Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Innovation (Camb) ; 5(3): 100600, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38510070

RESUMEN

Internal photoemission is a prominent branch of the photoelectric effect and has emerged as a viable method for detecting photons with energies below the semiconductor bandgap. This breakthrough has played a significant role in accelerating the development of infrared imaging in one chip with state-of-the-art silicon techniques. However, the performance of these Schottky infrared detectors is currently hindered by the limit of internal photoemission; specifically, a low Schottky barrier height is inevitable for the detection of low-energy infrared photons. Herein, a distinct paradigm of Schottky infrared detectors is proposed to overcome the internal photoemission limit by introducing an optically tunable barrier. This device uses an infrared absorbing material-sensitized Schottky diode, assisted by the highly adjustable Fermi level of graphene, which subtly decouples the photon energy from the Schottky barrier height. Correspondingly, a broadband photoresponse spanning from ultraviolet to mid-wave infrared is achieved, with a high specific detectivity of 9.83 × 1010 cm Hz1/2 W-1 at 2,700 nm and an excellent specific detectivity of 7.2 × 109 cm Hz1/2 W-1 at room temperature under blackbody radiation. These results address a key challenge in internal photoemission and hold great promise for the development of the Schottky infrared detector with high sensitivity and room temperature operation.

2.
RSC Adv ; 14(32): 22847-22857, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39035720

RESUMEN

Ga2O3 is a kind of wide-band gap semiconductor, which has great potential in deep ultraviolet detection because of its high efficiency and fast response. Doping can improve the photoelectric properties of Ga2O3 materials. In this paper, In and Al elements alloyed Ga2O3 nanowires (InAl-Ga2O3 NWs) were successfully grown on p-GaN using a cost-effective chemical vapor deposition method and a vertical structure. The GaN/InAl-Ga2O3 NWs p-n self-powered wide-gap UV photodetector (PD) was constructed based on sputtered gold film as the bottom and top electrodes, and spin coated with polymethyl methacrylate as the insulating layer in the vertical direction. The GaN/InAl-Ga2O3 UV PD exhibits excellent performances, including an extremely low dark current of 0.015 nA, a maximum photocurrent of about 16 nA at zero-bias voltage under 265 nm illumination, and a light-to-dark current ratio greater than 103. The responsivity is 0.94 mA W-1, the specific detectivity is 9.63 × 109 jones, and the good fast response/attenuation time is 31.2/69.6 ms. The self-powered characteristics are derived from the internal electric field formed between p-type GaN and n-type InAl-Ga2O3 NWs, which is conducive to the rapid separation and transfer of photogenerated carriers. This work provides an innovative mechanism of high-performance metal oxide nanowires for the application of p-n junction photodetectors, which can operate without any external bias.

3.
ACS Appl Mater Interfaces ; 16(27): 35303-35314, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38934377

RESUMEN

Self-powered ultraviolet photodetectors with bipolar photoresponse have great potential in the fields of ultraviolet optical communication, all-optical controlled artificial synapses, high-resolution ultraviolet imaging equipment, and multiband photoelectric detection. However, the current low optoelectronic performance limits the development of such polar switching devices. Here, we construct a self-powered ultraviolet photodetector based on GaN and In/Sn-doped Ga2O3 (IGTO) nanowires (NWs) pn junction structure. This unique nanowire/thin film structure allows GaN and IGTO to dominate the absorption of light at different wavelengths, resulting in a highly bipolar photoresponse. The device has a responsivity of 2.04 A/W and a normalized detectivity of 7.18 × 1013 Jones at 254 nm and a responsivity of -2.09 A/W and a normalized detectivity of -7 × 1013 Jones at 365 nm, both at zero bias. In addition, it has an extremely high Ilight/Idark ratio of 1.05 × 105 and ultrafast response times of 2.4/1.9 ms (at 254 nm) and 5.7/5.2 ms (at 365 nm). These excellent properties are attributed to the high specific surface area of the one-dimensional nanowire structure and the abundant voids generated by the nanowire network to enhance the absorption of light, and the p-n junction structure enables the rapid separation and transfer of photogenerated electron-hole pairs. Our findings provide a feasible strategy for high-performance wavelength-controlled polarity switching devices.

4.
J Colloid Interface Sci ; 668: 293-302, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38678885

RESUMEN

Understanding the cytotoxicity of fluorescent carbon dots (CDs) is crucial for their applications, and various biochemical assays have been used to study the effects of CDs on cells. Knowledge on the effects of CDs from a biophysical perspective is integral to the recognition of their cytotoxicity, however the related information is very limited. Here, we report that atomic force microscopy (AFM) can be used as an effective tool for studying the effects of CDs on cells from the biophysical perspective. We achieve this by integrating AFM-based nanomechanics with AFM-based imaging. We demonstrate the performance of this method by measuring the influence of CDs on living human neuroblastoma (SH-SY5Y) cells at the single-cell level. We find that high-dose CDs can mechanically induce elevated normalized hysteresis (energy dissipation during the cell deformation) and structurally impair actin skeleton. The nanomechanical change highly correlates with the alteration of actin filaments, indicating that CDs-induced changes in SH-SY5Y cells are revealed in-depth from the AFM-based biophysical aspect. We validate the reliability of the biophysical observations using conventional biological methods including cell viability test, fluorescent microscopy, and western blot assay. Our work contributes new and significant information on the cytotoxicity of CDs from the biophysical perspective.


Asunto(s)
Carbono , Supervivencia Celular , Microscopía de Fuerza Atómica , Puntos Cuánticos , Humanos , Carbono/química , Puntos Cuánticos/química , Supervivencia Celular/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/citología , Neuronas/metabolismo , Línea Celular Tumoral , Tamaño de la Partícula , Propiedades de Superficie , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/efectos de los fármacos , Actinas/metabolismo , Actinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA