Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chemphyschem ; 25(1): e202300596, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37888491

RESUMEN

Heterocyclic thiones have recently been identified as reversible covalent warheads, consistent with their mild electrophilic nature. Little is known so far about their mechanism of action in labelling nucleophilic sidechains, especially cysteines. The vast number of tractable cysteines promotes a wide range of target proteins to examine; however, our focus was put on functional cysteines. We chose the main protease of SARS-CoV-2 harboring Cys145 at the active site that is a structurally characterized and clinically validated target of covalent inhibitors. We screened an in-house, cysteine-targeting covalent inhibitor library which resulted in several covalent fragment hits with benzoxazole, benzothiazole and benzimidazole cores. Thione derivatives and Michael acceptors were selected for further investigations with the objective of exploring the mechanism of inhibition of the thiones and using the thoroughly characterized Michael acceptors for benchmarking our studies. Classical and hybrid quantum mechanical/molecular mechanical (QM/MM) molecular dynamics simulations were carried out that revealed a new mechanism of covalent cysteine labelling by thione derivatives, which was supported by QM and free energy calculations and by a wide range of experimental results. Our study shows that the molecular recognition step plays a crucial role in the overall binding of both sets of molecules.


Asunto(s)
Cisteína , Tionas , Cisteína/química , Simulación de Dinámica Molecular , Dominio Catalítico , Simulación del Acoplamiento Molecular
2.
J Enzyme Inhib Med Chem ; 39(1): 2305833, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38410950

RESUMEN

Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.


Asunto(s)
Lisina , Serina , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/metabolismo , Ácidos Borónicos/farmacología , Antibacterianos/farmacología , Iminas
3.
J Comput Aided Mol Des ; 35(2): 223-244, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33458809

RESUMEN

Here we present WIDOCK, a virtual screening protocol that supports the selection of diverse electrophiles as covalent inhibitors by incorporating ligand reactivity towards cysteine residues into AutoDock4. WIDOCK applies the reactive docking method (Backus et al. in Nature 534:570-574, 2016) and extends it into a virtual screening tool by introducing facile experimental or computational parametrization and a ligand focused evaluation scheme together with a retrospective and prospective validation against various therapeutically relevant targets. Parameters accounting for ligand reactivity are derived from experimental reaction kinetic data or alternatively from computed reaction barriers. The performance of this docking protocol was first evaluated by investigating compound series with diverse warhead chemotypes against KRASG12C, MurA and cathepsin B. In addition, WIDOCK was challenged on larger electrophilic libraries screened against OTUB2 and NUDT7. These retrospective analyses showed high sensitivity in retrieving experimental actives, by also leading to superior ROC curves, AUC values and better enrichments than the standard covalent docking tool available in AutoDock4 when compound collections with diverse warheads were investigated. Finally, we applied WIDOCK for the prospective identification of covalent human MAO-A inhibitors acting via a new mechanism by binding to Cys323. The inhibitory activity of several predicted compounds was experimentally confirmed and the labelling of Cys323 was proved by subsequent MS/MS measurements. These findings demonstrate the usefulness of WIDOCK as a warhead-sensitive, covalent virtual screening protocol.


Asunto(s)
Transferasas Alquil y Aril/química , Catepsina B/química , Inhibidores Enzimáticos/química , Proteínas Proto-Oncogénicas p21(ras)/química , Secuencia de Aminoácidos , Sitios de Unión , Cisteína/química , Glutatión/química , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Programas Informáticos , Relación Estructura-Actividad
4.
J Chem Inf Model ; 60(12): 6579-6594, 2020 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-33295760

RESUMEN

Covalent inhibitors have been gaining increased attention in drug discovery due to their beneficial properties such as long residence time, high biochemical efficiency, and specificity. Optimization of covalent inhibitors is a complex task that involves parallel monitoring of the noncovalent recognition elements and the covalent reactivity of the molecules to avoid potential idiosyncratic side effects. This challenge calls for special design protocols, including a variety of computational chemistry methods. Covalent inhibition proceeds through multiple steps, and calculating free energy changes of the subsequent binding events along the overall binding process would help us to better control the design of drug candidates. Inspired by the recent success of free energy calculations on reversible binders, we developed a complex protocol to compute free energies related to the noncovalent and covalent binding steps with thermodynamic integration and hybrid quantum mechanical/molecular mechanical (QM/MM) potential of mean force (PMF) calculations, respectively. In optimization settings, we examined two therapeutically relevant proteins complexed with congeneric sets of irreversible cysteine targeting covalent inhibitors. In the selectivity paradigm, we studied the irreversible binding of covalent inhibitors to phylogenetically close targets by a mutational approach. The results of the calculations are in good agreement with the experimental free energy values derived from the inhibition and kinetic constants (Ki and kinact) of the enzyme-inhibitor binding. The proposed method might be a powerful tool to predict the potency, selectivity, and binding mechanism of irreversible covalent inhibitors.


Asunto(s)
Descubrimiento de Drogas , Inhibidores Enzimáticos , Cinética , Unión Proteica , Termodinámica
5.
Org Biomol Chem ; 17(34): 7973-7984, 2019 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-31407761

RESUMEN

d-Amino acid oxidase (DAAO) is a flavoenzyme whose inhibition is expected to have therapeutic potential in schizophrenia. DAAO catalyses hydride transfer from the substrate to the flavin in the reductive half-reaction, and the flavin is reoxidized by O2 in the oxidative half-reaction. Quantum mechanical/molecular mechanical calculations were performed and their results together with available experimental information were used to elucidate the detailed mechanism of the oxidative half-reaction. The reaction starts with a single electron transfer from FAD to O2, followed by triplet-singlet transition. FAD oxidation is completed by a proton coupled electron transfer to the oxygen species and the reaction terminates with H2O2 formation by proton transfer from the oxidized substrate to the oxygen species via a chain of water molecules. The substrate plays a double role by facilitating the first electron transfer and by providing a proton in the last step. The mechanism differs from the oxidative half-reaction of other oxidases.


Asunto(s)
D-Aminoácido Oxidasa/química , Flavina-Adenina Dinucleótido/química , Basidiomycota/enzimología , Teoría Funcional de la Densidad , Humanos , Modelos Químicos , Oxidación-Reducción , Oxígeno/química
6.
J Chem Inf Model ; 59(12): 5161-5173, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31715096

RESUMEN

UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) catalyzes the first step in the biosynthesis of the bacterial cell wall. This pathway is essential for the growth of bacteria but missing in mammals, that nominates MurA as an attractive antibacterial target. MurA has a flexible loop whose conformational change is known to be part of the activation mechanism of the enzyme. We have shown that the loop closed conformation makes the proton transfer from Cys115 to His394 possible by a low barrier exothermic process. QM/MM MD simulations revealed that the activated thiolate is able to react with phosphoenolpyruvate (PEP), the natural substrate of MurA. The binding free energy profile of several covalent inhibitors with various warheads reacting with the activated Cys115 was calculated by QM/MM MD simulations and confirmed that reaction barrier heights tend to separate active from inactive compounds. Our results give new insight into the catalytic mechanism and covalent inhibition of MurA and suggest that QM/MM MD simulations are able to support ligand design by providing sensible relative free energy barriers for covalent inhibitors with various warheads reacting with thiolate nucleophiles.


Asunto(s)
Transferasas Alquil y Aril/antagonistas & inhibidores , Transferasas Alquil y Aril/metabolismo , Antibacterianos/farmacología , Biocatálisis , Diseño de Fármacos , Inhibidores Enzimáticos/farmacología , Simulación de Dinámica Molecular , Transferasas Alquil y Aril/química , Secuencia de Aminoácidos , Antibacterianos/metabolismo , Inhibidores Enzimáticos/metabolismo , Conformación Proteica , Teoría Cuántica , Termodinámica
7.
J Comput Aided Mol Des ; 33(9): 787-797, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31542869

RESUMEN

Stabilizing unique receptor conformations, allosteric modulators of G-protein coupled receptors (GPCRs) might open novel treatment options due to their new pharmacological action, their enhanced specificity and selectivity in both binding and signaling. Ligand binding occurs at intrahelical allosteric sites and involves significant induced fit effects that include conformational changes in the local protein environment and water networks. Based on the analysis of available crystal structures of metabotropic glutamate receptor 5 (mGlu5) we investigated these effects in the binding of mGlu5 receptor negative allosteric modulators. A large set of retrospective virtual screens revealed that the use of multiple protein structures and the inclusion of selected water molecules improves virtual screening performance compared to conventional docking strategies. The role of water molecules and protein flexibility in ligand binding can be taken into account efficiently by the proposed docking protocol that provided reasonable enrichment of true positives. This protocol is expected to be useful also for identifying intrahelical allosteric modulators for other GPCR targets.


Asunto(s)
Conformación Proteica , Receptor del Glutamato Metabotropico 5/química , Receptores Acoplados a Proteínas G/química , Agua/química , Regulación Alostérica/genética , Sitio Alostérico/genética , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Indoles/química , Ligandos , Simulación del Acoplamiento Molecular , Unión Proteica/genética , Receptor del Glutamato Metabotropico 5/ultraestructura , Receptores Acoplados a Proteínas G/ultraestructura , Interfaz Usuario-Computador
8.
Molecules ; 24(14)2019 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-31315311

RESUMEN

Large-scale virtual screening of boronic acid derivatives was performed to identify nonpeptidic covalent inhibitors of the ß5i subunit of the immunoproteasome. A hierarchical virtual screening cascade including noncovalent and covalent docking steps was applied to a virtual library of over 104,000 compounds. Then, 32 virtual hits were selected, out of which five were experimentally confirmed. Biophysical and biochemical tests showed micromolar binding affinity and time-dependent inhibitory potency for two compounds. These results validate the computational protocol that allows the screening of large compound collections. One of the lead-like boronic acid derivatives identified as a covalent immunoproteasome inhibitor is a suitable starting point for chemical optimization.


Asunto(s)
Ácidos Borónicos/química , Inhibidores de Proteasoma/química , Ácidos Borónicos/farmacología , Simulación por Computador , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Inhibidores de Proteasoma/farmacología , Relación Estructura-Actividad
9.
Molecules ; 24(2)2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646619

RESUMEN

Most of the known inhibitors of D-amino acid oxidase (DAAO) are small polar molecules recognized by the active site of the enzyme. More recently a new class of DAAO inhibitors has been disclosed that interacts with loop 218-224 at the top of the binding pocket. These compounds have a significantly larger size and more beneficial physicochemical properties than most reported DAAO inhibitors, however, their structure-activity relationship is poorly explored. Here we report the synthesis and evaluation of this type of DAAO inhibitors that open the lid over the active site of DAAO. In order to collect relevant SAR data we varied two distinct parts of the inhibitors. A systematic variation of the pendant aromatic substituents according to the Topliss scheme resulted in DAAO inhibitors with low nanomolar activity. The activity showed low sensitivity to the substituents investigated. The variation of the linker connecting the pendant aromatic moiety and the acidic headgroup revealed that the interactions of the linker with the enzyme were crucial for achieving significant inhibitory activity. Structures and activities were analyzed based on available X-ray structures of the complexes. Our findings might support the design of drug-like DAAO inhibitors with advantageous physicochemical properties and ADME profile.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , D-Aminoácido Oxidasa/química , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Dominio Catalítico , Activación Enzimática , Concentración 50 Inhibidora , Modelos Moleculares , Conformación Molecular , Estructura Molecular , Conformación Proteica , Relación Estructura-Actividad
10.
Bioorg Med Chem Lett ; 28(10): 1693-1698, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29699925

RESUMEN

d-Amino acid oxidase (DAAO) inhibitors are typically small polar compounds with often suboptimal pharmacokinetic properties. Features of the native binding site limit the operational freedom of further medicinal chemistry efforts. We therefore initiated a structure based virtual screening campaign based on the X-ray structures of DAAO complexes where larger ligands shifted the loop (lid opening) covering the native binding site. The virtual screening of our in-house collection followed by the in vitro test of the best ranked compounds led to the identification of a new scaffold with micromolar IC50. Subsequent SAR explorations enabled us to identify submicromolar inhibitors. Docking studies supported by in vitro activity measurements suggest that compounds bind to the active site with a salt-bridge characteristic to DAAO inhibitor binding. In addition, displacement of and interaction with the loop covering the active site contributes significantly to the activity of the most potent compounds.


Asunto(s)
Amidas/farmacología , D-Aminoácido Oxidasa/antagonistas & inhibidores , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Amidas/síntesis química , Amidas/química , Dominio Catalítico/efectos de los fármacos , D-Aminoácido Oxidasa/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Ligandos , Estructura Molecular , Conformación Proteica , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
11.
J Chem Inf Model ; 58(7): 1441-1458, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-29890081

RESUMEN

Increased interest in covalent drug discovery led to the development of computer programs predicting binding mode and affinity of covalent inhibitors. Here we compare the performance of six covalent docking tools, AutoDock4, CovDock, FITTED, GOLD, ICM-Pro, and MOE, for reproducing experimental binding modes in an unprecedently large and diverse set of covalent complexes. It was found that 40-60% of the top scoring ligand poses are within 2.0 Å RMSD from the experimental binding mode. This rate showed program dependent increase and achieved 50-90% when the best RMSD among the top ten scoring poses was considered. This performance is comparable to that of noncovalent docking tools and therefore suggests that anchoring the ligand does not necessarily improve the accuracy of the prediction. The effect of various ligand and protein features on the docking performance was investigated. At the level of warhead chemistry, higher success rate was found for Michael additions, nucleophilic additions and nucleophilic substitutions than for ring opening reactions and disulfide formation. Increasing ligand size and flexibility generally affects pose predictions unfavorably, although AutoDock4, FITTED, and ICM-Pro were found to be less sensitive up to 35 heavy atoms. Increasing the accessibility of the target cysteine tends to result in improved binding mode predictions. Docking programs show protein dependent performance suggesting a target-dependent choice of the optimal docking tool. It was found that noncovalent docking into Cys/Ala mutated proteins by ICM-Pro and Glide reproduced experimental binding modes with only slightly lower performance and at a significantly lower computational expense than covalent docking did. Overall, our results highlight the key factors influencing the docking performance of the investigated tools and they give guidelines for selecting the optimal combination of warheads, ligands, and tools for the system investigated. Results also identify the most important aspects to be considered for developing improved protocols for docking and virtual screening of covalent ligands.


Asunto(s)
Simulación del Acoplamiento Molecular/métodos , Proteínas/química , Programas Informáticos , Algoritmos , Bases de Datos de Proteínas , Ligandos , Unión Proteica , Conformación Proteica , Termodinámica
12.
J Comput Aided Mol Des ; 32(2): 331-345, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29335871

RESUMEN

Optimization of fragment size D-amino acid oxidase (DAAO) inhibitors was investigated using a combination of computational and experimental methods. Retrospective free energy perturbation (FEP) calculations were performed for benzo[d]isoxazole derivatives, a series of known inhibitors with two potential binding modes derived from X-ray structures of other DAAO inhibitors. The good agreement between experimental and computed binding free energies in only one of the hypothesized binding modes strongly support this bioactive conformation. Then, a series of 1-H-indazol-3-ol derivatives formerly not described as DAAO inhibitors was investigated. Binding geometries could be reliably identified by structural similarity to benzo[d]isoxazole and other well characterized series and FEP calculations were performed for several tautomers of the deprotonated and protonated compounds since all these forms are potentially present owing to the experimental pKa values of representative compounds in the series. Deprotonated compounds are proposed to be the most important bound species owing to the significantly better agreement between their calculated and measured affinities compared to the protonated forms. FEP calculations were also used for the prediction of the affinities of compounds not previously tested as DAAO inhibitors and for a comparative structure-activity relationship study of the benzo[d]isoxazole and indazole series. Selected indazole derivatives were synthesized and their measured binding affinity towards DAAO was in good agreement with FEP predictions.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Indazoles/química , Modelos Moleculares , Secuencia de Aminoácidos , Aminoácidos/química , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Termodinámica
13.
Bioorg Med Chem ; 26(8): 1579-1587, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29472125

RESUMEN

d-Amino acid oxidase (DAAO) is a potential target in the treatment of schizophrenia as its inhibition increases brain d-serine level and thus contributes to NMDA receptor activation. Inhibitors of DAAO were sought testing [6+5] type heterocycles and identified isatin derivatives as micromolar DAAO inhibitors. A pharmacophore and structure-activity relationship analysis of isatins and reported DAAO inhibitors led us to investigate 1H-indazol-3-ol derivatives and nanomolar inhibitors were identified. The series was further characterized by pKa and isothermal titration calorimetry measurements. Representative compounds exhibited beneficial properties in in vitro metabolic stability and PAMPA assays. 6-fluoro-1H-indazol-3-ol (37) significantly increased plasma d-serine level in an in vivo study on mice. These results show that the 1H-indazol-3-ol series represents a novel class of DAAO inhibitors with the potential to develop drug candidates.


Asunto(s)
D-Aminoácido Oxidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Indazoles/farmacología , Animales , D-Aminoácido Oxidasa/metabolismo , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Hepatocitos/efectos de los fármacos , Humanos , Indazoles/síntesis química , Indazoles/química , Masculino , Ratones , Microsomas Hepáticos/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Serina/sangre , Relación Estructura-Actividad
14.
Bioorg Med Chem Lett ; 26(22): 5418-5428, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27789137

RESUMEN

N,N-Disubstituted benzylamine derivatives have been identified as CXCR3 antagonists. Compounds were optimized to improve affinity and selectivity, to increase metabolic stability in human and mouse liver microsomes, to increase Caco-2 permeability. Optimization was supported by monitoring physico-chemical properties using both experimental and computational means. Several compounds with double-digit nanomolar CXCR3 affinity, favorable selectivity, microsomal stability, Caco-2 permeability and human hepatocyte clearance have been identified.


Asunto(s)
Bencilaminas/química , Bencilaminas/farmacología , Receptores CXCR3/antagonistas & inhibidores , Receptores CXCR3/metabolismo , Animales , Bencilaminas/farmacocinética , Células CACO-2 , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Relación Estructura-Actividad
15.
Bioorg Med Chem Lett ; 26(22): 5429-5437, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27789141

RESUMEN

A new series of beta amino acids, which act as CXCR3 antagonists, has been identified. The formerly optimized N,N-disubstituted benzylamine derivatives with carboxylic acid function on the N-atom was used as starting point and compounds with carboxyl function not attached to the N-atom were investigated. Affinity, metabolic stability in human and mouse liver microsomes and Caco-2 permeability were optimized. Compounds with double-digit nanomolar CXCR3 affinity, favourable microsomal stability and Caco-2 permeability have been identified.


Asunto(s)
Aminoácidos/química , Aminoácidos/farmacología , Bencilaminas/química , Bencilaminas/farmacología , Receptores CXCR3/antagonistas & inhibidores , Aminoácidos/farmacocinética , Animales , Bencilaminas/farmacocinética , Células CACO-2 , Descubrimiento de Drogas , Humanos , Ratones , Microsomas Hepáticos/metabolismo , Receptores CXCR3/metabolismo
16.
J Chem Inf Model ; 56(1): 234-47, 2016 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-26682735

RESUMEN

Janus kinase inhibitors represent a promising opportunity for the pharmaceutical intervention of various inflammatory and oncological indications. Subtype selective inhibition of these enzymes, however, is still a very challenging goal. In this study, a novel, customized virtual screening protocol was developed with the intention of providing an efficient tool for the discovery of subtype selective JAK2 inhibitors. The screening protocol involves protein ensemble-based docking calculations combined with an Interaction Fingerprint (IFP) based scoring scheme for estimating ligand affinities and selectivities, respectively. The methodology was validated in retrospective studies and was applied prospectively to screen a large database of commercially available compounds. Six compounds were identified and confirmed in vitro, with an indazole-based hit exhibiting promising selectivity for JAK2 vs JAK1. Having demonstrated that the described methodology is capable of identifying subtype selective chemical starting points with a favorable hit rate (11%), we believe that the presented screening concept can be useful for other kinase targets with challenging selectivity profiles.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Janus Quinasa 2/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Interfaz Usuario-Computador , Janus Quinasa 2/química , Janus Quinasa 2/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Especificidad por Sustrato
17.
J Chem Inf Model ; 56(2): 412-22, 2016 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-26760056

RESUMEN

Aminergic G-protein coupled receptors (GPRCs) represent well-known targets of central nervous-system related diseases. In this study a structure-based consensus virtual screening scheme was developed for designing targeted fragment libraries against class A aminergic GPCRs. Nine representative aminergic GPCR structures were selected by first clustering available X-ray structures and then choosing the one in each cluster that performs best in self-docking calculations. A consensus scoring protocol was developed using known promiscuous aminergic ligands and decoys as a training set. The consensus score (FrACS-fragment aminergic consensus score) calculated for the optimized protein ensemble showed improved enrichments in most cases as compared to stand-alone structures. Retrospective validation was carried out on public screening data for aminergic targets (5-HT1 serotonin receptor, TA1 trace-amine receptor) showing 8-17-fold enrichments using an ensemble of aminergic receptor structures. The performance of the structure based FrACS in combination with our ligand-based prefilter (FrAGS) was investigated both in a retrospective validation on the ChEMBL database and in a prospective validation on an in-house fragment library. In prospective validation virtual fragment hits were tested on 5-HT6 serotonin receptors not involved in the development of FrACS. Six out of the 36 experimentally tested fragments exhibited remarkable antagonist efficacies, and 4 showed IC50 values in the low micromolar or submicromolar range in a cell-based assay. Both retrospective and prospective validations revealed that the methodology is suitable for designing focused class A GPCR fragment libraries from large screening decks, commercial compound collections, or virtual databases.


Asunto(s)
Aminas/química , Receptores Acoplados a Proteínas G/química , Animales , Células CHO , Cricetinae , Cricetulus , Modelos Químicos , Simulación del Acoplamiento Molecular , Estructura Molecular
18.
J Comput Aided Mol Des ; 29(1): 59-66, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25326869

RESUMEN

A physicochemical property-based desirability scoring scheme for fragment-based drug discovery was developed for class A aminergic GPCR targeted fragment libraries. Physicochemical property distributions of known aminergic GPCR-active fragments from the ChEMBL database were examined and used for a desirability function-based score. Property-distributions such as log D (at pH 7.4), PSA, pKa (strongest basic center), number of nitrogen atoms, number of oxygen atoms, and the number of rotatable bonds were combined into a desirability score (FrAGS). The validation of the scoring scheme was carried out using both public and proprietary experimental screening data. The scoring scheme is suitable for the design of aminergic GPCR targeted fragment libraries and might be useful for preprocessing fragments before structure based virtual or wet screening.


Asunto(s)
Bases de Datos Factuales , Fragmentos de Péptidos/química , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Descubrimiento de Drogas , Ligandos , Nitrógeno/química , Oxígeno/química , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Relación Estructura-Actividad
19.
ACS Chem Biol ; 19(8): 1743-1756, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-38991015

RESUMEN

Covalent drugs might bear electrophiles to chemically modify their targets and have the potential to target previously undruggable proteins with high potency. Covalent binding of drug-size molecules includes a noncovalent recognition provided by secondary interactions and a chemical reaction leading to covalent complex formation. Optimization of their covalent mechanism of action should involve both types of interactions. Noncovalent and covalent binding steps can be characterized by an equilibrium dissociation constant (KI) and a reaction rate constant (kinact), respectively, and they are affected by both the warhead and the scaffold of the ligand. The relative contribution of these two steps was investigated on a prototypic drug target KRASG12C, an oncogenic mutant of KRAS. We used a synthetically more accessible nonchiral core derived from ARS-1620 that was equipped with four different warheads and a previously described KRAS-specific basic side chain. Combining these structural changes, we have synthesized novel covalent KRASG12C inhibitors and tested their binding and biological effect on KRASG12C by various biophysical and biochemical assays. These data allowed us to dissect the effect of scaffold and warhead on the noncovalent and covalent binding event. Our results revealed that the atropisomeric core of ARS-1620 is not indispensable for KRASG12C inhibition, the basic side chain has little effect on either binding step, and warheads affect the covalent reactivity but not the noncovalent binding. This type of analysis helps identify structural determinants of efficient covalent inhibition and may find use in the design of covalent agents.


Asunto(s)
Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Humanos , Unión Proteica , Mutación , Ligandos
20.
J Comput Chem ; 34(10): 854-61, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23281055

RESUMEN

Mixed quantum mechanics/quantum mechanics (QM/QM) and quantum mechanics/molecular mechanics (QM/MM) methods make computations feasible for extended chemical systems by separating them into subsystems that are treated at different level of sophistication. In many applications, the subsystems are covalently bound and the use of frozen localized orbitals at the boundary is a possible way to separate the subsystems and to ensure a sensible description of the electronic structure near to the boundary. A complication in these methods is that orthogonality between optimized and frozen orbitals has to be warranted and this is usually achieved by an explicit orthogonalization of the basis set to the frozen orbitals. An alternative to this approach is proposed by calculating the wave-function from the Huzinaga equation that guaranties orthogonality to the frozen orbitals without basis set orthogonalization. The theoretical background and the practical aspects of the application of the Huzinaga equation in mixed methods are discussed. Forces have been derived to perform geometry optimization with wave-functions from the Huzinaga equation. Various properties have been calculated by applying the Huzinaga equation for the central QM subsystem, representing the environment by point charges and using frozen strictly localized orbitals to connect the subsystems. It is shown that a two to three bond separation of the chemical or physical event from the frozen bonds allows a very good reproduction (typically around 1 kcal/mol) of standard Hartree-Fock-Roothaan results. The proposed scheme provides an appropriate framework for mixed QM/QM and QM/MM methods.


Asunto(s)
Ácidos Pentanoicos/química , Teoría Cuántica , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA