materials, such as α-RuCl3. Currently, two competing scenarios exist for the intermediate field phase of this compound (B = 7 - 10 T), based on experimental as well as theoretical results: (i) conventional multiparticle magnetic excitations of integer quantum number vs. (ii) Majorana fermionic excitations of possibly non-Abelian nature with a fractional quantum number. To discriminate between these scenarios a detailed investigation of excitations over a wide field-temperature phase diagram is essential. Here, we present Raman spectroscopic data revealing low-energy quasiparticles emerging out of a continuum of fractionalized excitations at intermediate fields, which are contrasted by conventional spin-wave excitations. The temperature evolution of these quasiparticles suggests the formation of bound states out of fractionalized excitations.

15.
Nanoscale ; 11(21): 10446-10453, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-31112191

RESUMEN

A time-resolved observation of coherent interlayer longitudinal acoustic phonons in thin layers of 2H-MoSe2 is reported. A femtosecond pump-probe technique is used to investigate the evolution of the energy loss of these vibrational modes in a wide selection of MoSe2 flakes with different thicknesses ranging from bilayer up to the bulk limit. By directly analysing the temporal decay of the modes, we can clearly distinguish an abrupt crossover related to the acoustic mean free path of the phonons in a layered system, and the constraints imposed on the acoustic decay channels when reducing the dimensionality. For thicker samples, the main acoustic attenuation mechanism is attributed to the scattering of the acoustic modes with thermal phonons. For samples thinner than ∼20 molecular layers, the predominant damping mechanism is ascribed to the effects of surface asperity. Losses intrinsic to the low dimensionality of single or few layer materials impose critical limitations for their use in optomechanical and optoelectronic devices.

16.
Sci Rep ; 8(1): 7818, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29777121

RESUMEN

We study the absorption spectra of the yellow excitons in Cu2O in high magnetic fields using polarization-resolved optical absorption measurements with a high frequency resolution. We show that the symmetry of the yellow exciton results in unusual selection rules for the optical absorption of polarized light and that the mixing of ortho- and para- excitons in magnetic field is important. The calculation of the energies of the yellow exciton series in strong and weak magnetic field limits suggests that a broad n = 2 line is comprized by two closely overlapping lines, gives a good fit to experimental data and allows to interpret the complex structure of excitonic levels.

17.
Nanoscale ; 7(23): 10421-9, 2015 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-25998778

RESUMEN

We present optical spectroscopy (photoluminescence and reflectance) studies of thin layers of the transition metal dichalcogenide WSe2, with thickness ranging from mono- to tetra-layer and in the bulk limit. The investigated spectra show the evolution of excitonic resonances as a function of layer thickness, due to changes in the band structure and, importantly, due to modifications of the strength of Coulomb interactions as well. The observed temperature-activated energy shift and broadening of the fundamental direct exciton are well accounted for by standard formalisms used for conventional semiconductors. A large increase of the photoluminescence yield with temperature is observed in a WSe2 monolayer, indicating the existence of competing radiative channels. The observation of absorption-type resonances due to both neutral and charged excitons in the WSe2 monolayer is reported and the effect of the transfer of oscillator strength from charged to neutral excitons upon an increase of temperature is demonstrated.

18.
Nat Commun ; 6: 6419, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25732058

RESUMEN

Close to charge neutrality, the electronic properties of graphene and its multilayers are sensitive to electron-electron interactions. In bilayers, for instance, interactions are predicted to open a gap between valence and conduction bands, turning the system into an insulator. In mono and (Bernal-stacked) trilayers, which remain conducting at low temperature, interactions do not have equally drastic consequences. It is expected that interaction effects become weaker for thicker multilayers, whose behaviour should converge to that of graphite. Here we show that this expectation does not correspond to reality by revealing the occurrence of an insulating state close to charge neutrality in Bernal-stacked tetralayer graphene. The phenomenology-incompatible with the behaviour expected from the single-particle band structure-resembles that observed in bilayers, but the insulating state in tetralayers is visible at higher temperature. We explain our findings, and the systematic even-odd effect of interactions in Bernal-stacked layers of different thickness that emerges from experiments, in terms of a generalization of the interaction-driven, symmetry-broken states proposed for bilayers.

19.
ACS Nano ; 4(4): 1889-92, 2010 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-20218666

RESUMEN

Local laser excitation and temperature readout from the intensity ratio of Stokes to anti-Stokes Raman scattering signals are employed to study the thermal properties of a large graphene membrane. The concluded value of the heat conductivity coefficient kappa approximately 600 W/(m.K) is smaller than previously reported but still validates the conclusion that graphene is a very good thermal conductor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA