Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nanotechnology ; 35(24)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38387088

RESUMEN

The recombination of photoexcited electron-hole pairs greatly limits the degradation performance of photocatalysts. Ultrasonic cavitation and internal electric field induced by the piezoelectric effect are helpful for the separation of electron-hole pairs and degradation efficiency. The activated foam carbon (AFC) owing to its high surface area is often used as the substrate to grow catalysts to provide more reactive active sites. In this work, CuO@BaTiO3(CuO@BTO) heterostructure is prepared by hydrothermal method on the surface of AFC to investigate the ultrasonic piezoelectric catalysis effect. X-ray diffraction (XRD), Raman spectroscopy, energy dispersive x-ray spectroscopy (EDS) and scanning electron microscopy (SEM) were used to analyze the structure and morphology of CuO-BTO/AFC composite. It is found that the CuO-BTO/AFC composite exhibits excellent piezo-catalytic performance for the degradation of organics promoted by ultrasonic vibration. The CuO-BTO/AFC composite can decompose methyl orange and methylene blue with degradation efficiency as high as 93.9% and 97.6% within 25 min, respectively. The mechanism of piezoelectricity enhanced ultrasound supported catalysis effect of system CuO-BTO/AFC is discussed. The formed heterojunction structure between BTO and CuO promotes the separation of positive and negative charges caused by the piezoelectric effect.

2.
Phys Chem Chem Phys ; 26(2): 1156-1165, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38099437

RESUMEN

Hollow MoS2 cubes and spheres were synthesized by a one-step hydrothermal method with the hard template method. The structure and morphology were characterized, and their electrochemical properties were studied. It is concluded that the specific capacitance of the hollow MoS2 cubes (335.7 F g-1) is higher than that of the hollow MoS2 spheres (256.1 F g-1). The symmetrical supercapacitors were assembled, and the results indicate that the specific capacitance of the device composed of hollow MoS2 spheres (32.9 F g-1) is slightly lower than that of the hollow MoS2 cube (37.4 F g-1) device. Furthermore, the symmetrical supercapacitor (MoS2-cube//MoS2-cube) provides a maximum energy density of 4.93 W h kg-1, which is greater than that of the symmetrical capacitor (MoS2-sphere//MoS2-sphere, 3.65 W h kg-1). This may indicate that hollow molybdenum disulfide cubes with substructures have more efficient charge transfer capabilities and better capacitance characteristics than hollow spheres. After 8000 cycles, the coulombic efficiency of the two symmetrical capacitors is close to 100%. The capacity retention of the MoS2 sphere device (95.2%) is slightly higher than that of the MoS2 cube device (90.1%). These results show that the pore structure, specific surface, and active site of MoS2 with different hollow structures have a greater impact on its electrochemical properties.

3.
Mol Psychiatry ; 27(8): 3468-3478, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35484243

RESUMEN

N-methyl-D-aspartic acid type glutamate receptors (NMDARs) play critical roles in synaptic transmission and plasticity, the dysregulation of which leads to cognitive defects. Here, we identified a rare variant in the NMDAR subunit GluN2A (K879R) in a patient with intellectual disability. The K879R mutation enhanced receptor expression on the cell surface by disrupting a KKK motif that we demonstrated to be an endoplasmic reticulum retention signal. Expression of GluN2A_K879R in mouse hippocampal CA1 neurons enhanced the excitatory postsynaptic currents mediated by GluN2A-NMDAR but suppressed those mediated by GluN2B-NMDAR and the AMPA receptor. GluN2A_K879R knock-in mice showed similar defects in synaptic transmission and exhibited impaired learning and memory. Furthermore, both LTP and LTD were severely impaired in the KI mice, likely explaining their learning and memory defects. Therefore, our study reveals a new mechanism by which elevated synaptic GluN2A-NMDAR impairs long-term synaptic plasticity as well as learning and memory.


Asunto(s)
Plasticidad Neuronal , Receptores de N-Metil-D-Aspartato , Animales , Ratones , Hipocampo/metabolismo , Aprendizaje , Potenciación a Largo Plazo/fisiología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo
4.
Angew Chem Int Ed Engl ; 62(37): e202309440, 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37507344

RESUMEN

Traditional mechanochemically controlled reversible-deactivation radical polymerization (RDRP) utilizes ultrasound or ball milling to regenerate activators, which induce side reactions because of the high-energy and high-frequency stimuli. Here, we propose a facile approach for tribochemically controlled atom transfer radical polymerization (tribo-ATRP) that relies on contact-electro-catalysis (CEC) between titanium oxide (TiO2 ) particles and CuBr2 /tris(2-pyridylmethylamine (TPMA), without any high-energy input. Under the friction induced by stirring, the TiO2 particles are electrified, continuously reducing CuBr2 /TPMA into CuBr/TPMA, thereby conversing alkyl halides into active radicals to start ATRP. In addition, the effect of friction on the reaction was elucidated by theoretical simulation. The results indicated that increasing the frequency could reduce the energy barrier for the electron transfer from TiO2 particles to CuBr2 /TPMA. In this study, the design of tribo-ATRP was successfully achieved, enabling CEC (ca. 10 Hz) access to a variety of polymers with predetermined molecular weights, low dispersity, and high chain-end fidelity.

5.
J Clin Lab Anal ; 36(2): e24196, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34997978

RESUMEN

BACKGROUND: Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein associated with seizures, dyskinesia, and intelligence deficit. Previous studies indicate that PRRT2 regulates neurotransmitter release from presynaptic membranes. However, PRRT2 can also bind AMPA-type glutamate receptors (AMPARs), but its postsynaptic functions remain unclear. METHODS AND RESULTS: Whole-exome sequencing used to diagnose a patient with mental retardation identified a nonsense mutation in the PRRT2 gene (c.649C>T; p.R217X). To understand the pathology of the mutant, we cloned mouse Prrt2 cDNA and inserted a premature stop mutation at Arg223, the corresponding site of Arg217 in human PRRT2. In mouse hippocampal tissues, Prrt2 interacted with GluA1/A2 AMPAR heteromers but not GluA2/A3s, via binding to GluA1. Additionally, Prrt2 suppressed GluA1 expression and localization on cell membranes of HEK 293T cells. However, when Prrt2 was overexpressed in individual hippocampal neurons using in utero electroporation, AMPAR-mediated synaptic transmission was unaffected. Deletion of Prrt2 with the CRIPR/Cas9 technique did not affect AMPAR-mediated synaptic transmission. Furthermore, deletion or overexpression of Prrt2 did not affect GluA1 expression and distribution in primary neuronal culture. CONCLUSIONS: The postsynaptic functions of Prrt2 demonstrate that Prrt2 specifically interacts with the AMPAR subunit GluA1 but does not regulate AMPAR-mediated synaptic transmission. Therefore, our study experimentally excluded a postsynaptic regulatory mechanism of Prrt2. The pathology of PRRT2 variants in humans likely originates from defects in neurotransmitter release from the presynaptic membrane as suggested by recent studies.


Asunto(s)
Discapacidad Intelectual/genética , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Adolescente , Animales , Codón sin Sentido , Femenino , Hipocampo/metabolismo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neurotransmisores/metabolismo , Linaje , Secuenciación del Exoma
7.
Chempluschem ; 89(10): e202400287, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38940320

RESUMEN

Mechanochemistry constitutes a burgeoning field that investigates the chemical and physicochemical alterations of substances under mechanical force. It enables the synthesis of materials which is challenging to obtain via thermal, optical or electrical activation methods. In addition, it diminishes reliance on organic solvents and provides a novel route for green chemistry. Today, as a distinct branch alongside electrochemistry, photochemistry, and thermochemistry, mechanochemistry has emerged as a frontier research domain within chemistry and material science. In recent years, the intersection of mechanochemistry with controlled radical polymerization has witnessed rapid advancements, providing new routes to polymer science. Significantly, we have experienced breakthroughs in methods relying on sonochemistry, piezoelectricity and contact electrification. These methodologies not only facilitate the synthesis of polymers with high molecular weight but also enable precise control over polymer chain length and structure. Transitioning from harsh to mild conditions in mechanochemical routes has facilitated a significant improvement in the controllability of mechanochemical polymerization. From this perspective, we introduce the progress of mechanochemistry in controlled radical polymerization in recent years, aim to clarify the historcial development of this topic.

8.
Mater Horiz ; 11(2): 468-479, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-37965678

RESUMEN

To cope with sophisticated application scenarios, carbon materials can provide opportunities for integrating multi-functionalities into superior electromagnetic interference (EMI) shielding properties. Nevertheless, carbon materials usually possess high electrical conductivity, which allows them to counteract electromagnetic waves by reflection. Moreover, the identification of factors that dominate the shielding mechanisms has typically been result-oriented, leading to a reliance on a trial-and-error approach for the development of shielding materials. Thus, it is crucial to identify the dominant factors for EMI shielding and elucidate the mechanism underlying the coordination of the balance between reflection and absorption in carbon materials. In this study, we developed a promising and viable approach to create Co@CNTs embedded in carbonized wood (CW) via chemical vapor deposition, producing Co@CNTs/CW foams. The CNTs, densely grown on the CW surface, tightly encapsulated the Co nanoparticles within them. By manipulating the Co content, the defect density and CNT length varied within the Co@CNTs. Through first-principles calculations, these variations substantially influenced the work function, charge density, and dipole moment of the Co@CNTs. Thus, defect-induced and interfacial polarizations were improved, inducing a transformation of the shielding mechanism from reflection to absorption. Regarding the Co@CNTs/CW foams, while high conductivity was essential for achieving satisfactory shielding performance, the enhanced polarization loss dominated the contribution of absorption to the overall shielding effectiveness. Taking advantage of the enhanced polarizations, the Co@CNTs/CW foams exhibited an impressive shielding effectiveness of 42.0 dB, along with an absorptivity of 0.64, which were instrumental in effectively minimizing secondary reflections. Remarkably, these as-prepared foams possessed outstanding hydrophobicity and Joule heating features with a water contact angle of 138° and a saturation temperature of 85.5 °C (2.5 V). Through the stimulation of voltage-driven Joule heating, the absorptivity of Co@CNTs/CW foams can be significantly enhanced to a range of 0.61 to 0.73, irrespective of the Co content. This research would provide a new avenue for designing carbon materials with an absorption-dominated mechanism integrated into EMI shielding performance.

9.
Nat Commun ; 15(1): 6179, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039089

RESUMEN

Polymer materials suffer mechano-oxidative deterioration or degradation in the presence of molecular oxygen and mechanical forces. In contrast, aerobic biological activities combined with mechanical stimulus promote tissue regeneration and repair in various organs. A synthetic approach in which molecular oxygen and mechanical energy synergistically initiate polymerization will afford similar robustness in polymeric materials. Herein, aerobic mechanochemical reversible-deactivation radical polymerization was developed by the design of an organic mechano-labile initiator which converts oxygen into activators in response to ball milling, enabling the reaction to proceed in the air with low-energy input, operative simplicity, and the avoidance of potentially harmful organic solvents. In addition, this approach not only complements the existing methods to access well-defined polymers but also has been successfully employed for the controlled polymerization of (meth)acrylates, styrenic monomers and solid acrylamides as well as the synthesis of polymer/perovskite hybrids without solvent at room temperature which are inaccessible by other means.

10.
J Ethnopharmacol ; 333: 118483, 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-38914150

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Acetaminophen (APAP) induced liver injury (AILI) is a common cause of clinical hepatic damage and even acute liver failure. Our previous research has shown that Schisandra chinensis lignan extract (SLE) can exert a hepatoprotective effect by regulating lipid metabolism. Although polysaccharides from Schisandra chinensis (S. chinensis), like lignans, are important components of S. chinensis, their pharmacological activity and target effects on AILI have not yet been explored. AIM OF THE STUDY: This study aims to quantitatively reveal the role of SCP in the pharmacological activity of S. chinensis, and further explore the pharmacological components, potential action targets and mechanisms of S. chinensis in treating AILI. MATERIALS AND METHODS: The therapeutic effect of SCP on AILI was systematically determined via comparing the efficacy of SCP and SLE on in vitro and in vivo models. Network pharmacology, molecular docking and multi-omics techniques were then used to screen and verify the action targets of S. chinensis against AILI. RESULTS: SCP intervention could significantly improve AILI, and the therapeutic effect was comparable to that of SLE. Notably, the combination of SCP and SLE did not produce mutual antagonistic effects. Subsequently, we found that both SCP and SLE could significantly reverse the down-regulation of GPX4 caused by the APAP modeling, and then further improving lipid metabolism abnormalities. CONCLUSIONS: Hepatoprotective effects of SCP and SLE is most correlated with their regulation of GSH/GPX4-mediated lipid accumulation. This is the first exploration of the hepatoprotective effect and potential mechanism of SCP in treating AILI, which is crucial for fully utilizing S. chinensis and developing promising AILI therapeutic agents.


Asunto(s)
Glutatión , Lignanos , Metabolismo de los Lípidos , Polisacáridos , Schisandra , Lignanos/farmacología , Schisandra/química , Polisacáridos/farmacología , Animales , Metabolismo de los Lípidos/efectos de los fármacos , Glutatión/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Simulación del Acoplamiento Molecular , Acetaminofén , Glutatión Peroxidasa/metabolismo , Humanos , Masculino , Ratones , Extractos Vegetales/farmacología
11.
Research (Wash D C) ; 6: 0243, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37795336

RESUMEN

Organic mechanophores have been widely adopted for polymer mechanotransduction. However, most examples of polymer mechanotransduction inevitably experience macromolecular chain rupture, and few of them mimic mussel's mechanochemical regeneration, a mechanically mediated process from functional units to functional materials in a controlled manner. In this paper, inorganic mechanoluminescent (ML) materials composed of CaZnOS-ZnS-SrZnOS: Mn2+ were used as a mechanotransducer since it features both piezoelectricity and mechanolunimescence. The utilization of ML materials in polymerization enables both mechanochemically controlled radical polymerization and the synthesis of ML polymer composites. This procedure features a mechanochemically controlled manner for the design and synthesis of diverse mechanoresponsive polymer composites.

12.
Front Cell Neurosci ; 16: 888152, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651759

RESUMEN

The ability of human pluripotent stem cells (hPSCs) to specialize in neuroepithelial tissue makes them ideal candidates for use in the disease models of neural tube defects. In this study, we cultured hPSCs in suspension with modified neural induction method, and immunostaining was applied to detect important markers associated with cell fate and morphogenesis to verify the establishment of the neural tube model in vitro. We carried out the drug experiments to further investigate the toxicity of valproic acid (VPA) exposure and the potential protective effect of folic acid (FA). The results demonstrated that neural rosette undergoes cell fate speciation and lumen formation accompanied by a spatiotemporal shift in the expression patterns of cadherin, indicating the model was successfully established. The results showed that VPA caused morphogenesis inhibition of lumen formation by altering cytoskeletal function and cell polarization, which could be rescued by FA supplement.

13.
CNS Neurosci Ther ; 28(2): 237-246, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767694

RESUMEN

AIMS: This study aimed to explore the pathomechanism of a mutation on the leucine-rich glioma inactivated 1 gene (LGI1) identified in a family having autosomal dominant lateral temporal lobe epilepsy (ADLTE), using a precise knock-in mouse model. METHODS AND RESULTS: A novel LGI1 mutation, c.152A>G; p. Asp51Gly, was identified by whole exome sequencing in a Chinese family with ADLTE. The pathomechanism of the mutation was explored by generating Lgi1D51G knock-in mice that precisely phenocopied the epileptic symptoms of human patients. The Lgi1D51G/D51G mice showed spontaneous recurrent generalized seizures and premature death. The Lgi1D51G/+ mice had partial epilepsy, with half of them displaying epileptiform discharges on electroencephalography. They also showed enhanced sensitivity to the convulsant agent pentylenetetrazole. Mechanistically, the secretion of Lgi1 was impaired in the brain of the D51G knock-in mice and the protein level was drastically reduced. Moreover, the antiepileptic drugs, carbamazepine, oxcarbazepine, and sodium valproate, could prolong the survival time of Lgi1D51G/D51G mice, and oxcarbazepine appeared to be the most effective. CONCLUSIONS: We identified a novel epilepsy-causing mutation of LGI1 in humans. The Lgi1D51G/+ mouse model, precisely phenocopying epileptic symptoms of human patients, could be a useful tool in future studies on the pathogenesis and potential therapies for epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsia del Lóbulo Temporal/genética , Epilepsia del Lóbulo Temporal/fisiopatología , Péptidos y Proteínas de Señalización Intracelular/genética , Animales , Niño , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Linaje
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA