Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Genome Res ; 31(3): 512-528, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33419731

RESUMEN

Although mosquitoes are major transmission vectors for pathogenic arboviruses, viral infection has little impact on mosquito health. This immunity is caused in part by mosquito RNA interference (RNAi) pathways that generate antiviral small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). RNAi also maintains genome integrity by potently repressing mosquito transposon activity in the germline and soma. However, viral and transposon small RNA regulatory pathways have not been systematically examined together in mosquitoes. Therefore, we developed an integrated mosquito small RNA genomics (MSRG) resource that analyzes the transposon and virus small RNA profiles in mosquito cell cultures and somatic and gonadal tissues across four medically important mosquito species. Our resource captures both somatic and gonadal small RNA expression profiles within mosquito cell cultures, and we report the evolutionary dynamics of a novel Mosquito-Conserved piRNA Cluster Locus (MCpiRCL) made up of satellite DNA repeats. In the larger culicine mosquito genomes we detected highly regular periodicity in piRNA biogenesis patterns coinciding with the expansion of Piwi pathway genes. Finally, our resource enables detection of cross talk between piRNA and siRNA populations in mosquito cells during a response to virus infection. The MSRG resource will aid efforts to dissect and combat the capacity of mosquitoes to tolerate and spread arboviruses.


Asunto(s)
Culicidae/genética , Culicidae/virología , Elementos Transponibles de ADN/genética , Genómica , ARN Interferente Pequeño/genética , Virus , Animales
3.
Int J Mol Sci ; 21(18)2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927629

RESUMEN

Dengue is the most burdensome vector-borne viral disease in the world. Dengue virus (DENV), the etiological cause of dengue, is transmitted primarily by the Aedes aegypti mosquito. Like any arbovirus, the transmission cycle of dengue involves the complex interactions of a multitude of human and mosquito factors. One point during this transmission cycle that is rich in these interactions is the biting event by the mosquito, upon which its saliva is injected into the host. A number of components in mosquito saliva have been shown to play a pivotal role in the transmission of dengue, however one such component that is not as well characterized is extracellular vesicles. Here, using high-performance liquid chromatography in tandem with mass spectrometry, we show that dengue infection altered the protein cargo of Aedes aegypti extracellular vesicles, resulting in the packaging of proteins with infection-enhancing ability. Our results support the presence of an infection-dependent pro-viral protein packaging strategy that uses the differential packaging of pro-viral proteins in extracellular vesicles of Ae. aegypti saliva to promote transmission. These studies represent the first investigation into the function of Ae. aegypti extracellular vesicle cargo during dengue infection.


Asunto(s)
Aedes/metabolismo , Dengue/transmisión , Vesículas Extracelulares/metabolismo , Proteínas de Insectos/metabolismo , Mosquitos Vectores/metabolismo , Aedes/virología , Animales , Células Cultivadas , Dengue/virología , Virus del Dengue , Femenino , Humanos , Mosquitos Vectores/virología
4.
Front Microbiol ; 13: 886787, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814655

RESUMEN

Dengue fever (DF), caused by the dengue virus (DENV), is the most burdensome arboviral disease in the world, with an estimated 400 million infections each year. The Aedes aegypti mosquito is the main vector of DENV and transmits several other human pathogens, including Zika, yellow fever, and chikungunya viruses. Previous studies have shown that the pathogen infection of mosquitoes can alter reproductive fitness, revealing specific vector-pathogen interactions that are key determinants of vector competence. However, only a handful of studies have examined the effect of DENV infection in A. aegypti, showing a reduction in lifespan and fecundity over multiple blood meals. To provide a more comprehensive analysis of the impact of DENV infection on egg laying and fecundity, we assessed egg laying timing in DENV-2 blood-fed mosquitoes (infected group) compared to mock blood-fed mosquitoes (control group). We confirmed a significant decrease in fecundity during the first gonadotrophic cycle. To further investigate this phenotype and the underlying DENV-2 infection-dependent changes in gene expression, we conducted a transcriptomic analysis for differentially expressed genes in the ovaries of A. aegypti infected with DENV-2 vs. mock-infected mosquitoes. This analysis reveals several DENV-2-regulated genes; among them, we identified a group of 12 metabolic genes that we validated using reverse transcription-quantitative PCR (RT-qPCR). Interestingly, two genes found to be upregulated in DENV-infected mosquito ovaries exhibited an antiviral role for DENV-2 in an Aedes cell line. Altogether, this study offers useful insights into the virus-vector interface, highlighting the importance of gene expression changes in the mosquito's ovary during DENV-2 infection in the first gonadotrophic  cycle,  triggering  antiviral  responses  that  may  possibly  interfere  with mosquito reproduction. This information is extremely relevant for further investigation of A. aegypti's ability to tolerate viruses since virally infected mosquitoes in nature constitute a powerful source of supporting viruses during intra-epidemic periods, causing a huge burden on the public health system.

5.
Nat Commun ; 12(1): 6825, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819517

RESUMEN

Mosquito-borne diseases present a worldwide public health burden. Current efforts to understand and counteract them have been aided by the use of cultured mosquito cells. Moreover, application in mammalian cells of forward genetic approaches such as CRISPR screens have identified essential genes and genes required for host-pathogen interactions, and in general, aided in functional annotation of genes. An equivalent approach for genetic screening of mosquito cell lines has been lacking. To develop such an approach, we design a new bioinformatic portal for sgRNA library design in several mosquito genomes, engineer mosquito cell lines to express Cas9 and accept sgRNA at scale, and identify optimal promoters for sgRNA expression in several mosquito species. We then optimize a recombination-mediated cassette exchange system to deliver CRISPR sgRNA and perform pooled CRISPR screens in an Anopheles cell line. Altogether, we provide a platform for high-throughput genome-scale screening in cell lines from disease vector species.


Asunto(s)
Sistemas CRISPR-Cas/genética , Control de Mosquitos/métodos , Mosquitos Vectores/genética , Control Biológico de Vectores/métodos , Enfermedades Transmitidas por Vectores/prevención & control , Animales , Anopheles/genética , Línea Celular , Biología Computacional/métodos , Técnicas de Inactivación de Genes , Biblioteca de Genes , Genes Esenciales , Humanos , ARN Guía de Kinetoplastida/genética , Enfermedades Transmitidas por Vectores/transmisión
6.
G3 (Bethesda) ; 11(8)2021 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-33989385

RESUMEN

Knock-in of large transgenes by Cas9-mediated homology-directed repair (HDR) is an extremely inefficient process. Although the use of single-stranded oligonucleotides (ssODN) as an HDR donor has improved the integration of smaller transgenes, they do not support efficient insertion of large DNA sequences. In an effort to gain insights into the mechanism(s) governing the HDR-mediated integration of larger transgenes and to improve the technology, we conducted knock-in experiments targeting the human EMX1 locus and applied rigorous genomic PCR analyses in the human HEK293 cell line. This exercise revealed an unexpected molecular complication arising from the transgene HDR being initiated at the single homology arm and the subsequent genomic integration of plasmid backbone sequences. To pivot around this problem, we devised a novel PCR-constructed template containing blocked long 3' single-stranded overhangs (BL3SSO) that greatly improved the efficiency of bona fide Cas9-stimulated HDR at the EMX1 locus. We further refined BL3SSO technology and successfully used it to insert GFP transgenes into two important interferon-stimulated genes (ISGs) loci, Viperin/RSAD2, and ISG15. This study demonstrates the utility of the BL3SSO platform for inserting long DNA sequences into both constitutive and inducible endogenous loci to generate novel human cell lines for the study of important biological processes.


Asunto(s)
Sistemas CRISPR-Cas , Reparación del ADN por Recombinación , ADN , Edición Génica , Células HEK293 , Humanos , Transgenes
7.
ACS Infect Dis ; 6(8): 2023-2028, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32609483

RESUMEN

Aedes mosquitoes vector many viruses with divergent characteristics, yet the criteria needed for a virus to be vectored by an arthropod remain unknown. The intracellular cholesterol transporter protein Niemann-Pick C1 (NPC1) has been identified as the necessary entry receptor for filoviruses such as Ebola and Marburg viruses. While homologues of NPC1 are observed in mosquitoes, currently no filovirus has been identified as circulating in mosquitoes. This work aimed at increasing the understanding of the mosquito vector by examining the capability of a virus to gain the ability to enter mosquito cells. We developed a model system of Aedes cells expressing human NPC1 (hNPC1) and attempted to infect these cells with recombinant vesicular stomatitis virus expressing the Ebola virus glycoprotein. As compared to the control cells, no significant increase in infection was observed in cells expressing hNPC1, demonstrating that the expression of human NPC1 alone is not sufficient to support filovirus infection, and that host factors other than NPC1 determine filovirus susceptibility of mosquito cells.


Asunto(s)
Aedes , Proteína Niemann-Pick C1 , Animales , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Mosquitos Vectores , Tolerancia , Receptores Virales/metabolismo , Internalización del Virus
8.
Parasit Vectors ; 13(1): 128, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171303

RESUMEN

BACKGROUND: Zika virus (ZIKV) is transmitted to humans during the bite of an infected mosquito. In a scenario of globalization and climate change, the frequency of outbreaks has and will increase in areas with competent vectors, revealing a need for continuous improvement of ZIKV detection tools in vector populations. A simple, rapid and sensitive assay for viral detection is quantitative reverse transcription polymerase chain reaction (qRT-PCR), yet oligos optimized for ZIKV detection in mammalian cells and samples have repeatedly shown high background when used on mosquito ribonucleic acid (RNA). In this paper, we present a one-step qRT-PCR protocol that allows for the detection of ZIKV in mosquitoes and for the evaluation of gene expression from the same mosquito sample and RNA. This assay is a less expensive qRT-PCR approach than that most frequently used in the literature and has a much lower background, allowing confident detection. METHODS: Our new oligo design to detect ZIKV RNA included in silico analysis of both viral and mosquito (Ae. aegypti and Ae. albopictus) genomes, targeting sequences conserved between Asian and African ZIKV lineages, but not matching Aedes genomes. This assay will allow researchers to avoid nonspecific amplification in insect samples due to viral integration into the mosquito genome, a phenomenon known to happen in wild and colonized populations of mosquitoes. Standard curves constructed with in vitro transcribed ZIKV RNA were used to optimize the sensitivity, efficiency and reproducibility of the assay. RESULTS: Finally, the assay was used with success to detect both ZIKV RNA in infected mosquitoes and to detect expression of the Defensin A gene, an antimicrobial peptide (AMP) involved in Aedes aegypti immune response to virus infection. CONCLUSIONS: The experimental approach to detect ZIKV RNA in Aedes aegypti presented here has demonstrated to be specific, sensitive and reliable, and additionally it allows for the analysis of mosquito gene expression during ZIKV infection.


Asunto(s)
Aedes/virología , Regulación Viral de la Expresión Génica , Mosquitos Vectores/virología , ARN Viral/aislamiento & purificación , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Infección por el Virus Zika/diagnóstico , Virus Zika/genética , Virus Zika/aislamiento & purificación , Aedes/genética , Animales , Chlorocebus aethiops , Culicidae/virología , ARN Viral/genética , Reproducibilidad de los Resultados , Alineación de Secuencia , Células Vero , Proteínas no Estructurales Virales/genética , Infección por el Virus Zika/virología
9.
J Vis Exp ; (143)2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30735189

RESUMEN

The recent emergence of the flavivirus Zika and neurological complications, such as Guillain-Barré syndrome and microcephaly in infants, has brought serious public safety concerns. Among the risk factors, antibody-dependent enhancement (ADE) poses the most significant threat, as the recent re-emergence of the Zika virus (ZIKV) is primarily in areas where the population has been exposed and is in a state of pre-immunity to other closely related flaviviruses, especially dengue virus (DENV). Here, we describe a protocol for quantifying the effect of human serum antibodies against DENV on ZIKV infection in primary human cells or cell lines.


Asunto(s)
Anticuerpos Antivirales/inmunología , Acrecentamiento Dependiente de Anticuerpo/inmunología , Virus Zika/inmunología , Dengue/inmunología , Dengue/virología , Virus del Dengue/inmunología , Humanos , Sueros Inmunes , Macrófagos/virología , Temperatura , Células U937 , Infección por el Virus Zika/sangre , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA