Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Bioorg Med Chem Lett ; 21(23): 7089-93, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22030030

RESUMEN

PDE4 inhibitors have been identified as therapeutic targets for a variety of conditions, particularly inflammatory diseases. We have serendipitously identified a novel class of phosphodiesterase 4 (PDE4) inhibitor during a study to discover antagonists of the parathyroid hormone receptor. X-ray crystallographic studies of PDE4D2 complexed to four potent inhibitors reveal the atomic details of how they inhibit the enzyme and a notable contrast to another recently reported thiophene-based inhibitor.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/química , Modelos Moleculares , Inhibidores de Fosfodiesterasa 4/química , Tiofenos/síntesis química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores de Fosfodiesterasa 4/síntesis química , Unión Proteica , Tiofenos/química , Tiofenos/farmacología
2.
Adv Exp Med Biol ; 677: 1-13, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20687476

RESUMEN

Pore-forming proteins (PFPs) possess the intriguing property that they can exist either in a stable water-soluble state or as an integral membrane pore. These molecules can undergo large conformational changes in converting between these two states. Much of what we know about how these proteins change their shape comes from work on bacterial toxins and increasingly, in more recent years, on toxins from other organisms. Surprisingly, a number of pore-forming proteins have recently been characterised that appear to have adopted similar stratagies to toxins for binding and inserting into biological membranes.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Proteínas de la Membrana/química , Modelos Químicos , Péptidos/química , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/metabolismo , Péptidos/metabolismo , Unión Proteica , Termodinámica
3.
Artículo en Inglés | MEDLINE | ID: mdl-19407380

RESUMEN

Glutathione S-transferases (GSTs) are a group of multifunctional enzymes that are found in animals, plants and microorganisms. Their primary function is to remove toxins derived from exogenous sources or the products of metabolism from the cell. Mammalian GSTs have been extensively studied, in contrast to bacterial GSTs which have received relatively scant attention. A new class of GSTs called Chi has recently been identified in cyanobacteria. Chi GSTs exhibit a high glutathionylation activity towards isothiocyanates, compounds that are normally found in plants. Here, the crystallization of two GSTs are presented: TeGST produced by Thermosynechococcus elongates BP-1 and SeGST from Synechococcus elongates PCC 6301. Both enzymes formed crystals that diffracted to high resolution and appeared to be suitable for further X-ray diffraction studies. The structures of these GSTs may shed further light on the evolution of GST catalytic activity and in particular why these enzymes possess catalytic activity towards plant antimicrobial compounds.


Asunto(s)
Glutatión Transferasa/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Cianobacterias/enzimología , Cianobacterias/genética , Expresión Génica , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
4.
J Mol Biol ; 367(5): 1227-36, 2007 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-17328912

RESUMEN

Cholesterol-dependent cytolysins (CDCs), a large family of bacterial toxins, are secreted as water-soluble monomers and yet are capable of generating oligomeric pores in membranes. Previous work has demonstrated that large scale structural rearrangements occur during this transition but the detailed mechanism by which these changes take place remains a puzzle. Despite evidence of structural and functional couplings between domains 3 and 4, the crystal structure of the CDC, perfringolysin O (PFO), shows the two domains do not make direct contact. Here, we present crystal structures of PFO that demonstrate movements of domain 4 are sufficient to trigger conformational changes that are transmitted through the molecule to the distant domain 3. These coupled movements result in a loss of many contacts between domain 3 and rest of the molecule that would eventually lead to the exposure of transmembrane regions in preparation for membrane insertion. The structures reveal a detailed molecular pathway that may be the basis for the allosteric transition that occurs on initial membrane binding leading to the exposure of membrane-spanning regions in a domain distant from the initial site of interaction.


Asunto(s)
Toxinas Bacterianas/química , Colesterol/fisiología , Proteínas Hemolisinas/química , Proteínas Hemolisinas/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Toxinas Bacterianas/metabolismo , Cristalografía por Rayos X , Dimerización , Proteínas Hemolisinas/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Perforina , Estructura Terciaria de Proteína , Rotación , Triptófano/fisiología
5.
Curr Biol ; 13(10): 867-71, 2003 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-12747837

RESUMEN

AMP-activated protein kinase (AMPK) is a multisubstrate enzyme activated by increases in AMP during metabolic stress caused by exercise, hypoxia, lack of cell nutrients, as well as hormones, including adiponectin and leptin. Furthermore, metformin and rosiglitazone, frontline drugs used for the treatment of type II diabetes, activate AMPK. Mammalian AMPK is an alphabetagamma heterotrimer with multiple isoforms of each subunit comprising alpha1, alpha2, beta1, beta2, gamma1, gamma2, and gamma3, which have varying tissue and subcellular expression. Mutations in the AMPK gamma subunit cause glycogen storage disease in humans, but the molecular relationship between glycogen and the AMPK/Snf1p kinase subfamily has not been apparent. We show that the AMPK beta subunit contains a functional glycogen binding domain (beta-GBD) that is most closely related to isoamylase domains found in glycogen and starch branching enzymes. Mutation of key glycogen binding residues, predicted by molecular modeling, completely abolished beta-GBD binding to glycogen. AMPK binds to glycogen but retains full activity. Overexpressed AMPK beta1 localized to specific mammalian subcellular structures that corresponded with the expression pattern of glycogen phosphorylase. Glycogen binding provides an architectural link between AMPK and a major cellular energy store and juxtaposes AMPK to glycogen bound phosphatases.


Asunto(s)
Glucógeno/metabolismo , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico/metabolismo , Proteínas Quinasas Activadas por AMP , Secuencia de Aminoácidos , Animales , Expresión Génica , Glucógeno/farmacología , Glucógeno Fosforilasa/química , Glucógeno Fosforilasa/genética , Glucógeno Fosforilasa/metabolismo , Glucógeno Sintasa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/ultraestructura , Filogenia , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/ultraestructura , Estructura Terciaria de Proteína , Subunidades de Proteína , Ratas , Homología de Secuencia de Aminoácido
6.
Structure ; 13(10): 1453-62, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16216577

RESUMEN

AMP-activated protein kinase (AMPK) coordinates cellular metabolism in response to energy demand as well as to a variety of stimuli. The AMPK beta subunit acts as a scaffold for the alpha catalytic and gamma regulatory subunits and targets the AMPK heterotrimer to glycogen. We have determined the structure of the AMPK beta glycogen binding domain in complex with beta-cyclodextrin. The structure reveals a carbohydrate binding pocket that consolidates all known aspects of carbohydrate binding observed in starch binding domains into one site, with extensive contact between several residues and five glucose units. beta-cyclodextrin is held in a pincer-like grasp with two tryptophan residues cradling two beta-cyclodextrin glucose units and a leucine residue piercing the beta-cyclodextrin ring. Mutation of key beta-cyclodextrin binding residues either partially or completely prevents the glycogen binding domain from binding glycogen. Modeling suggests that this binding pocket enables AMPK to interact with glycogen anywhere across the carbohydrate's helical surface.


Asunto(s)
Glucógeno/metabolismo , Complejos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Quinasas Activadas por AMP , Secuencia de Aminoácidos , Animales , Sitios de Unión , Unión Competitiva , Conformación de Carbohidratos , Dominio Catalítico , Cristalografía por Rayos X , Glucanos/farmacología , Glucosa/química , Glucógeno/química , Glucógeno/genética , Leucina/química , Hígado/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/aislamiento & purificación , Mutagénesis Sitio-Dirigida , Mutación , Oligosacáridos/farmacología , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Espectrometría Raman , Triptófano/química , Agua/química , beta-Ciclodextrinas/química , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacología
7.
Prog Biophys Mol Biol ; 88(1): 91-142, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15561302

RESUMEN

Pore-forming protein toxins (PFTs) are one of Nature's most potent biological weapons. An essential feature of their toxicity is the remarkable property that PFTs can exist either in a stable water-soluble state or as an integral membrane pore. In order to convert from the water-soluble to the membrane state, the toxin must undergo large conformational changes. There are now more than a dozen PFTs for which crystal structures have been determined and the nature of the conformational changes they must undergo is beginning to be understood. Although they differ markedly in their primary, secondary, tertiary and quaternary structures, nearly all can be classified into one of two families based on the types of pores they are thought to form: alpha-PFTs or beta-PFTs. Recent work suggests a number of common features in the mechanism of membrane insertion may exist for each class.


Asunto(s)
Proteínas de la Membrana/química , Modelos Moleculares , Porinas/química , Pliegue de Proteína , Toxinas Biológicas/química , Membrana Celular/química , Cristalografía por Rayos X
8.
Structure ; 24(9): 1488-98, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27499440

RESUMEN

Cholesterol-dependent cytolysins (CDCs) are a family of pore-forming toxins that punch holes in the outer membrane of eukaryotic cells. Cholesterol serves as the receptor, but a subclass of CDCs first binds to human CD59. Here we describe the crystal structures of vaginolysin and intermedilysin complexed to CD59. These studies, together with small-angle X-ray scattering, reveal that CD59 binds to each at different, though overlapping, sites, consistent with molecular dynamics simulations and binding studies. The CDC consensus undecapeptide motif, which for the CD59-responsive CDCs has a proline instead of a tryptophan in the motif, adopts a strikingly different conformation between the structures; our data suggest that the proline acts as a selectivity switch to ensure CD59-dependent CDCs bind their protein receptor first in preference to cholesterol. The structural data suggest a detailed model of how these water-soluble toxins assemble as prepores on the cell surface.


Asunto(s)
Proteínas Bacterianas/química , Toxinas Bacterianas/química , Bacteriocinas/química , Antígenos CD59/química , Colesterol/química , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Bacteriocinas/genética , Bacteriocinas/metabolismo , Sitios de Unión , Antígenos CD59/genética , Antígenos CD59/metabolismo , Colesterol/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Simulación de Dinámica Molecular , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Artículo en Inglés | MEDLINE | ID: mdl-16508085

RESUMEN

AMP-activated protein kinase (AMPK) is an intracellular energy sensor that regulates metabolism in response to energy demand and supply by adjusting the ATP-generating and ATP-consuming pathways. AMPK potentially plays a critical role in diabetes and obesity as it is known to be activated by metforin and rosiglitazone, drugs used for the treatment of type II diabetes. AMPK is a heterotrimer composed of a catalytic alpha subunit and two regulatory subunits, beta and gamma. Mutations in the gamma subunit are known to cause glycogen accumulation, leading to cardiac arrhythmias. Recently, a functional glycogen-binding domain (GBD) has been identified in the beta subunit. Here, the crystallization of GBD in the presence of beta-cyclodextrin is reported together with preliminary X-ray data analysis allowing the determination of the structure by single isomorphous replacement and threefold averaging using in-house X-ray data collected from a selenomethionine-substituted protein.


Asunto(s)
Glucógeno/metabolismo , Proteínas Quinasas/química , Proteínas Quinasas Activadas por AMP , Animales , Sitios de Unión , Clonación Molecular , Cristalización , Cartilla de ADN , Complejos Multienzimáticos , Fragmentos de Péptidos/química , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas , Subunidades de Proteína/química , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Selenometionina , Difracción de Rayos X
10.
Protein Sci ; 24(1): 162-6, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25327141

RESUMEN

The oral pathogen Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Gingipains, the principle virulence factors of P. gingivalis are multidomain, cell-surface proteins containing a cysteine protease domain. The lysine specific gingipain, Kgp, is a critical virulence factor of P. gingivalis. We have determined the X-ray crystal structure of the lysine-specific protease domain of Kgp to 1.6 Å resolution. The structure provides insights into the mechanism of substrate specificity and catalysis.


Asunto(s)
Adhesinas Bacterianas/química , Infecciones por Bacteroidaceae/microbiología , Cisteína Endopeptidasas/química , Porphyromonas gingivalis/química , Adhesinas Bacterianas/metabolismo , Infecciones por Bacteroidaceae/prevención & control , Cristalografía por Rayos X , Cisteína Endopeptidasas/metabolismo , Cisteína-Endopeptidasas Gingipaínas , Humanos , Modelos Moleculares , Salud Bucal , Porphyromonas gingivalis/metabolismo , Conformación Proteica
11.
Sci Rep ; 5: 14352, 2015 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-26403197

RESUMEN

Pore-forming proteins are weapons often used by bacterial pathogens to breach the membrane barrier of target cells. Despite their critical role in infection important structural aspects of the mechanism of how these proteins assemble into pores remain unknown. Streptococcus pneumoniae is the world's leading cause of pneumonia, meningitis, bacteremia and otitis media. Pneumolysin (PLY) is a major virulence factor of S. pneumoniae and a target for both small molecule drug development and vaccines. PLY is a member of the cholesterol-dependent cytolysins (CDCs), a family of pore-forming toxins that form gigantic pores in cell membranes. Here we present the structure of PLY determined by X-ray crystallography and, in solution, by small-angle X-ray scattering. The crystal structure reveals PLY assembles as a linear oligomer that provides key structural insights into the poorly understood early monomer-monomer interactions of CDCs at the membrane surface.


Asunto(s)
Modelos Moleculares , Conformación Proteica , Estreptolisinas/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Carbohidratos/química , Cristalografía por Rayos X , Manosa/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Unión Proteica , Multimerización de Proteína , Soluciones , Estreptolisinas/genética , Estreptolisinas/metabolismo , Relación Estructura-Actividad
12.
J Mol Biol ; 426(4): 785-92, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24316049

RESUMEN

Cholesterol-dependent cytolysins (CDCs) are a large family of bacterial toxins that exhibit a dependence on the presence of membrane cholesterol in forming large pores in cell membranes. Significant changes in the three-dimensional structure of these toxins are necessary to convert the soluble monomeric protein into a membrane pore. We have determined the crystal structure of the archetypical member of the CDC family, streptolysin O (SLO), a virulence factor from Streptococcus pyogenes. The overall fold is similar to previously reported CDC structures, although the C-terminal domain is in a different orientation with respect to the rest of the molecule. Surprisingly, a signature stretch of CDC sequence called the undecapeptide motif, a key region involved in membrane recognition, adopts a very different structure in SLO to that of the well-characterized CDC perfringolysin O (PFO), although the sequences in this region are identical. An analysis reveals that, in PFO, there are complementary interactions between the motif and the rest of domain 4 that are lost in SLO. Molecular dynamics simulations suggest that the loss of a salt bridge in SLO and a cation-pi interaction are determining factors in the extended conformation of the motif, which in turn appears to result in a greater flexibility of the neighboring L1 loop that houses a cholesterol-sensing motif. These differences may explain the differing abilities of SLO and PFO to efficiently penetrate target cell membranes in the first step of toxin insertion into the membrane.


Asunto(s)
Streptococcus pyogenes/patogenicidad , Estreptolisinas/química , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Cristalografía por Rayos X , Proteínas Hemolisinas/química , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína , Streptococcus pyogenes/química , Estreptolisinas/metabolismo
13.
Structure ; 20(2): 248-58, 2012 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-22325774

RESUMEN

The cholesterol-dependent cytolysins (CDCs) punch holes in target cell membranes through a highly regulated process. Streptococcus mitis lectinolysin (LLY) exhibits another layer of regulation with a lectin domain that enhances the pore-forming activity of the toxin. We have determined the crystal structures of the lectin domain by itself and in complex with various glycans that reveal the molecular basis for the Lewis antigen specificity of LLY. A small-angle X-ray scattering study of intact LLY reveals the molecule is flat and elongated with the lectin domain oriented so that the Lewis antigen-binding site is exposed. We suggest that the lectin domain enhances the pore-forming activity of LLY by concentrating toxin molecules at fucose-rich sites on membranes, thus promoting the formation of prepore oligomers on the surface of susceptible cells.


Asunto(s)
Proteínas Bacterianas/química , Lectinas/química , Antígenos del Grupo Sanguíneo de Lewis/química , Proteínas Citotóxicas Formadoras de Poros/química , Streptococcus mitis , Sitios de Unión , Cristalografía por Rayos X , Fucosa/química , Enlace de Hidrógeno , Modelos Moleculares , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Difracción de Rayos X
14.
Front Immunol ; 3: 330, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23181061

RESUMEN

The cholesterol-dependent cytolysins (CDCs) attack cells by punching large holes in their membranes. Lectinolysin from Streptococcus mitis is unique among CDCs due to the presence of an N-terminal lectin domain that enhances the pore-forming activity of the toxin. We recently determined the crystal structures of the lectin domain in complex with various glycans. These structures revealed the molecular basis for the Lewis antigen specificity of the toxin. Based on this information we have used in silico molecular modeling to design a mutant toxin, which we predicted would increase its specificity for Lewis y, an antigen found on the surface of cancer cells. Surprisingly, we found by surface plasmon resonance binding experiments that the resultant mutant lectin domain exhibited higher specificity for Lewis b antigens instead. We then undertook comparative crystallographic and molecular dynamics simulation studies of the wild-type and mutant lectin domains to understand the molecular basis for the disparity between the theoretical and experimental results. The crystallographic results revealed that the net number of interactions between Lewis y and wild-type versus mutant was unchanged whereas there was a loss of a hydrogen bond between mutant and Lewis b compared to wild-type. In contrast, the molecular dynamics studies revealed that the Lewis b antigen spent more time in the binding pocket of the mutant compared to wild-type and the reverse was true for Lewis y. The results of these simulation studies are consistent with the conclusions drawn from the surface plasmon resonance studies. This work is part of a program to engineer lectinolysin so that it will target and kill specific cells in human diseases.

15.
ACS Med Chem Lett ; 3(4): 303-7, 2012 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-24900468

RESUMEN

Respiratory infections caused by human rhinovirus are responsible for severe exacerbations of underlying clinical conditions such as asthma in addition to their economic cost in terms of lost working days due to illness. While several antiviral compounds for treating rhinoviral infections have been discovered, none have succeeded, to date, in reaching approval for clinical use. We have developed a potent, orally available rhinovirus inhibitor 6 that has progressed through early clinical trials. The compound shows favorable pharmacokinetic and activity profiles and has a confirmed mechanism of action through crystallographic studies of a rhinovirus-compound complex. The compound has now progressed to phase IIb clinical studies of its effect on natural rhinovirus infection in humans.

16.
J Mol Biol ; 399(3): 358-66, 2010 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-20417639

RESUMEN

GSTD1 is one of several insect glutathione S-transferases capable of metabolizing the insecticide DDT. Here we use crystallography and NMR to elucidate the binding of DDT and glutathione to GSTD1. The crystal structure of Drosophila melanogaster GSTD1 has been determined to 1.1 A resolution, which reveals that the enzyme adopts the canonical GST fold but with a partially occluded active site caused by the packing of a C-terminal helix against one wall of the binding site for substrates. This helix would need to unwind or be displaced to enable catalysis. When the C-terminal helix is removed from the model of the crystal structure, DDT can be computationally docked into the active site in an orientation favoring catalysis. Two-dimensional (1)H,(15)N heteronuclear single-quantum coherence NMR experiments of GSTD1 indicate that conformational changes occur upon glutathione and DDT binding and the residues that broaden upon DDT binding support the predicted binding site. We also show that the ancestral GSTD1 is likely to have possessed DDT dehydrochlorinase activity because both GSTD1 from D. melanogaster and its sibling species, Drosophila simulans, have this activity.


Asunto(s)
DDT/química , Drosophila melanogaster/enzimología , Glutatión Transferasa/metabolismo , Insecticidas/química , Animales , Sitios de Unión , Cristalografía por Rayos X , DDT/metabolismo , Inactivación Metabólica , Insecticidas/metabolismo , Espectroscopía de Resonancia Magnética , Conformación Proteica
17.
Protein Sci ; 17(12): 2127-33, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18780818

RESUMEN

The aggregation of antitrypsin into polymers is one of the causes of neonatal hepatitis, cirrhosis, and emphysema. A similar reaction resulting in disease can occur in other human serpins, and collectively they are known as the serpinopathies. One possible therapeutic strategy involves inhibiting the conformational changes involved in antitrypsin aggregation. The citrate ion has previously been shown to prevent antitrypsin aggregation and maintain the protein in an active conformation; its mechanism of action, however, is unknown. Here we demonstrate that the citrate ion prevents the initial misfolding of the native state to a polymerogenic intermediate in a concentration-dependent manner. Furthermore, we have solved the crystal structure of citrate bound to antitrypsin and show that a single citrate molecule binds in a pocket between the A and B beta-sheets, a region known to be important in maintaining antitrypsin stability.


Asunto(s)
Ácido Cítrico/metabolismo , alfa 1-Antitripsina/química , Sitios de Unión , Biopolímeros/química , Biopolímeros/metabolismo , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Pliegue de Proteína , Multimerización de Proteína , Estructura Cuaternaria de Proteína , alfa 1-Antitripsina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA