Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36992017

RESUMEN

The rapid development of the Internet of Things (IoT) has led to computational offloading at the edge; this is a promising paradigm for achieving intelligence everywhere. As offloading can lead to more traffic in cellular networks, cache technology is used to alleviate the channel burden. For example, a deep neural network (DNN)-based inference task requires a computation service that involves running libraries and parameters. Thus, caching the service package is necessary for repeatedly running DNN-based inference tasks. On the other hand, as the DNN parameters are usually trained in distribution, IoT devices need to fetch up-to-date parameters for inference task execution. In this work, we consider the joint optimization of computation offloading, service caching, and the AoI metric. We formulate a problem to minimize the weighted sum of the average completion delay, energy consumption, and allocated bandwidth. Then, we propose the AoI-aware service caching-assisted offloading framework (ASCO) to solve it, which consists of the method of Lagrange multipliers with the KKT condition-based offloading module (LMKO), the Lyapunov optimization-based learning and update control module (LLUC), and the Kuhn-Munkres (KM) algorithm-based channel-division fetching module (KCDF). The simulation results demonstrate that our ASCO framework achieves superior performance in regard to time overhead, energy consumption, and allocated bandwidth. It is verified that our ASCO framework not only benefits the individual task but also the global bandwidth allocation.

2.
Int J Mol Sci ; 23(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35457012

RESUMEN

MicroRNA (miRNA) acts as a critical regulator of growth in various human malignancies. However, the role of miRNA-3614 in the progression of human prostate cancer remains unknown. In this study, our results demonstrated that miRNA-3614-5p exerts a significant inhibitory effect on cell viability and colony formation and induces sub-G1 cell cycle arrest and apoptosis in human prostate cancer cells. Myeloid cell leukemia-1 (Mcl-1) acts as a master regulator of cell survival. Using the miRNA databases, miRNA-3614-5p was found to regulate Mcl-1 expression by targeting positions of the Mcl-1-3' UTR. The reduction of Mcl-1 expression by miRNA-3614-5p was further confirmed using an immunoblotting assay. Pro-apoptotic caspase-3 and poly (ADP-ribose) polymerase (PARP) were significantly activated by miRNA-3614-5p to generate cleaved caspase-3 (active caspase-3) and cleaved PARP (active PARP), accompanied by the inhibited Mcl-1 expression. These findings were the first to demonstrate the anti-growth effects of miRNA-3614-5p through downregulating Mcl-1 expression in human prostate cancer cells.


Asunto(s)
MicroARNs , Neoplasias de la Próstata , Apoptosis , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Humanos , Masculino , MicroARNs/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/genética , Poli(ADP-Ribosa) Polimerasas/metabolismo , Neoplasias de la Próstata/metabolismo
3.
Environ Sci Technol ; 53(15): 8664-8671, 2019 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-31265258

RESUMEN

The production of secondary organic aerosols (SOA) from toluene photochemistry in Shanghai, a megacity of China, was estimated by two approaches, the parametrization method and the tracer-based method. The temporal profiles of toluene, together with other fifty-six volatile organic compounds (VOCs), were characterized. Combing with the vapor wall loss corrected SOA yields derived from chamber experiments, the estimated toluene SOA by the parametrization method as embodied in the two-product model contributes up to ∼40% of the total SOA budget during summertime. 2,3-Dihydroxy-4-oxopentanoic acid (DHOPA), a unique product from the OH-initiated oxidation of toluene in the presence of elevated NOx, was used as a tracer to back calculate the toluene SOA concentrations. By taking account for the effect of gas-particle partitioning processes on the fraction of DHOPA in the particle phase, the estimated toluene SOA concentrations agree within ∼33% with the estimates by the parametrization method. The agreement between these two independent approaches highlight the need to update current model frameworks with recent laboratory advances for a more accurate representation of SOA formation in regions with substantial anthropogenic emissions.


Asunto(s)
Contaminantes Atmosféricos , Tolueno , Aerosoles , China , Oxidación-Reducción , Fotoquímica
4.
Environ Sci Technol ; 52(21): 12934-12942, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30351037

RESUMEN

Intermediate volatility organic compound (IVOC) emissions from a large cargo vessel were characterized under real-world operating conditions using an on-board measurement system. Test ship fuel-based emission factors (EFs) of total IVOCs were determined for two fuel types and seven operating conditions. The average total IVOC EF was 1003 ± 581 mg·kg-fuel-1, approximately 0.76 and 0.29 times the EFs of primary organic aerosol (POA) emissions from low-sulfur fuel (LSF, 0.38 wt % S) and high-sulfur fuel (HSF, 1.12 wt % S), respectively. The average total IVOC EF from LSF was 2.4 times that from HSF. The average IVOC EF under low engine load (15%) was 0.5-1.6 times higher than those under 36%-74% loads. An unresolved complex mixture (UCM) contributed 86.1 ± 1.9% of the total IVOC emissions. Ship secondary organic aerosol (SOA) production was estimated to be 546.5 ± 284.1 mg·kg-fuel-1; IVOCs contributed 98.9 ± 0.9% of the produced SOA on average. Fuel type was the dominant determinant of ship IVOC emissions, IVOC volatility distributions, and SOA production. The ship emitted more IVOC mass, produced higher proportions of volatile organic components, and produced more SOA mass when fueled with LSF than when fueled with HSF. When reducing ship POA emissions, more attention should be paid to commensurate control of ship SOA formation potential.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Aerosoles , Compuestos Orgánicos , Navíos , Volatilización
5.
Environ Sci Technol ; 52(24): 14216-14227, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30288976

RESUMEN

An integrated source apportionment methodology is developed by amalgamating the receptor-oriented model (ROM) and source-oriented numerical simulations (SOM) together to eliminate the weaknesses of individual SA methods. This approach attempts to apportion and dissect the PM2.5 sources in the Yangtze River Delta region during winter. First, three ROM models (CMB, PMF, ME2) are applied and compared for the preliminary SA results, with information from PM2.5 sampling and lab analysis during the winter seasons. The detailed source category contribution of SOM to PM2.5 is further simulated using the WRF-CAMx model. The two pieces of information from both ROM and SOM are then stitched together to give a comprehensive information on the PM2.5 sources over the region. With the integrated approach, the detailed contributing sources of the ambient PM2.5 at different receptors including rural and urban, coastal and in-land, northern and southern receptors are analyzed. The results are compared with previous data and shows good agreement. This integrative approach is more comprehensive and is able to produce a more profound and detailed understanding between the sources and receptors, compared with single models.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , China , Monitoreo del Ambiente , Ríos
6.
Sci Total Environ ; 914: 170034, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220015

RESUMEN

To better understand the potential adverse health effects of atmospheric fine particles in the Southeast Asian developing countries, PM2.5 samples were collected at two urban sites in Yangon and Mandalay, representing coastal and inland cities in Myanmar, in winter and summer during 2016 and 2017. The concentrations of 21 polycyclic aromatic hydrocarbons (PAHs) in PM2.5 were determined using a gas chromatography-mass spectrometry (GC-MS). The concentrations of PAHs in PM2.5 in Yangon and Mandalay ranged from 7.6 to 180 ng m-3, with an average of 72 ng m-3. The PAHs were significantly higher in winter than in summer, and significantly higher in Mandalay than in Yangon. The health risk analysis of PAHs, based on the toxic equivalent quantity (TEQ) calculation, and the incremental lifetime cancer risk (ILCR) assessment indicated that PM2.5 in Myanmar has significant health risks with higher health risks in Mandalay compared to Yangon. Diagnostic ratios of PAHs, correlation of PAHs with other species in PM2.5 and the positive matrix factorization (PMF) analysis showed that TEQ is strongly affected by biomass burning and vehicular emissions in Myanmar. Additionally, it was found that the aging degree of aerosols and air mass trajectories had great influences on the concentration and composition of PAHs in PM2.5 in Myanmar, thereby affecting the toxicity of PM2.5.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Mianmar , Monitoreo del Ambiente/métodos , Medición de Riesgo , Estaciones del Año , China
7.
Environ Int ; 190: 108873, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39024827

RESUMEN

Rapidly increasing urbanization in recent decades has elevated the subway as the primary public transportation mode in metropolitan areas. Indoor air quality (IAQ) inside subways is an important factor that influences the health of commuters and subway workers. This review discusses the subway IAQ in different cities worldwide by comparing the sources and abundance of particulate matter (PM2.5 and PM10) in these environments. Factors that affect PM concentration and chemical composition were found to be associated with the subway internal structure, train frequency, passenger volume, and geographical location. Special attention was paid to air pollutants, such as transition metals, volatile/semi-volatile organic compounds (VOCs and SVOCs), and bioaerosols, due to their potential roles in indoor chemistry and causing adverse health impacts. In addition, given that the IAQ of subway systems is a public health issue worldwide, we calculated the Gini coefficient of urban subway exposure via meta-analysis. A value of 0.56 showed a significant inequity among different cities. Developed regions with higher per capita income tend to have higher exposure. By reviewing the current advances and challenges in subway IAQ with a focus on indoor chemistry and health impacts, future research is proposed toward a sustainable urban transportation systems.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Material Particulado , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Monitoreo del Ambiente , Transportes , Compuestos Orgánicos Volátiles/análisis , Ciudades , Exposición a Riesgos Ambientales
8.
Sci Total Environ ; 948: 174896, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39047832

RESUMEN

Acute ischemic stroke (AIS) is one of the most predominant causes of mortality and disability in China. Significant uncertainties in stroke diagnosis and time of onset have resulted in inconsistent evidence on the association between ambient air pollution and the risk of AIS. The present study aimed to evaluate the impact of air pollution on AIS onset based on high time-resolution air pollution data and a stroke-specific registry across the past five years. Hourly concentrations of PM2.5, PM10, O3, SO2, CO, NO2 and nitrous acid (HONO) were monitored from 2017 to 2021, with which a distributed lag non-linear model and conditional logistic regression models coupled with a time-stratified case-crossover design were applied to 106,623 AIS cases recorded in the Shanghai Stroke Service (4S) database during the study period. Results from the conditional logistic regression models indicate that acute exposure to PM2.5, PM10, SO2, NO2 and HONO was found to be associated with AIS onset, respectively. The corresponding cumulative excessive risks of AIS onset were 0.8 %, 1 %, 2.4 %, 2.1 % and 1.8 % for each interquartile range increase in the respective concentration. The longest lag-effect (up to 13 h) was observed for reactive nitrogen species (RNS), such as NO2 and HONO, which remained robust in two-pollutant models. Similar important role of RNS in AIS onset were confirmed by the distributed lag non-linear model. By demonstrating the transient effect of ambient air pollution on AIS, especially the relationships between RNS and AIS for the first time, our study provides stringent evidence for future mitigation strategies for pollution emission and public health.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Accidente Cerebrovascular Isquémico , Especies de Nitrógeno Reactivo , China/epidemiología , Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Humanos , Accidente Cerebrovascular Isquémico/epidemiología , Material Particulado/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Masculino , Femenino , Anciano
9.
Environ Sci Technol ; 47(14): 7615-23, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23763473

RESUMEN

Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) have been reported to be formed during incineration processes. Despite dioxin-like toxicities of ClPAHs, little is known on the occurrence of these chemicals in the environment. In this study, concentrations of 24-h airborne PM10 and PM2.5-associated ClPAHs and their corresponding parent PAHs were monitored from October 2011 to March 2012 in a suburban area in Shanghai, China. In addition, daytime and nighttime particle samples were collected for 7 days in April from the same sampling site. Twelve of twenty ClPAH congeners were found in PM10 and PM2.5 at concentrations ranging from 2.45 to 47.7 pg/m(3) with an average value of 12.3 pg/m(3) for PM10, and from 1.34 to 22.3 pg/m(3) with an average value of 9.06 pg/m(3) for PM2.5. Our results indicate that ClPAHs are ubiquitous in inhalable fine particles. The concentrations of ∑ClPAHs and specific congeners such as 9-ClPhe, 3-ClFlu, 1-ClPyr, 7-ClBaA, and 6-ClBaP in particles collected during nighttime were higher than those collected during daytime, which suggests not only diffusion of ClPAHs in air by atmospheric mixing but also photochemical degradation during daylight hours. Among the individual ClPAHs determined, 6-ClBaP, 1-ClPyr, and 9-ClPhe were the dominant compounds in PM10 and PM2.5. The percent composition of 6-ClBaP, 1-ClPyr, 7-ClBaA, and 3-ClFlu between PM10 and PM2.5 was similar. Significant positive correlations were found between concentrations of ClPAHs and their corresponding parent PAHs, particle mass, and total organic carbon (organic carbon plus elemental carbon), indicating that ClPAHs are sorbed onto carbonaceous matter of PM. Concentrations of parent PAHs predicted by multiple linear regression models with PM mass, total organic carbon, temperature, and relative humidity as variables reflected the measured concentrations with a strong coefficient of determination of 0.917 and 0.946 for PM10 and PM2.5, respectively. However, the models generated to predict ClPAH concentrations in PM did not yield satisfactory results, which suggested the differences in physical-chemical properties and formation processes between ClPAHs and their corresponding parent PAHs. 7-ClBaA and 6-ClBaP collectively accounted for the preponderance of the total dioxin-like TEQ concentrations of ClPAHs (TEQClPAH) in PM samples. Exposure to toxic compounds such as ClPAHs and PAHs present in PM2.5 can be related to adverse health outcomes in people.


Asunto(s)
Hidrocarburos Clorados/química , Material Particulado , Compuestos Policíclicos/química , China , Incineración , Control de Calidad
10.
Sci Total Environ ; 900: 165717, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37482358

RESUMEN

Nitrous acid (HONO) plays a significant role in radical cycling and atmospheric oxidative chemistry. While the source and evolution of HONO in the Yangtze River Delta (YRD) region of China after 2018 remains largely unknown, this work monitored HONO and other air pollutants throughout 2019 at an urban site (Pudong, PD) and a suburban site (Qingpu, QP) in Shanghai. Episodes with high HONO mixing ratios but different PM2.5 levels, namely haze and clean episodes, were chosen for HONO budget analysis. Using an observation-based photochemical box model, relative importance of different sources and sinks of HONO were evaluated. Gas-phase reaction of NO with OH was found to be one of the most important daytime HONO formation sources, especially during the QPhaze period (accounting for 40.3 % of daytime HONO formation). In particular, heterogeneous conversion of NO2 on ground and aerosol surface was found to be the dominant source for nocturnal HONO. Photo-enhanced NO2 conversion on ground surface plays an important role in daytime HONO production (19.4 % in PDhaze vs. 27.6 % in PDclean, and 19.8 % in QPhaze vs. 25.9 % in QPclean). In addition, photo-enhanced NO2 conversion at the aerosol surface during haze episodes made more significant contributions to HONO formation compared to the clean periods (20.9 % in PDhaze vs. 17.1 % in PDclean, and 19.7 % in QPhaze vs. 11.2 % in QPclean). The role of multiphase reactions was found to be increasingly important in HONO generation with enhanced relative humidity (RH) during daytime. Significant unknown HONO source was further analyzed and found to be positively related with photolytic as well as multiphase pathways. Overall, our study sheds light on the budget of HONO in one of the biggest megacities in east China, which would help developing future mitigation strategies for urban HONO and atmospheric oxidation capacity.

11.
Chem Biol Interact ; 382: 110604, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37315914

RESUMEN

Ferroptosis, a newly identified iron-dependent form of cell death, has recently been implicated in the pathogenesis of Parkinson's disease (PD). Dl-3-n-butylphthalide (NBP) attenuates behavioral and cognitive deficits in animal models of PD. However, the potential of NBP to prevent dopaminergic neuron death by suppressing ferroptosis has rarely been explored. In this study, we aimed to investigate the effects of NBP on ferroptosis in erastin-induced dopaminergic neurons (MES23.5 cells) and the underlying mechanisms involved in these effects. Our results demonstrated that erastin significantly decreased viability of MES23.5 dopaminergic neurons in a dose-dependent manner, which was reversible by ferroptosis inhibitors. We further verified that NBP protected erastin-treated MES23.5 cells from death by inhibiting ferroptosis. Erastin increased the mitochondrial membrane density, caused lipid peroxidation, and decreased GPX4 expression in MES23.5 cells, which could be reversed by NBP preconditioning. NBP pretreatment suppressed erastin-induced labile iron accumulation and reactive oxygen species generation. Moreover, we demonstrated that erastin significantly reduced FTH expression, and pre-administration with NBP promoted Nrf2 translocation into the nucleus and increased the protein level of FTH. Additionally, the expression of LC3B-II in MES23.5 cells pretreated with NBP before administration of erastin was lower than that in cells treated with erastin alone. NBP reduced colocalization of FTH and autophagosomes in MES23.5 cells exposed to erastin. Finally, erastin gradually inhibited NCOA4 expression in a time-dependent manner, which was reversible by NBP pretreatment. Taken together, these results indicated that NBP suppressed ferroptosis via regulating FTH expression, which was achieved by promoting Nrf2 nuclear translocation and inhibiting NCOA4-mediated ferritinophagy. As such, NBP may be a promising therapeutic agent for the treatment of neurological diseases associated with ferroptosis.


Asunto(s)
Ferroptosis , Animales , Neuronas Dopaminérgicas/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Hierro/metabolismo
12.
Sci Total Environ ; 872: 162071, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-36775179

RESUMEN

Biomass burning (BB) has significant impacts on air quality and climate change, especially during harvest seasons. In previous studies, levoglucosan was frequently used for the calculation of BB contribution to PM2.5, however, the degradation of levoglucosan (Lev) could lead to large uncertainties. To quantify the influence of the degradation of Lev on the contribution of BB to PM2.5, PM2.5-bound biomass burning-derived markers were measured in Changzhou from November 2020 to March 2021 using the thermal desorption aerosol gas chromatography-mass spectrometry (TAG-GC/MS) system. Temporal variations of three anhydro-sugar BB tracers (e.g., levoglucosan, mannosan (Man), and galactosan (Gal)) were obtained. During the sampling period, the degradation level of air mass (x) was 0.13, indicating that ~87 % of levoglucosan had degraded before sampling in Changzhou. Without considering the degradation of levoglucosan in the atmosphere, the contribution of BB to OC were 7.8 %, 10.2 %, and 9.3 % in the clean period, BB period, and whole period, respectively, which were 2.4-2.6 times lower than those (20.8 %-25.9 %) considered levoglucosan degradation. This illustrated that the relative contribution of BB to OC could be underestimated (~14.9 %) without considering degradation of levoglucosan. Compared to the traditional method (i.e., only using K+ as BB tracer), organic tracers (Lev, Man, Gal) were put into the Positive Matrix Factorization (PMF) model in this study. With the addition of BB organic tracers and replaced K+ with K+BB (the water-soluble potassium produced by biomass burning), the overall contribution of BB to PM2.5 was enhanced by 3.2 % after accounting for levoglucosan degradation based on the PMF analysis. This study provides useful information to better understand the effect of biomass burning on the air quality in the Yangtze River Delta region.


Asunto(s)
Contaminantes Atmosféricos , Humanos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Biomasa , Monitoreo del Ambiente/métodos , China , Estaciones del Año , Aerosoles/análisis
13.
Environ Pollut ; 293: 118501, 2022 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-34785283

RESUMEN

Size-fractionated aerosol samples (PM0.25, PM0.25-1, PM1-2.5, and PM2.5-10) were collected in a highway tunnel in Shanghai, China. The concentrations of nonpolar organic compounds (NPOCs), i.e., n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and hopanes in the aerosol samples at the tunnel inlet and outlet, emission factors (EFs) of individual NPOCs in PM10, and EFs of size-fractionated individual NPOCs were analyzed comprehensively. NPOC concentrations in this tunnel were lower than the earlier tunnel results, which might be attributed to the tunnel configuration effect on the pollution dilution along the tunnel, in addition to the improvement of engine technology and fuel quality during past decades. n-Alkane homologs for C14-C35 exhibited a smooth hump-like distribution pattern with the most abundance at C22 and 1-2 carbon number shifts of Cmax in comparison to those in other tunnels due to different fleet and fuel compositions. The most abundant PAHs from diesel (e.g., Nap, Phe, Flu and Pyr) and gasoline (e.g., BghiF, BbkF, BeP, DBA and BghiP) vehicle emissions presented concentration increases of 1.8-5.8 times from the tunnel inlet to outlet. The individual n-alkane and PAH distributions exhibited obvious size dependence, while it was expected that the relative abundances and homolog distributions of hopanes were very similar for different size stages. Several diagnostic ratios, e.g., fossil/plant n-alkanes and LMW/HMW PAHs, were evidently size dependent, indicating different sources of size-fractionated n-alkanes and PAHs.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Monitoreo del Ambiente , Hidrocarburos Policíclicos Aromáticos/análisis , Emisiones de Vehículos/análisis
14.
Sci Total Environ ; 839: 156280, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35644399

RESUMEN

Black carbon (BC) and brown carbon (BrC) have intensive impacts on atmospheric visibility and global climate change. In this study, PM2.5 samples were collected at Pudong (PD) and Qingpu (QP) of Shanghai in 2017, and characterized typical organic molecular tracers by gas chromatography-mass spectrometer. The light absorption (Abs) of carbonaceous aerosol and water-soluble organic matter was analyzed by a multi-wavelength thermal/optical carbon analyzer and a long-range ultraviolet-visible spectrophotometer. An improved two-component model integrated with both optical and chemical fingerprints of carbonaceous aerosol was applied to analyze the Abs of BC, water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WISOC), with which the potential influencing factors including emission source and atmospheric aging were investigated. Results indicated that BrC contributed 19% at PD and 16% at QP of the total light absorption of the carbonaceous aerosol at 405 nm wavelength. Meanwhile, AbsWSOC(405)/AbsBrC(405) showed significant seasonal variations (27-50%) at both sites. Positive matrix factorization (PMF) analysis showed that vehicle emissions (60-61%) and biomass combustion (38-39%) were the major contributors to AbsBC(405), while biomass burning (34-40%), nitrate-relevant secondary processes (22-23%), vehicle emissions (18-19%) and biogenic SOA (13-19%) were major contributors to AbsWSOC(405). Hybrid combustion source (94-96%) had a predominant contribution to AbsWISOC(405). Statistical analysis showed that biomass burning had a great impact on the enhancement of AbsWISOC. Absorption Ångström exponent (AAE) and mass absorption efficiency (MAE) of each factor (source) using PMF analysis indicated that WSOC from combustion sources had higher AAEWSOC(350-550) values (8.11 and 8.29 for coal and biomass burning, respectively) and MAEWSOC(365) values (0.63-0.99) compared to other sources. Atmospheric aging process can lower the MAEWSOC(365) value (0.24-0.52). Overall, our study facilitates a better understanding of the relationships among source, optical properties, and atmospheric transformation processes of the carbonaceous aerosols in Shanghai.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Carbono/análisis , China , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Hollín/análisis , Emisiones de Vehículos/análisis , Agua/química
15.
Environ Pollut ; 306: 119420, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526642

RESUMEN

China was seriously affected by air pollution in the past decade, especially for particulate matter (PM) and emerging ozone pollution recently. In this study, we systematically examined the spatiotemporal variations of six air pollutants and conducted ozone prediction using machine learning (ML) algorithms in the Beijing-Tianjin-Hebei (BTH) region. The annual-average concentrations of CO, PM10, PM2.5 and SO2 decreased at a rate of 141, 11.0, 6.6 and 5.6 µg/m3/year, while a pattern of initial increase and later decrease was observed for NO2 and O3_8 h. The concentration of SO2, CO and NO2 was higher in Tangshan and Xingtai, while northern BTH region has lower levels of CO, NO2 and PM. Spatial variations of ozone were relatively small in the BTH region. Monthly variations of PM10 displayed an increase in March probably due to wind-blown dusts from Northwest China. A seasonal and diurnal pattern with summer and afternoon peaks was found for ozone, which was contrast with other pollutants. Further ML algorithms such as Random Forest (RF) model and Decision tree (DT) regression showed good ozone prediction performance (daily: R2 = 0.83 and 0.73, RMSE = 30.0 and 37.3 µg/m3, respectively; monthly: R2 = 0.93 and 0.88, RMSE = 12.1 and 15.8 µg/m3, respectively) based on 10-fold cross-validation. Both RF model and DT regression relied more on the spatial trend as higher temporal prediction performance was achieved. Solar radiation- and temperature-related variables presented high importance at daily level, whereas sea level pressure dominated at monthly level. The spatiotemporal heterogeneity in variable importance was further confirmed using case studies based on RF model. In addition, variable importance was possibly influenced by the emission reductions due to COVID-19 pandemic. Despite its possible weakness to capture ozone extremes, RF model was beneficial and suggested for predicting spatiotemporal variations of ozone in future studies.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Ozono , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Beijing , China , Monitoreo del Ambiente , Humanos , Aprendizaje Automático , Dióxido de Nitrógeno/análisis , Ozono/análisis , Pandemias , Material Particulado/análisis
16.
Sci Total Environ ; 824: 153850, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35176377

RESUMEN

To understand the influence of the energy structure (including solid fuel and clean energy) on air pollution, two comprehensive measurement campaigns were conducted in Baoding and Shanghai in late autumn and winter during 2017-2018. The chemical compositions, driving factors, regional transport of pollutants, and potential respiratory disease (RD) health risks of PM2.5 for Baoding and Shanghai were analyzed. The results showed that the concentration of PM2.5 in Baoding (156.9 ± 139.8 µg m-3) was 2.6 times of that in Shanghai (60.9 ± 45.9 µg m-3). The most important contributor to PM2.5 in Baoding was organic matter (OM), while inorganic aerosols accounted for major fractions of PM2.5 in Shanghai. Positive matrix factorization (PMF) results indicated that coal combustion (CC; 39%) accounted for the most in Baoding, followed by secondary aerosols (21%), biomass burning (BB; 20%), industrial emissions (14%), dust (3%), and vehicle exhaust (2%). However, the average contribution in Shanghai followed the order: secondary aerosols (44%), vehicle exhaust (36%), dust (11%), marine aerosols (6%), and BB (3%). The evolution of source contributions at different pollution levels revealed that haze episodes in Baoding and Shanghai were triggered by CC and secondary formation, respectively; however, the air quality on clean days in Baoding and Shanghai was affected mostly by BB and vehicle emissions, respectively. Potential source contribution function (PSCF) results suggested that CC in Baoding was primarily from local emissions, while BB was primarily from local and regional transport. Vehicle exhaust and secondary aerosols in Shanghai were mainly from local emissions and regional transport. The number of RD deaths related to haze episodes in Baoding and Shanghai were 215 (95% CI: 109, 319) and 76 (95% CI: 11, 135), respectively. This research also emphasized the importance of further attention to the usage of coal in Baoding and vehicle emissions in Shanghai.


Asunto(s)
Contaminantes Atmosféricos , Emisiones de Vehículos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Carbón Mineral/análisis , Polvo/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
17.
J Environ Monit ; 13(4): 871-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21424011

RESUMEN

The occurrence and behavior of ß-blockers, antiepileptic drug carbamazepine and its metabolites, X-ray contrast agent iopromide, natural and synthetic hormones, and several groups of hormone-like personal care products (PCPs), including antiseptics (triclocarban, triclosan, and 2-phenylphenol), parabens and bisphenol A, were investigated in municipal wastewater, sewage sludge, and urban river water of the Pearl River Delta, South China. The pharmaceuticals, natural hormones and PCPs were ubiquitously detected in the raw wastewater from a sewage treatment plant (STP). Only triclocarban and triclosan were detected at significant amounts in the dewatered sludge. Iopromide and the PCPs were greatly removed/transformed from the aqueous phase of the wastewater. The ß-blockers were only moderately removed/transformed. Carbamazepine passed through the STP almost unchanged. Biodegradation was the dominant process for elimination/transformation of the pharmaceuticals, hormones, and most PCPs in the STP. However, sorption also played an important role in the fate of triclocarban with nearly 50% of the mass load entering the STP ended up and persisted in the dewatered sludge. The pharmaceuticals, estrone, and PCPs were also widely detected in the Pearl River at Guangzhou. Bisphenol A had the highest concentration. The pharmaceutical concentrations in the Pearl River were higher in March than in May, most likely due to less dilution by lower precipitation. The omnipresence and high levels of the pharmaceuticals and PCPs in the Pearl River may be associated with direct discharge of untreated wastewater and pose potential risks to the ecological system.


Asunto(s)
Disruptores Endocrinos/análisis , Agua Dulce/química , Hormonas/análisis , Preparaciones Farmacéuticas/análisis , Esteroides/análisis , Contaminantes Químicos del Agua/análisis , China , Cromatografía Líquida de Alta Presión/métodos , Residuos Industriales , Control de Calidad , Aguas del Alcantarillado/química , Espectrometría de Masas en Tándem/métodos
18.
Environ Sci Pollut Res Int ; 28(1): 287-299, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32809125

RESUMEN

Exposure to PM2.5 can cause adverse health outcomes. In this study, we analyzed PM2.5 samples collected from suburban and urban sites, including a traffic tunnel in Suzhou, China, for their physicochemical properties, endotoxin contents, and effects on HepG2 and A549 cells in vitro. The greatest cellular responses, including oxidative stress, cytotoxicity, genotoxicity, inflammatory, and transcriptional activation of stress-responsive genes (i.e., HSPA1A, GADD45α), were observed in cells treated with traffic tunnel PM2.5. Cytokine expression was also measured and closely correlated with endotoxin content, while other toxic effects were largely related to PM2.5-bound metals and polycyclic aromatic hydrocarbons (PAHs). These findings suggested that chemical and biological composition of PM2.5, including adsorbed trace metals, PAHs, and endotoxin, may contribute significantly to their toxicity. In addition to commonly used in vitro toxicity tests, HSPA1A and GADD45α promoter-driven luciferase reporter cells may provide a potential new tool for rapid screening and quantification of PM2.5 toxicity.


Asunto(s)
Contaminantes Atmosféricos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Atmosféricos/análisis , China , Endotoxinas/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Estaciones del Año
19.
Sci Total Environ ; 789: 148070, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34323831

RESUMEN

Fine particulate matter (PM2.5)-bound nonpolar organic compounds (NPOCs), including polycyclic aromatic hydrocarbons (PAHs) and alkanes, are commonly used as typical molecular markers for detailed source identification. Online thermal desorption aerosol gas chromatography-mass spectrometry (TAG) system can obtain ambient data with hourly resolution, which is of great importance for investigating the diurnal characteristics and refined source identification of NPOCs. From June to October 2020, hourly ambient aerosol samples were collected and analyzed to investigate the characteristics and sources of 14 PAHs and 15 alkanes (C21-C35) in PM2.5 using TAG at a suburban site of Baoshan district in Shanghai, China. The average concentration of summed PAHs and alkanes during the sampling period was 1.27 ± 1.4 ng/m3 and 8.87 ± 3.46 ng/m3, respectively, in which Benzo[b]fluoranthene (BbF), Benzo[ghi]perylene (BghiP) and Indeno[1,2,3-cd]pyrene (IcdP) are the dominant PAHs species, with n-Heptacosane (C27), n-Nonacosane (C29) and n-Hentriacontane (C31) being the most abundant n-alkane species. Carbon preference index (CPI) and carbon maximum (Cmax) number indicated that the sources of alkanes shifted from biogenic-oriented (such as plant wax) in the summer to anthropogenic-dominated (such as fossil fuels) in the autumn. Results from trajectory cluster analysis and potential source contribution function (PSCF) modeling showed that alkanes were mainly from the middle and lower reaches of the Yangtze River Plain including Anhui, Jiangxi, and Zhejiang provinces, while PAHs were mainly from northeastern China. Positive Matrix Factorization (PMF) model results indicated that gasoline (41.48%) and diesel (21.82%) were the two major sources of PM2.5-bound PAHs in summer and fall of 2020 in Shanghai, followed by coal consumption or catering (19.96%) and biomass burning (16.74%). Diurnal variation of PAHs sources resolved by PMF showed characteristic features consistent with the corresponding anthropogenic activities. For example, gasoline vehicle exhaust showed higher concentrations during traffic rush hours; while coal consumption or catering presented higher concentrations during lunch times from 10:00 to 12:00. In addition, the TAG data coupling with PMF also can be capable for source appointment of short-duration episodes. Health risk assessment showed that adult women were at greater lifetime cancer risk (ILCR) than people in other age groups, and people may subject to higher health risks at morning and night time. This work demonstrates that hourly NPOCs measured by TAG are uniquely specific on refined source identification and investigation into the characteristics of diurnal variations.

20.
J Environ Sci (China) ; 22(4): 589-97, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20617737

RESUMEN

PM2.5, total suspended particles (TSP) and gas phase samples were collected at two sites of Taizhou, a major e-waste dismantling area in China. Concentrations, seasonal variations, congener profiles, gas-particle partitioning and size distribution of the atmospheric polychlorinated biphenyls (PCBs) were studied to assess the current state of atmospheric PCBs after the phase out of massive historical dismantling of PCBs containing e-wastes. The average sigma38PCBs concentration in the ambient air (TSP plus gas phase) near the e-waste dismantling area was (12,407 +/- 9592) pg/m3 in winter, which was substantially lower than that found one decade ago. However, the atmospheric PCBs level near the e-waste dismantling area was 54 times of the reference urban site, indicating that the impact of the historical dismantling of PCBs containing e-wastes was still significant. Tri-Penta-CBs were dominant homologues, consisting with their dominant global production. Size distribution of particle-bound PCBs showed that higher chlorinated CBs tended to partition more to the fine particles, facilitating its long range air transportation.


Asunto(s)
Contaminantes Atmosféricos/química , Electrónica , Bifenilos Policlorados/química , Eliminación de Residuos , Atmósfera , China , Monitoreo del Ambiente , Gases , Residuos Industriales , Material Particulado , Estaciones del Año , Suelo/análisis , Contaminantes del Suelo/química , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA