Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Virus Genes ; 59(1): 91-99, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36258144

RESUMEN

A multiplex qPCR assay was developed to simultaneously detect duck circovirus (DuCV), duck Tembusu virus (DTMUV), Muscovy duck reovirus (MDRV), and novel duck reovirus (NDRV), but it did not amplify other viruses, including duck virus enteritis (DVE), infectious bursal disease virus (IBDV), avian reovirus (ARV), H5 avian influenza virus (H5 AIV), H7 avian influenza virus (H7 AIV), H9 avian influenza virus (H9 AIV), Newcastle disease virus (NDV), and Muscovy duck parvovirus (MDPV), and the detection limit for DuCV, DTMUV, MDRV, and NDRV was 1.51 × 101 copies/µL. The intra- and interassay coefficients of variation were less than 1.54% in the repeatability test with standard plasmid concentrations of 1.51 × 107, 1.51 × 105, and 1.51 × 103 copies/µL. The developed multiple qPCR assay was used to examine 404 clinical samples to verify its practicability. The positivity rates for DuCV, DTMUV, MDRV, and NDRV were 26.0%, 9.9%, 4.0%, and 4.7%, respectively, and the mixed infection rates for DuCV + DTMUV, DuCV + MDRV, DuCV + NDRV, MDRV + NDRV, DTMUV + MDRV, and DTMUV + NDRV were 2.7%, 1.2%, 1.2%, 1.0%, 0.5%, and 0.7%, respectively.


Asunto(s)
Virus de la Influenza A , Gripe Aviar , Orthoreovirus , Enfermedades de las Aves de Corral , Animales , Enfermedades de las Aves de Corral/diagnóstico
2.
Vet World ; 17(5): 946-955, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38911097

RESUMEN

Background and Aim: Feline coronavirus (FCoV), feline panleukopenia virus (FPV), and feline leukemia virus (FeLV) are prevalent throughout China and significantly threaten cat health. These viruses cause similar manifestations and pathological damage. Rapid and accurate diagnosis depends on detection in the laboratory. This study aimed to establish a reliable and rapid method for accurate detection of FCoV, FPV, and FeLV so that a definite diagnosis can be made and effective measures can be taken to prevent and control viral infection. Materials and Methods: We designed three pairs of specific primers and probes for the detection of FCoV 5' untranslated region, FPV viral protein 2, and FeLV pol genes. Recombinant plasmid constructs were generated for use as standard plasmid constructs. Optimal reaction conditions, including primer and probe concentrations, reaction cycles, and annealing temperatures, were obtained on the basis of optimization tests. One-step triplex real-time reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was successfully established to simultaneously detect FCoV, FPV, and FeLV. The specificity, sensitivity, and repeatability of the assay were analyzed, and its applicability was validated by testing 1175 clinical samples. Results: One-step triplex RT-qPCR had a high degree of specificity only for the detection of FCoV, FPV, and FeLV; it had high sensitivity with limits of detection of 139.904, 143.099, and 152.079 copies/reaction for p-FCoV, p-FPV, and p-FeLV standard plasmid constructs, respectively, and it had reliable repeatability with 0.06%-0.87% intra-assay coefficients of variations. A total of 1175 clinical samples were examined for FCoV, FPV, and FeLV using triplex RT-qPCR, and the FCoV, FPV, and FeLV positivity rates were 18.47%, 19.91%, and 47.57%, respectively. The clinical sensitivity and specificity of one-step triplex RT-qPCR were 93.07% and 97.99%, respectively. Conclusion: We developed a rapid and reliable one-step triplex RT-qPCR method for the detection of FCoV, FPV, and FeLV, which could be used as a diagnostic tool for clinical monitoring and diagnosis.

3.
Viruses ; 16(7)2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39066288

RESUMEN

The variant porcine epidemic diarrhea virus (PEDV) has caused considerable economic losses to the global pig industry since 2010. In this study, a total of 5859 diarrhea samples were collected from different pig farms in China's Guangxi province during January 2020 and March 2024 and tested for PEDV using RT-qPCR. The positivity rate of PEDV was 11.90% (697/5859). Ninety-two PEDV-positive samples were selected based on sampling time, and the sampling region for amplification, sequencing, and analysis of the S1, M, and N genes. Phylogenetic analysis of the S1 gene revealed that all strains from Guangxi province were distributed in three subgroups, i.e., 81.5% (75/92) in the G2a subgroup, 4.3% (4/92) in the G2b subgroup, and 14.1% (13/92) in the G2c subgroup. The sequence analysis revealed that the S1 gene sequences from Guangxi province had higher homology with the variant strains than with the classical strains, showing as high as 99.2% with the variant strain AJ1102 and only 94.3% with the classical strain CV777. Recombination analysis revealed that the GX-BS08-2023 strain (G2c) from Guangxi province originated from inter-lineage recombination between the GX-BS09-2023 (G2a) and CH-JN547228-2011 (G1a) strains. In addition, the S1 gene of the G2a and G2b subgroup strains shared many mutations and insertions. There were common mutations of N143D and P235L in the G2a subgroup. Evolutionary analysis revealed that all Guangxi strains belonged to the G2 genotype. These strains have spread rapidly since the PEDV variant strains that emerged in 2010, weakened until 2021, and then remained stable. In conclusion, the results revealed the latest genetic evolution of circulating PEDV strains in Guangxi province in recent years, providing important information for preventing and controlling PEDV infection. Currently, the G2a subgroup strains are the predominant strains circulating in pig herds in Guangxi province, southern China.


Asunto(s)
Infecciones por Coronavirus , Evolución Molecular , Filogenia , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Virus de la Diarrea Epidémica Porcina/genética , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Porcinos , China/epidemiología , Enfermedades de los Porcinos/virología , Enfermedades de los Porcinos/epidemiología , Infecciones por Coronavirus/veterinaria , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/epidemiología , Variación Genética , Diarrea/virología , Diarrea/veterinaria , Diarrea/epidemiología , Genotipo , Glicoproteína de la Espiga del Coronavirus/genética
4.
Microorganisms ; 12(2)2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38399820

RESUMEN

Porcine deltacoronavirus (PDCoV) has shown large-scale global spread since its discovery in Hong Kong in 2012. In this study, a total of 4897 diarrheal fecal samples were collected from the Guangxi province of China from 2020 to 2023 and tested using RT-qPCR. In total, 362 (362/4897, 7.39%) of samples were positive for PDCoV. The S, M, and N gene sequences were obtained from 34 positive samples after amplification and sequencing. These PDCoV gene sequences, together with other PDCoV S gene reference sequences from China and other countries, were analyzed. Phylogenetic analysis revealed that the Chinese PDCoV strains have diverged in recent years. Bayesian analysis revealed that the new China 1.3 lineage began to diverge in 2012. Comparing the amino acids of the China 1.3 lineage with those of other lineages, the China 1.3 lineage showed variations of mutations, deletions, and insertions, and some variations demonstrated the same as or similar to those of the China 1.2 lineage. In addition, recombination analysis revealed interlineage recombination in CHGX-MT505459-2019 and CHGX-MT505449-2017 strains from Guangxi province. In summary, the results provide new information on the prevalence and evolution of PDCoV in Guangxi province in southern China, which will facilitate better comprehension and prevention of PDCoV.

5.
Animals (Basel) ; 13(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36830384

RESUMEN

Porcine reproductive and respiratory syndrome virus (PRRSV) type 1 (European genotype) and PRRSV type 2 (North American genotype) are prevalent all over the world. Nowadays, the North American genotype PRRSV (NA-PRRSV) has been widely circulating in China and has caused huge economic losses to the pig industry. In recent years, classical PRRSV (C-PRRSV), highly pathogenic PRRSV (HP-PRRSV), and NADC30-like PRRSV (NL-PRRSV) have been the most common circulating strains in China. In order to accurately differentiate the circulating strains of NA-PRRSV, three pairs of specific primers and corresponding probes were designed for the Nsp2 region of C-PRRSV, HP-PRRSV, and NL-PRRSV. After optimizing the annealing temperature, primer concentration, and probe concentration, a multiplex real-time quantitative RT-PCR (qRT-PCR) and a multiplex Crystal digital RT-PCR (cdRT-PCR) for the differential detection of C-PRRSV, HP-PRRSV, and NL-PRRSV were developed. The results showed that the two assays illustrated high sensitivity, with a limit of detection (LOD) of 3.20 × 100 copies/µL for the multiplex qRT-PCR and 3.20 × 10-1 copies/µL for the multiplex cdRT-PCR. Both assays specifically detected the targeted viruses, without cross-reaction with other swine viruses, and indicated excellent repeatability, with coefficients of variation (CVs) of less than 1.26% for the multiplex qRT-PCR and 2.68% for the multiplex cdRT-PCR. Then, a total of 320 clinical samples were used to evaluate the application of these assays, and the positive rates of C-PRRSV, HP-PRRSV, and NL-PRRSV by the multiplex qRT-PCR were 1.88%, 21.56%, and 9.69%, respectively, while the positive rates by the multiplex cdRT-PCR were 2.19%, 25.31%, and 11.56%, respectively. The high sensitivity, strong specificity, excellent repeatability, and reliability of these assays indicate that they could provide useful tools for the simultaneous and differential detection of the circulating strains of C-PRRSV, HP-PRRSV, and NL-PRRSV in the field.

6.
Vet Sci ; 10(5)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37235413

RESUMEN

Atypical porcine pestivirus (APPV), a newly discovered virus, is associated with the type A-II congenital tremor (CT) in neonatal piglets. APPV distributes throughout the world and causes certain economic losses to the swine industry. The specific primers and probe were designed targeting the 5' untranslated region (UTR) of APPV to amplify a 90 bp fragment, and the recombinant standard plasmid was constructed. After optimizing the concentrations of primers and probe, annealing temperature, and reaction cycles, a crystal digital RT-PCR (cdRT-PCR) and real-time quantitative RT-PCR (qRT-PCR) were successfully established. The results showed that the standard curves of the qRT-PCR and the cdRT-PCR had R2 values of 0.999 and 0.9998, respectively. Both methods could specifically detect APPV, and no amplification signal was obtained from other swine viruses. The limit of detection (LOD) of the cdRT-PCR was 0.1 copies/µL, and that of the qRT-PCR was 10 copies/µL. The intra-assay and inter-assay coefficients of variation of repeatability and reproducibility were less than 0.90% for the qRT-PCR and less than 5.27% for the cdRT-PCR. The 60 clinical tissue samples were analyzed using both methods, and the positivity rates of APPV were 23.33% by the qRT-PCR and 25% by the cdRT-PCR, with a coincidence rate of 98.33%. The results indicated that the cdRT-PCR and the qRT-PCR developed here are highly specific, sensitive methods for the rapid and accurate detection of APPV.

7.
Front Vet Sci ; 10: 1276505, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026635

RESUMEN

Porcine hemagglutinating encephalomyelitis virus (PHEV), porcine pseudorabies virus (PRV), classical swine fever virus (CSFV), and Japanese encephalitis virus (JEV) cause similar neurological symptoms in the infected pigs, and their differential diagnosis depends on laboratory testing. Four pairs of specific primers and probes were designed targeting the PHEV N gene, PRV gB gene, CSFV 5' untranslated region (5'UTR), and JEV NS1 gene, respectively, and a quadruplex real-time quantitative RT-PCR (qRT-PCR) was developed to detect and differentiate PHEV, PRV, CSFV, and JEV. The assay showed high sensitivity, with the limit of detection (LOD) of 1.5 × 101 copies/µL for each pathogen. The assay specifically detected only PHEV, PRV, CSFV, and JEV, without cross-reaction with other swine viruses. The coefficients of variation (CVs) of the intra-assay and the inter-assay were less than 1.84%, with great repeatability. A total of 1,977 clinical samples, including tissue samples, and whole blood samples collected from Guangxi province in China, were tested by the developed quadruplex qRT-PCR, and the positivity rates of PHEV, PRV, CSFV, and JEV were 1.57% (31/1,977), 0.35% (7/1,977), 1.06% (21/1,977), and 0.10% (2/1,977), respectively. These 1,977 samples were also tested by the previously reported qRT-PCR assays, and the coincidence rates of these methods were more than 99.90%. The developed assay is demonstrated to be rapid, sensitive, and accurate for detection and differentiation of PHEV, PRV, CSFV, and JEV.

8.
Front Vet Sci ; 10: 1222789, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37662994

RESUMEN

Duck Tembusu virus (DTMUV), duck circovirus (DuCV), and new duck reovirus (NDRV) have seriously hindered the development of the poultry industry in China. To detect the three pathogens simultaneously, a multiplex digital PCR (dPCR) was developed and compared with multiplex qPCR in this study. The multiplex dPCR was able to specifically detect DTMUV, DuCV, and NDRV but not amplify Muscovy duck reovirus (MDRV), Muscovy duck parvovirus (MDPV), goose parvovirus (GPV), H4 avian influenza virus (H4 AIV), H6 avian influenza virus (H6 AIV), and Newcastle disease virus (NDV). The standard curves showed excellent linearity in multiplex dPCR and qPCR and were positively correlated. The sensitivity results showed that the lowest detection limit of multiplex dPCR was 1.3 copies/µL, which was 10 times higher than that of multiplex qPCR. The reproducibility results showed that the intra- and interassay coefficients of variation were 0.06-1.94%. A total of 173 clinical samples were tested to assess the usefulness of the method; the positive detection rates for DTMUV, DuCV, and NDRV were 18.5, 29.5, and 14.5%, respectively, which were approximately 4% higher than those of multiplex qPCR, and the kappa values for the clinical detection results of multiplex dPCR and qPCR were 0.85, 0.89, and 0.86, indicating that the two methods were in excellent agreement.

9.
Pathogens ; 12(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37764899

RESUMEN

Rotavirus A species (RVA), RVB, RVC, and RVH are four species of rotaviruses (RVs) that are prevalent in pig herds, and co-infections occur frequently. In this study, a quadruplex real-time quantitative RT-PCR (RT-qPCR) for the simultaneous detection of four porcine RVs was developed by designing specific primers and probes based on the VP6 gene of RVA, RVB, RVC, and RVH, respectively. The method showed high specificity and could only detect RVA, RVB, RVC, and RVH, without cross-reaction with other porcine viruses; showed excellent sensitivity, with a limit of detection (LOD) of 1.5 copies/µL for each virus; showed good repeatability, with intra-assay coefficients of variation (CVs) of 0.15-1.14% and inter-assay CVs of 0.07-0.96%. A total of 1447 clinical fecal samples from Guangxi province in China were tested using the developed quadruplex RT-qPCR. The results showed that RVA (42.71%, 618/1447), RVB (26.95%, 390/1447), RVC (42.92%, 621/1447), and RVH (13.68%, 198/1447) were simultaneously circulating in the pig herds, and the co-infection rate of different species of rotaviruses was found to be up to 44.01% (579/1447). The clinical samples were also detected using one previously reported method, and the coincidence rate of the detection results using two methods was more than 99.65%. The phylogenetic tree based on the VP6 gene sequences of RVH revealed that the porcine RVH strains from Guangxi province belonged to the genotype I5, which was closely related to Japanese and Vietnamese strains. In summary, an efficient, sensitive, and accurate method for the detection and differentiation of RVA, RVB, RVC, and RVH was developed and applied to investigate the prevalence of porcine RVs in Guangxi province, China. This study is the first to report the prevalence of porcine RVH in China.

10.
Pathogens ; 12(9)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37764900

RESUMEN

African swine fever (ASF) is a severe and highly contagious viral disease that affects domestic pigs and wild boars, characterized by a high fever and internal bleeding. The disease is caused by African swine fever virus (ASFV), which is prevalent worldwide and has led to significant economic losses in the global pig industry. In this study, three pairs of specific primers and TaqMan probes were designed for the ASFV B646L, MGF505-2R and I177L genes. After optimizing the reaction conditions of the annealing temperature, primer concentration and probe concentration, triplex crystal digital PCR (cdPCR) and triplex real-time quantitative PCR (qPCR) were developed for the detection and differentiation of the wild-type ASFV strain and the MGF505-2R and/or I177L gene-deleted ASFV strains. The results indicate that both triplex cdPCR and triplex qPCR were highly specific, sensitive and repeatable. The assays could detect only the B646L, MGF505-2R and I177L genes, without cross-reaction with other swine viruses (i.e., PRRSV, CSFV, PCV2, PCV3, PEDV, PDCoV and PRV). The limit of detection (LOD) of triplex cdPCR was 12 copies/reaction, and the LOD of triplex qPCR was 500 copies/reaction. The intra-assay and inter-assay coefficients of variation (CVs) for repeatability and reproducibility were less than 2.7% for triplex cdPCR and less than 1.8% for triplex qPCR. A total of 1510 clinical tissue samples were tested with both methods, and the positivity rates of ASFV were 14.17% (214/1510) with triplex cdPCR and 12.98% (196/1510) with triplex qPCR, with a coincidence rate of 98.81% between the two methods. The positivity rate for the MGF505-2R gene-deleted ASFV strains was 0.33% (5/1510), and no I177L gene-deleted ASFV strain was found. The results indicate that triplex cdPCR and triplex qPCR developed in this study can provide rapid, sensitive and accurate methods for the detection and differentiation of the ASFV B646L, MGF505-2R and I177L genes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA