Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 270: 115948, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38184976

RESUMEN

The increasing production and prevalence of antimony (Sb)-related products raise concerns regarding its potential hazards to reproductive health. Upon environmental exposure, Sb reportedly induces testicular toxicity during spermatogenesis; moreover, it is known to affect various testicular cell populations, particularly germline stem cell populations. However, the cell-cell communication resulting from Sb exposure within the testicular niche remains poorly understood. To address this gap, herein we analyzed testicular single-cell RNA sequencing data from Sb-exposed Drosophila. Our findings revealed that the epidermal growth factor receptor (EGFR) and WNT signaling pathways were associated with the stem cell niche in Drosophila testes, which may disrupt the homeostasis of the testicular niche in Drosophila. Furthermore, we identified several ligand-receptor pairs, facilitating the elucidation of intercellular crosstalk involved in Sb-mediated reproductive toxicology. We employed scRNA-seq analysis and conducted functional verification to investigate the expression patterns of core downstream factors associated with EGFR and WNT signatures in the testes under the influence of Sb exposure. Altogether, our results shed light on the potential mechanisms of Sb exposure-mediated testicular cell-lineage communications.


Asunto(s)
Drosophila , Testículo , Masculino , Animales , Testículo/metabolismo , Drosophila/metabolismo , Antimonio/toxicidad , Antimonio/metabolismo , Comunicación Celular , Receptores ErbB/metabolismo , Análisis de Secuencia de ARN
2.
Mol Cell Endocrinol ; 591: 112278, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38795826

RESUMEN

The testicular stem cell niche is the central regulator of spermatogenesis in Drosophila melanogaster. However, the underlying regulatory mechanisms are unclear. This study demonstrated the crucial role of lethal (1) 10Bb [l(1)10Bb] in regulating the testicular stem cell niche. Dysfunction of l(1)10Bb in early-stage cyst cells led to male fertility disorders and compromised cyst stem cell maintenance. Moreover, the dysfunction of l(1)10Bb in early-stage cyst cells exerted non-autonomous effects on germline stem cell differentiation, independently of hub signals. Notably, our study highlights the rescue of testicular defects through ectopic expression of L(1)10Bb and the human homologous protein BUD31 homolog (BUD31). In addition, l(1)10Bb dysfunction in early-stage cyst cells downregulated the expression of spliceosome subunits in the Sm and the precursor RNA processing complexes. Collectively, our findings established l(1)10Bb as a pivotal factor in the modulation of Drosophila soma-germline communications within the testicular stem cell niche.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Nicho de Células Madre , Animales , Humanos , Masculino , Comunicación Celular , Diferenciación Celular , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Células Germinativas/metabolismo , Células Germinativas/citología , Espermatogénesis , Empalmosomas/metabolismo , Células Madre/metabolismo , Células Madre/citología , Testículo/metabolismo , Testículo/citología , Genes Letales
3.
Am J Transl Res ; 16(6): 2699-2710, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006281

RESUMEN

BACKGROUND: Evidence indicates that the risk of developing a secondary ovarian cancer (OC) is correlated with estrogen receptor (ER) status. However, the clinical significance of the relationship between ER-associated breast cancer (BC) and clear cell ovarian cancer (CCOC) remains elusive. METHODS: Independent single nucleotide polymorphisms (SNPs) strongly correlated with exposure were extracted, and those associated with confounders and outcomes were removed using the PhenoScanner database. SNP effects were extracted from the outcome datasets with minor allele frequency > 0.01 as the filtration criterion. Next, valid instrumental variables (IVs) were obtained by harmonizing exposure and outcome effects and further filtered based on F-statistics (> 10). Mendelian randomization (MR) assessment of valid IVs was carried out using inverse variance weighted (IVW), MR Egger (ME), weighted median (WM), and multiplicative random effects-inverse variance weighted (MRE-IVW) methods. For sensitivity analysis and visualization of MR findings, a heterogeneity test, a pleiotropy test, a leave-one-out test, scatter plots, forest plots, and funnel plots were employed. RESULTS: MR analyses with all four methods revealed that CCOC was not causally associated with ER-negative BC (IVW results: odds ratio (OR) = 0.89, 95% confidence interval (CI) = 0.66-1.20, P = 0.431) or ER-positive BC (IVW results: OR = 0.99, 95% CI = 0.88-1.12, P = 0.901). F-statistics were computed for each valid IV, all of which exceeded 10. The stability and reliability of the results were confirmed by sensitivity analysis. CONCLUSIONS: Our findings indicated that CCOC dids not have a causal association with ER-associated BC. The absence of a definitive causal link between ER-associated BC and CCOC suggested a minimal true causal influence of ER-associated BC exposure factors on CCOC. These results indicated that individuals afflicted by ER-associated BC could alleviate concerns regarding the developing of CCOC, thereby aiding in preserving their mental well-being stability and optimizing the efficacy of primary disease treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA