Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
FASEB J ; 36(3): e22219, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35195911

RESUMEN

Promoting the thermogenic function of brown adipose tissue (BAT) is a promising strategy to combat obesity and metabolic disorders. While much is known about the transcriptional regulation of BAT activation, however, the underlying mechanism of post-transcriptional control by RNA binding proteins remains largely unknown. Here, we found that RNA binding protein Y-box binding protein 1 (YBX1) expression was abundant in BAT and induced by cold exposure and a ß-adrenergic agonist in mice. Loss-of-function experiments showed that YBX1 deficiency inhibited mouse primary brown adipocyte differentiation and thermogenic function. Further study showed that YBX1 positively regulates thermogenesis through enhancing mitophagy. Mechanistically, RNA immunoprecipitation identified that YBX1 directly targeted the transcripts of PTEN-induced kinase 1 (Pink1) and parkin RBR E3 ubiquitin-protein ligase (Prkn), two key regulators of mitophagy. RNA decay assay proved that loss of YBX1 decreased mRNA stability of Pink1 and Prkn, leading to reduced protein expression, thereby alleviating mitophagy and inhibiting thermogenic program. Importantly, in vivo experiments demonstrated that YBX1 overexpression in BAT promoted thermogenesis and mitophagy in mice. Collectively, our results reveal novel insight into the molecular mechanism of YBX1 in post-transcriptional regulation of PINK1/PRKN-mediated mitophagy and highlight the critical role of YBX1 in brown adipogenesis and thermogenesis.


Asunto(s)
Adipogénesis , Mitofagia , Termogénesis , Factores de Transcripción/metabolismo , Adipocitos Marrones/citología , Adipocitos Marrones/metabolismo , Animales , Células Cultivadas , Ratones , Ratones Endogámicos C57BL , Proteínas Quinasas/metabolismo , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35886871

RESUMEN

It has been demonstrated that vascular endothelial growth factor B (VEGFB) and vascular endothelial growth factor receptor 1 (VEGFR1) play a vital role in regulating vascular biological function. However, the role of VEGFB and VEGFR1 in regulating fat deposition and skeletal muscle growth remains unclear. Therefore, this study was conducted to investigate the effects of VEGFB and VEGFR1 on fat deposition and skeletal muscle growth in mice. Our results showed that knockdown of VEGFB decreased body weight and iWAT index, stimulated the browning of mice iWAT with increased expression of UCP1, decreased the diameters of adipocytes, and elevated energy expenditure. In contrast, knockdown of VEGFB increased gastrocnemius (GAS) muscle index with increased proliferation of GAS muscle by expression of PCNA and Cyclin D1. Meanwhile, knockdown of endothelial VEGFR1 induced the browning of iWAT with increased expression of UCP1 and decreased diameters of adipocytes. By contrast, knockdown of endothelial VEGFR1 inhibited GAS muscle differentiation with decreased expression of MyoD. In conclusion, these results suggested that the loss of VEGFB/VEGFR1 signaling is associated with enhanced browning of inguinal white adipose tissue and skeletal muscle development. These results provided new insights into the regulation of skeletal muscle growth and regeneration, as well as fat deposition, suggesting the potential application of VEGFB/VEGFR1 as an intervention for the restriction of muscle diseases and obesity and related metabolic disorders.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo Blanco , Desarrollo de Músculos , Factor B de Crecimiento Endotelial Vascular , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Desarrollo de Músculos/genética , Músculo Esquelético/metabolismo , Termogénesis , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor B de Crecimiento Endotelial Vascular/genética , Factor B de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-34948148

RESUMEN

It has been demonstrated that vascular endothelial growth factor B (VEGFB) plays a vital role in regulating vascular biological function. However, the role of VEGFB in regulating skeletal muscle cell proliferation and differentiation remains unclear. Thus, this study aimed to investigate the effects of VEGFB on C2C12 myoblast proliferation and differentiation and to explore the underlying mechanism. For proliferation, VEGFB significantly promoted the proliferation of C2C12 myoblasts with the upregulating expression of cyclin D1 and PCNA. Meanwhile, VEGFB enhanced vascular endothelial growth factor receptor 1 (VEGFR1) expression and activated the PI3K/Akt signaling pathway in a VEGFR1-dependent manner. In addition, the knockdown of VEGFR1 and inhibition of PI3K/Akt totally abolished the promotion of C2C12 proliferation induced by VEGFB, suggesting that VEGFB promoted C2C12 myoblast proliferation through the VEGFR1-PI3K/Akt signaling pathway. Regarding differentiation, VEGFB significantly stimulated the differentiation of C2C12 myoblasts via VEGFR, with elevated expressions of MyoG and MyHC. Furthermore, the knockdown of VEGFR1 rather than NRP1 eliminated the VEGFB-stimulated C2C12 differentiation. Moreover, VEGFB activated the PI3K/Akt/mTOR signaling pathway in a VEGFR1-dependent manner. However, the inhibition of PI3K/Akt/mTOR blocked the promotion of C2C12 myoblasts differentiation induced by VEGFB, indicating the involvement of the PI3K/Akt pathway. To conclude, these findings showed that VEGFB promoted C2C12 myoblast proliferation and differentiation via the VEGFR1-PI3K/Akt signaling pathway, providing new insights into the regulation of skeletal muscle development.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Factor B de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular , Ratones , Factor B de Crecimiento Endotelial Vascular/farmacología
4.
Technol Health Care ; 31(4): 1429-1449, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36872811

RESUMEN

BACKGROUND: Due to the complexity and heterogeneity of hepatocellular carcinoma, the existing clinical staging criterias are insufficient to accurately reflect the tumor microenvironment and predict the prognosis of HCC patients. Aggrephagy, as a type of selective autophagy, is associated with various phenotypes of malignant tumors. OBJECTIVE: This study aimed to identify and validate a prognostic model based on aggrephagy-related LncRNAs to assess the prognosis and immunotherapeutic response of HCC patients. METHODS: Based on the TCGA-LIHC cohort, aggrephagy-related LncRNAs were identified. Univariate Cox regression analysis and lasso and multivariate Cox regression were used to construct a risk-scoring system based on eight ARLs. CIBERSORT, ssGSEA, and other algorithms were used to evaluate and present the immune landscape of tumor microenvironment. RESULTS: The high-risk group had a worse overall survival (OS) than the low-risk group. Patients in the high-risk group are more likely to benefit from immunotherapy because of their high infiltration level and high immune checkpoint expression. CONCLUSION: The ARLs signature is a powerful predictor of prognosis for HCC patients, and the nomogram based on this model can help clinicians accurately determine the prognosis of HCC patients and screen for specific subgroups of patients who are more sensitive to immunotherapy and chemotherapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , ARN Largo no Codificante , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , ARN Largo no Codificante/genética , Macroautofagia , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Pronóstico , Inmunoterapia , Microambiente Tumoral
5.
Cell Death Dis ; 14(1): 29, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36642732

RESUMEN

Obesity is strongly associated with metabolic diseases, which have become a global health problem. Exploring the underlying mechanism of adipogenesis is crucial for the treatment of excess white fat. Oncogene YBX1 is a multifunctional DNA- and RNA-binding protein that regulates brown adipogenesis. However, the role of YBX1 in white adipogenesis and adipose tissue expansion remains unknown. Here, we showed that YBX1 deficiency inhibited murine and porcine adipocyte differentiation. YBX1 positively regulated adipogenesis through promoting ULK1- and ULK2-mediated autophagy. Mechanistically, we identified YBX1 serves as a 5-methylcytosine (m5C)-binding protein directly targeting m5C-containing Ulk1 mRNA by using RNA immunoprecipitation. RNA decay assay further proved that YBX1 upregulated ULK1 expression though stabilizing its mRNA. Meanwhile, YBX1 promoted Ulk2 transcription and expression as a transcription factor, thereby enhancing autophagy and adipogenesis. Importantly, YBX1 overexpression in white fat enhanced ULK1/ULK2-mediated autophagy and promoted adipose tissue expansion in mice. Collectively, these findings unveil the post-transcriptional and transcriptional mechanism and functional importance of YBX1 in autophagy and adipogenesis regulation, providing an attractive molecular target for therapies of obesity and metabolic diseases.


Asunto(s)
Adipogénesis , Autofagia , Regulación de la Expresión Génica , Factores de Transcripción , Animales , Ratones , Adipogénesis/genética , Autofagia/genética , Obesidad/genética , ARN Mensajero , Porcinos , Factores de Transcripción/genética
6.
Mol Metab ; 73: 101747, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37279828

RESUMEN

OBJECTIVE: Brown adipose tissue (BAT) plays a crucial role in regulating non-shivering thermogenesis under cold exposure. Proline hydroxylases (PHDs) were found to be involved in adipocyte differentiation and lipid deposition. However, the effects of PHDs on regulatory mechanisms of BAT thermogenesis are not fully understood. METHODS: We detected the expression of PHDs in different adipose tissues by using immunoblotting and real-time PCR. Further, immunoblotting, real-time PCR, and immunostaining were performed to determine the correlation between proline hydroxylase 2 (PHD2) and UCP1 expression. Inhibitor of PHDs and PHD2-sgRNA viruses were used to construct the PHD2-deficiency model in vivo and in vitro to investigate the impacts of PHD2 on BAT thermogenesis. Afterward, the interaction between UCP1 and PHD2 and the hydroxylation modification level of UCP1 were verified by Co-IP assays and immunoblotting. Finally, the effect of specific proline hydroxylation on the expression/activity of UCP1 was further confirmed by site-directed mutation of UCP1 and mass spectrometry analysis. RESULTS: PHD2, but not PHD1 and PHD3, was highly enriched in BAT, colocalized, and positively correlated with UCP1. Inhibition or knockdown of PHD2 significantly suppressed BAT thermogenesis under cold exposure and aggravated obesity of mice fed HFD. Mechanistically, mitochondrial PHD2 bound to UCP1 and regulated the hydroxylation level of UCP1, which was enhanced by thermogenic activation and attenuated by PHD2 knockdown. Furthermore, PHD2-dependent hydroxylation of UCP1 promoted the expression and stability of UCP1 protein. Mutation of the specific prolines (Pro-33, 133, and 232) in UCP1 significantly mitigated the PHD2-elevated UCP1 hydroxylation level and reversed the PHD2-increased UCP1 stability. CONCLUSIONS: This study suggested an important role for PHD2 in BAT thermogenesis regulation by enhancing the hydroxylation of UCP1.


Asunto(s)
Obesidad , Prolil Hidroxilasas , Animales , Ratones , Tejido Adiposo Pardo/metabolismo , Hidroxilación , Obesidad/metabolismo , Prolina/metabolismo , Prolil Hidroxilasas/metabolismo , Termogénesis/fisiología
7.
J Anim Sci Biotechnol ; 13(1): 73, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35672805

RESUMEN

BACKGROUND: Tauroursodeoxycholic acid (TUDCA), a hydrophilic bile acid, is the main medicinal component of bear bile and is commonly used to treat a variety of hepatobiliary diseases. Meanwhile, TUDCA has been shown to modulate the intestinal barrier function and alleviate DSS-induced colitis in mice. However, the effect of TUDCA on the intestinal barrier of weaned piglets remains largely unclear. METHODS: The weaned piglets and porcine IPEC-J2 intestinal epithelial cells were used to investigate the effects of TUDCA on intestinal barrier function in weaned piglets and explore the possible underlying mechanisms. In vivo, 72 healthy weaned piglets were randomly allocated into 2 groups according to their gender and body weight, and piglets were fed the basal diet with 0 (control, CON) and 200 mg/kg TUDCA for 30 d, respectively. Three female and three male piglets reflecting the average bodyweight were slaughtered in each group and samples were collected. In vitro, IPEC-J2 cells were subjected to 100 µmol/L TUDCA to explore the possible underlying mechanisms. RESULTS: Our results demonstrated that dietary TUDCA supplementation significantly reduced the diarrhea incidence of weaned piglets, possibly attributing to the TUDCA-enhanced intestinal barrier function and immunity. In addition, TUDCA supplementation altered serum metabolites and the relative abundance of certain gut bacteria, which might contribute to the improved intestinal barrier function. Furthermore, the in-vitro results showed that TUDCA improved the E. coli-induced epithelial barrier impairment of IPEC-J2 cells and increased Takeda G-coupled protein receptor 5 (TGR5) protein expression. However, knockdown of TGR5 and inhibition of myosin light chain kinase (MLCK) pathway abolished the TUDCA-improved epithelial barrier impairment in E. coli-treated IPEC-J2 cells, indicating the involvement of TGR5-MLCK in this process. CONCLUSIONS: These findings showed that TUDCA improved intestinal barrier function associated with TGR5-MLCK pathway and the alteration of serum metabolites and gut bacteria in weaned piglets, suggesting the potential application of TUDCA in improving gut health in piglet production.

8.
Food Funct ; 13(3): 1232-1245, 2022 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-35019933

RESUMEN

The mechanisms whereby fish oil rich in EPA and DHA promotes BAT thermogenesis and WAT browning are not fully understood. Thus, this study aimed to investigate the effects of cytochrome P450 (CYP) epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE on BAT thermogenesis and WAT browning and explore the underlying mechanism. Stromal vascular cells (SVCs) were subjected to 17,18-EpETE or 19,20-EpDPE treatment and mice were treated with the CYP epoxygenase inhibitor, the thermogenic marker genes were detected and the involvement of GPR120 and AMPKα were assessed. The in vitro results indicated that 17,18-EpETE and 19,20-EpDPE induced brown and beige adipocyte thermogenesis, with increased expression of thermogenic marker gene UCP1 in differentiated SVCs. Meanwhile, the expression of GPR120 and phosphorylation of AMPKα were increased in response to these two oxylipins. However, the inhibition of GPR120 and AMPKα inhibited the promotion of adipocyte thermogenesis. In addition, in the presence of CYP epoxygenase inhibitor MS-PPOH, EPA and DHA had no effect on increasing UCP1 expression in differentiated SVCs. Consistent with the in vitro results, the in vivo findings demonstrated that fish oil had no body fat-lowering effects and no effects on enhancing energy metabolism, iBAT thermogenesis and iWAT browning in mice fed HFD after intraperitoneal injection of CYP epoxygenase inhibitor SKF-525A. Moreover, fish oil had no effect on the elevation of GPR120 expression and activation of AMPKα in iBAT and iWAT in mice fed HFD after intraperitoneal injection of SKF-525A. In summary, our results showed that CYP epoxygenase-derived EPA and DHA oxylipins 17,18-EpETE and 19,20-EpDPE promoted BAT thermogenesis and WAT browning through the GPR120-AMPKα signaling pathway, which might contribute to the thermogenic and anti-obesity effects of fish oil.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Ácidos Araquidónicos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Ácidos Docosahexaenoicos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Oxilipinas/metabolismo , Receptores Acoplados a Proteínas G/genética , Transducción de Señal/efectos de los fármacos , Termogénesis/efectos de los fármacos
9.
J Agric Food Chem ; 69(51): 15636-15648, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34928153

RESUMEN

Conjugated linoleic acid (CLA) has been implicated in regulating muscle fiber. However, which isomer elicits this effect and the underlying mechanisms remain unclear. Here, male C57BL6/J mice and C2C12 cells were treated with two CLA isomers, and the exercise endurance, skeletal muscle fiber type, and involvement of Toll-like receptor 4 (TLR4) signaling were assessed. The results demonstrated that dietary t10, c12, but not c9, t11-CLA isomer enhanced exercise endurance of mice (from 115.88 ± 11.21 to 130.00 ± 15.84 min, P < 0.05) and promoted the formation of oxidative muscle fiber type of gastrocnemius muscle (from 0.15 ± 0.04 to 0.24 ± 0.05, P < 0.05). Consistently, t10, c12-CLA isomer increased the mRNA expression of oxidative muscle fiber type in C2C12 myotubes (from 1.00 ± 0.08 to 2.65 ± 1.77, P < 0.05). In addition, t10, c12-CLA isomer increased TLR4 signaling expression in skeletal muscle and C2C12 myotubes. More importantly, knockdown of TLR4 eliminated the t10, c12-CLA isomer-induced enhancement of exercise endurance in mice and elevation of oxidative muscle fiber type in C2C12 myotubes and gastrocnemius muscle. Together, these findings showed that t10, c12, but not c9, t11-CLA isomer enhances exercise endurance by increasing oxidative skeletal muscle fiber type via TLR4 signaling.


Asunto(s)
Ácidos Linoleicos Conjugados , Animales , Ácidos Linoleicos Conjugados/metabolismo , Masculino , Ratones , Fibras Musculares Esqueléticas/metabolismo , Oxidación-Reducción , Estrés Oxidativo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
10.
Asian Pac J Cancer Prev ; 15(15): 6071-4, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25124575

RESUMEN

BACKGROUND: Evidence suggests that the rs11615 (C>T) polymorphism in the ERCC1 gene may be a risk factor for gynecological tumors. However, results have not been consistent. Therefore we performed this meta- analysis. METHODS: Eligible studies were identified by search of PubMed, MEDLINE and Chinese National Knowledge Infrastructure (CNKI). Odds ratios (ORs) and 95% confidence intervals (CIs) were applied to assess associations between rs11615 (C>T) and gynecological tumor risk. Heterogeneity among studies was tested and sensitivity analysis was applied. RESULTS: A total of 6 studies were identified, with 1,766 cases and 2,073 controls. No significant association was found overall between the rs11615 (C>T) polymorphism and gynecological tumor susceptibility in any genetic model. In further analysis stratified by cancer type, significantly elevated ovarian cancer risk was observed in the homozygote and recessive model comparison (TT vs CC: OR=1.69, 95% CI=1.03-2.77, heterogeneity=0.876; TT vs CT/CC: OR=1.72, 95% CI=1.07-2.77, heterogeneity=0.995). CONCLUSION: The results of the present meta-analysis suggest that there is no significant association between the rs11615 (C>T) polymorphism and gynecological tumor risk, but it had a increased risk in ovarian cancer.


Asunto(s)
Proteínas de Unión al ADN/genética , Endonucleasas/genética , Predisposición Genética a la Enfermedad , Neoplasias de los Genitales Femeninos/genética , Neoplasias Ováricas/genética , Polimorfismo Genético/genética , Estudios de Casos y Controles , Femenino , Humanos , Pronóstico , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA