Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cytogenet Genome Res ; : 1-11, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815552

RESUMEN

INTRODUCTION: Rhipidomys is the second most specious and the most widespread genus of the tribe Thomasomyini. Chromosomal data have been an important tool in the taxonomy of the group that presents low variability of diploid number (2n) and highly variable fundamental numbers (FNs). Despite such diversity, the genus has been studied mainly by classical and banding cytogenetic techniques. METHODS: This study performed a comparative study between R. emiliae (2n = 44, FN = 52), R. macrurus (2n = 44, FN = 49), R. nitela (2n = 50, FN = 71), and R. mastacalis (2n = 44, FN = 72) using chromosome painting probes of two Oryzomyini species. RESULTS: Our analysis revealed pericentric inversion as the main rearrangement involved in the karyotype evolution of the group, although tandem fusions/fissions were also detected. In addition, we detected eight syntenic associations exclusive of the genus Rhipidomys, and three syntenic associations shared between species of the tribe Thomasomyini and Oryzomyini. CONCLUSION: Comparative cytogenetic analysis by ZOO-FISH on genus Rhipidomys supports a pattern of chromosomal rearrangement already suggested by comparative G-banding. However, the results suggest that karyotype variability in the genus could also involve the occurrence of an evolutionary new centromere.

2.
Genetica ; 151(4-5): 267-279, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37656321

RESUMEN

This paper describes the preparation of flow-sorted chromosome paints from the Iberian Rock lizard Iberolacerta monticola, exemplifying their subsequent use in cross-species comparisons of chromosome painting. We carried out comparative analyses of chromosome evolution in the congeneric species I. galani and I. bonnali, as well as in two other species of Lacertini (Lacerta schreiberi and Timon lepidus) whose sex chromosomes were also studied through comparative genomic hybridization. Most species of Lacertini possess a diplod number of 2n = 38, with 36 acrocentric macrochromosomes and 2 microchromosomes. However, the nine species included in the genus Iberolacerta do not possess microchromosomes. Furthermore, very conspicuous differences from the standard Lacertini karyotype were observed in the three Pyrenean species of this genus, which included several biarmed metacentrics and a Z1Z2W multiple sex-chromosome system. With the possible exception of L. schreiberi, all the species of the family Lacertidae described to date appear to share homologous Z chromosomes, which date back to the last common ancestor of the whole group. We provide conclusive evidence that L. schreiberi should no longer be considered an exception to this rule, and demonstrate that the loss of microchromosomes in Iberolacerta was produced by their fusion to a middle-sized chromosome. Furthermore, we show that the multiple sex-chromosome system of the Pyrenean species of Iberolacerta originated from the fusion of the ancestral W chromosome with one of the shortest autosomes, and provide additional evidence of the fast evolution of DNA sequences linked to the W chromosome in Lacertini.


Asunto(s)
Lagartos , Cromosomas Sexuales , Animales , Hibridación Genómica Comparativa , Cariotipificación , Cariotipo , Cromosomas Sexuales/genética , Lagartos/genética , Evolución Molecular
3.
Cytogenet Genome Res ; 162(6): 312-322, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36463851

RESUMEN

The family Cervidae is the second most diverse family in the infraorder Pecora and is characterized by a striking variability in the diploid chromosome numbers among species, ranging from 6 to 70. Chromosomal rearrangements in Cervidae have been studied in detail by chromosome painting. There are many comparative cytogenetic data for both subfamilies (Cervinae and Capreolinae) based on homologies with chromosomes of cattle and Chinese muntjac. Previously it was found that interchromosomal rearrangements are the major type of rearrangements occurring in the Cervidae family. Here, we build a detailed chromosome map of a female reindeer (Rangifer tarandus, 2n = 70, Capreolinae) and a female black muntjac (Muntiacus crinifrons, 2n = 8, Cervinae) with dromedary homologies to find out what other types of rearrangements may have underlined the variability of Cervidae karyotypes. To track chromosomal rearrangements and the distribution of nucleolus organizer regions not only during Cervidae but also Pecora evolution, we summarized new data and compared them with chromosomal maps of other already studied species. We discuss changes in the pecoran ancestral karyotype in the light of new painting data. We show that intrachromosomal rearrangements in autosomes of Cervidae are more frequent than previously thought: at least 13 inversions in evolutionary breakpoint regions were detected.


Asunto(s)
Ciervos , Ciervo Muntjac , Animales , Bovinos/genética , Femenino , Ciervo Muntjac/genética , Ciervos/genética , Cariotipificación , Cariotipo , Pintura Cromosómica , Aberraciones Cromosómicas , Evolución Molecular
4.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361851

RESUMEN

Tandemly arranged and dispersed repetitive DNA sequences are important structural and functional elements that make up a significant portion of vertebrate genomes. Using high throughput, low coverage whole genome sequencing followed by bioinformatics analysis, we have identified seven major tandem repetitive DNAs and two fragments of LTR retrotransposons in the genome of the Nile crocodile (Crocodylus niloticus, 2n = 32). The repeats showed great variability in structure, genomic organization, and chromosomal distribution as revealed by fluorescence in situ hybridization (FISH). We found that centromeric and pericentromeric heterochromatin of C. niloticus is composed of previously described in Crocodylus siamensis CSI-HindIII and CSI-DraI repetitive sequence families, a satellite revealed in Crocodylus porosus, and additionally contains at least three previously unannotated tandem repeats. Both LTR sequences identified here belong to the ERV1 family of endogenous retroviruses. Each pericentromeric region was characterized by a diverse set of repeats, with the exception of chromosome pair 4, in which we found only one type of satellite. Only a few repeats showed non-centromeric signals in addition to their centromeric localization. Mapping of 18S-28S ribosomal RNA genes and telomeric sequences (TTAGGG)n did not demonstrate any co-localization of these sequences with revealed centromeric and pericentromeric heterochromatic blocks.


Asunto(s)
Caimanes y Cocodrilos , Animales , Caimanes y Cocodrilos/genética , Hibridación Fluorescente in Situ , Centrómero/genética , Secuencias Repetitivas de Ácidos Nucleicos , ARN Ribosómico 18S/genética
5.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36555478

RESUMEN

The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.


Asunto(s)
Lagartos , Animales , Masculino , Sintenía/genética , Lagartos/genética , Cromosomas Sexuales/genética , Cromosomas , Genoma , Cariotipo , Evolución Molecular
6.
Genome Res ; 2018 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-29367313

RESUMEN

Approximately half the mammalian genome is composed of repetitive sequences, and accumulating evidence suggests that some may have an impact on genome function. Here, we characterized a large array class of repeats of long-interspersed elements (LINE-1). Although widely distributed in mammals, locations of such arrays are species specific. Using targeted deletion, we asked whether a 170-kb LINE-1 array located at a mouse imprinted domain might function as a modulator of local transcriptional control. The LINE-1 array is lamina associated in differentiated ES cells consistent with its AT-richness, and although imprinting occurs both proximally and distally to the array, active LINE-1 transcripts within the tract are biallelically expressed. Upon deletion of the array, no perturbation of imprinting was observed, and abnormal phenotypes were not detected in maternal or paternal heterozygous or homozygous mutant mice. The array does not shield nonimprinted genes in the vicinity from local imprinting control. Reduced neural expression of protein-coding genes observed upon paternal transmission of the deletion is likely due to the removal of a brain-specific enhancer embedded within the LINE array. Our findings suggest that presence of a 170-kb LINE-1 array reflects the tolerance of the site for repeat insertion rather than an important genomic function in normal development.

7.
Am J Med Genet A ; 185(11): 3236-3241, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34056828

RESUMEN

An account is given of the introduction of human cytogenetics to the Division of Medical Genetics at Johns Hopkins Hospital, and the first 3 years' work of the chromosome diagnostic laboratory that was established at the time. Research on human sex chromosome disorders, including novel discoveries in the Turner and Klinefelter syndromes, is described together with original observations on chromosome behavior at mitosis. It is written in celebration of the centenary of the birth of Victor McKusick, the acknowledged father of Medical Genetics, who established the Division and had the foresight to ensure that it included the investigation of human chromosomes.


Asunto(s)
Citogenética/historia , Síndrome de Klinefelter/genética , Trastornos de los Cromosomas Sexuales/genética , Síndrome de Turner/genética , Aberraciones Cromosómicas , Historia del Siglo XX , Hospitales , Humanos , Síndrome de Klinefelter/diagnóstico , Síndrome de Klinefelter/historia , Aberraciones Cromosómicas Sexuales , Trastornos de los Cromosomas Sexuales/diagnóstico , Trastornos de los Cromosomas Sexuales/historia , Síndrome de Turner/diagnóstico , Síndrome de Turner/historia
8.
Genet Mol Biol ; 44(2): e20200241, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33821875

RESUMEN

Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.

9.
Cytogenet Genome Res ; 160(3): 134-140, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32092753

RESUMEN

Reptiles show a remarkable diversity of sex determination mechanisms and sex chromosome systems, derived from different autosomal pairs. The origin of the ZW sex chromosomes of Lacerta agilis, a widespread Eurasian lizard species, is a matter of discussion: is it a small macrochromosome from the 11-18 group common to all lacertids, or does this species have a unique ZW pair derived from the large chromosome 5? Using independent molecular cytogenetic methods, we investigated the karyotype of L. agilis exigua from Siberia, Russia, to identify the sex chromosomes. FISH with a flow-sorted chromosome painting probe derived from L. strigata and specific to chromosomes 13, 14, and Z confirmed that the Z chromosome of L. agilis is a small macrochromosome, the same as in L. strigata. FISH with the telomeric probe showed an extensive accumulation of the telomere-like repeat in the W chromosome in agreement with previous studies, excluding the possibility that the lineages of L. agilis studied in different works could have different sex chromosome systems due to a putative intra-species polymorphism. Our results reinforce the idea of the stability of the sex chromosomes and lack of evidence for sex-chromosome turnovers in known species of Lacertidae.


Asunto(s)
Evolución Biológica , Lagartos/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cromosomas Sexuales/genética , Animales , Hibridación Fluorescente in Situ , Federación de Rusia
10.
Genet Mol Biol ; 43(3): e20200018, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32542304

RESUMEN

Cytogenetic analyses of the Suboscines species are still scarce, and so far, there is no karyotype description of any species belonging to the family Conopophagidae. Thus, the aim of this study is to describe and analyze the karyotype of Conopophaga lineata by chromosome painting using Gallus gallus (GGA) probes and to identify the location of the 18/28S rDNA cluster. Metaphases were obtained from fibroblast culture from two individuals of C. lineata. We observed a diploid number of 2n=78. GGA probes showed that most ancestral syntenies are conserved, except for the fission of GGA1 and GGA2, into two distinct pairs each. We identified the location of 18S rDNA genes in a pair of microchromosomes. The fission of the syntenic group corresponding to GGA2 was observed in other Furnariida, and hence may correspond to a chromosomal synapomorphy for the species of Parvorder Furnariida.

11.
Genet Mol Biol ; 43(4): e20200162, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33410454

RESUMEN

Hummingbirds (Trochilidae) are one of the most enigmatic avian groups, and also among the most diverse, with approximately 360 recognized species in 106 genera, of which 43 are monotypic. This fact has generated considerable interest in the evolutionary biology of the hummingbirds, which is reflected in a number of DNA-based studies. However, only a few of them explored chromosomal data. Given this, the present study provides an analysis of the karyotypes of three species of Neotropical hummingbirds, Anthracothorax nigricollis (ANI), Campylopterus largipennis (CLA), and Hylocharis chrysura (HCH), in order to analyze the chromosomal processes associated with the evolution of the Trochilidae. The diploid number of ANI is 2n=80 chromosomes, while CLA and HCH have identical karyotypes, with 2n=78. Chromosome painting with Gallus gallus probes (GGA1-12) shows that the hummingbirds have a karyotype close to the proposed ancestral bird karyotype. Despite this, an informative rearrangement was detected: an in-tandem fusion between GGA7 and GGA9 found in CLA and HCH, but absent in ANI. A comparative analysis with the tree of life of the hummingbirds indicated that this fusion must have arisen following the divergence of a number of hummingbird species.

12.
Genet Mol Biol ; 43(1): e20190232, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32162650

RESUMEN

Despite the richness of species in the Hirudinidae family, little is known about the genome organization of swallows. The Progne tapera species presents genetic and morphological difference when compared to other members of the same genus. Hence, the aims of this study were to analyze the chromosomal evolution of three species Progne tapera, Progne chalybea and Pygochelidon cyanoleuca - by comparative chromosome painting using two sets of probes, Gallus gallus and Zenaida auriculata, in order to determine chromosome homologies and the relationship between these species. All karyotypes exhibited 76 chromosomes with similar morphology, except for the 5th, 6th and 7th chromosome pairs in P. cyanoleuca. Additionally, comparative chromosome painting demonstrated the same hybridization pattern in the two Progne, which was similar to the putative avian ancestral karyotype, except for the centric fission in the first pair, as found in other Passeriformes. Thus, these data display a close relationship between the Progne species. Although P. cyanoleuca demonstrated the same fission in the first pair of the ancestral syntenic (GGA1), it also showed an additional chromosomal rearrangement for this species, namely a fusion with a microchromosome in the seventh pair.

13.
Genet Mol Biol ; 43(1): e20190236, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32105288

RESUMEN

The order Charadriiformes comprises three major clades: Lari and Scolopaci as sister group to Charadrii. Until now, only three Charadriiformes species have been studied by chromosome painting: Larus argentatus (Lari), Burhinus oedicnemus and Vanellus chilensis (Charadrii). Hence, there is a lack of information concerning the third clade, Scolapaci. Based on this, and to gain a better understanding of karyotype evolution in the order Charadriiformes, we applied conventional and molecular cytogenetic approaches in a species belonging to clade Scolopaci - the wattled jacana (Jacana jacana) - using Gallus gallus and Zenaida auriculata chromosome-specific probes. Cross-species evaluation of J. jacana chromosomes shows extensive genomic reshuffling within macrochromosomes during evolution, with multiple fission and fusion events, although the diploid number remains at high level (2n=82). Interestingly, this species does not have the GGA7-8 fusion, which was found in two representatives of Charadrii clade, reinforcing the idea that this fusion may be exclusive to the Charadrii clade. In addition, it is shown that the chromosome evolution in Charadriiformes is complex and resulted in species with typical and atypical karyotypes. The karyotypic features of Scolopaci are very different from those of Charadrii and Lari, indicating that after divergence, each suborder has undergone different chromosome rearrangements.

14.
Genome Res ; 26(4): 530-40, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26934921

RESUMEN

The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.


Asunto(s)
Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Mamíferos/genética , Cromosoma Y , Animales , Biología Computacional/métodos , Reordenamiento Génico , Genoma , Genómica , Gorilla gorilla/genética , Humanos , Secuencias Invertidas Repetidas , Masculino , Repeticiones de Microsatélite , Pan troglodytes/genética , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN
15.
Mol Genet Genomics ; 294(1): 13-21, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30146671

RESUMEN

Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.


Asunto(s)
Cromosomas/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lagartos/genética , Análisis de Secuencia de ADN/métodos , Animales , División Celular , Proteínas Cromosómicas no Histona/genética , Mapeo Cromosómico , Pintura Cromosómica , Evolución Molecular , Proteínas de Microfilamentos/genética , Filogenia
16.
Cytogenet Genome Res ; 157(1-2): 46-52, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30904910

RESUMEN

Chromosome homologies in reptiles have been investigated extensively by gene mapping and chromosome painting. Relative chromosome size can be estimated roughly from conventional karyotypes, but chromosome GC content cannot be evaluated by any of these approaches. However, GC content can be obtained by whole-genome sequencing, although complete data are available only for a limited number of reptilian species. Chromosomes can be characterized by size and GC content in bivariate flow karyotypes, in which the distribution of peaks represents the differences. We have analysed flow karyotypes from 9 representative squamate species and show chromosome profiles for each species based on the relationship between size and GC content. Our results reveal that the GC content of macrochromosomes is invariable in the 9 species. A higher GC content was found in microchromosomes, similar to profiles previously determined in crocodile, turtle, and chicken. The findings suggest that karyotype evolution in reptiles is characterized by unique features of chromosome GC content.


Asunto(s)
Composición de Base/genética , Cromosomas/genética , Cariotipificación/métodos , Reptiles/genética , Animales , Evolución Molecular , Tamaño del Genoma , Filogenia , Reptiles/clasificación , Especificidad de la Especie , Secuenciación Completa del Genoma/métodos
17.
Cytogenet Genome Res ; 157(1-2): 115-122, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30820011

RESUMEN

Pleurodont lizards are characterized by an ancient system of sex chromosomes. Along with stability of the central component of the system (homologous to the X chromosome of Anolis carolinensis [Dactyloidae], ACAX), in some genera the ancestral sex chromosomes are fused with microautosomes, forming neo-sex chromosomes. The genus Ctenonotus (Dactyloidae) is characterized by multiple X1X1X2X2/X1X2Y sex chromosomes. According to cytogenetic data, the large neo-Y chromosome is formed by fusion of the ancestral Y chromosome with 2 microautosomes (homologous to ACA10 or ACA11 and ACA12), the X1 chromosome is formed by fusion of the ancestral X chromosome with the autosome homologous to ACA10 or ACA11, and the X2 chromosome is homologous to autosome ACA12. To determine more precisely the content and evolution of the Ctenonotus sex chromosomes, we sequenced flow-sorted chromosomes (both sex chromosomes and microautosomes as control) of 2 species with a similar system: C. pogus and C. sabanus. Our results indicate that the translocated part of the X1 is homologous to ACA11, X2 is homologous to ACA12, and the Y contains segments homologous to both ACA11 and ACA12. Molecular divergence estimates suggest that the ancestral X-derived part has completely degenerated in the Y of Ctenonotus, similar to the degeneration of the Norops sagrei Y chromosome (Dactyloidae). The newly added regions show loss of DNA content, but without degeneration of the conserved regions. We hypothesize that the translocation of autosomal blocks onto sex chromosomes facilitated rapid degeneration of the pseudoautosomal region on the ancestral Y.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Lagartos/genética , Cromosoma X/genética , Cromosoma Y/genética , Animales , Pintura Cromosómica/métodos , Cromosomas/genética , ADN/química , ADN/genética , ADN/metabolismo , Femenino , Lagartos/clasificación , Masculino , Especificidad de la Especie , Translocación Genética
18.
Cytogenet Genome Res ; 159(1): 32-38, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31542782

RESUMEN

Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.


Asunto(s)
Aves/genética , Pintura Cromosómica/veterinaria , Cromosomas/genética , Variación Genética/genética , Cariotipo , Animales , Brasil , Diploidia , Evolución Molecular , Femenino , Filogenia
19.
Chromosome Res ; 26(3): 211-223, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29882066

RESUMEN

Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the karyotype evolution within Columbiformes remains unclear. To delineate the synteny-conserved segments and karyotypic differences among four Columbidae species, we used chromosome painting from Gallus gallus (GGA, 2n = 78) and Leucopternis albicollis (LAL, 2n = 68). Besides that, a set of painting probes for the eared dove, Zenaida auriculata (ZAU, 2n = 76), was generated from flow-sorted chromosomes. Chromosome painting with GGA and ZAU probes showed conservation of the first ten ancestral pairs in Z. auriculata, Columba livia, and Columbina picui, while in Leptotila verreauxi, fusion of the ancestral chromosomes 6 and 7 was observed. However, LAL probes revealed a complex reorganization of ancestral chromosome 1, involving paracentric and pericentric inversions. Because of the presence of similar intrachromosomal rearrangements in the chromosomes corresponding to GGA1q in the Columbidae and Passeriformes species but without a common origin, these results are consistent with the recent proposal of divergence within Neoaves (Passerea and Columbea). In addition, inversions in chromosome 2 were identified in C. picui and L. verreauxi. Thus, in four species of distinct genera of the Columbidae family, unique chromosomal rearrangements have occurred during karyotype evolution, confirming that despite conservation of the ancestral syntenic groups, these chromosomes have been modified by the occurrence of intrachromosomal rearrangements.


Asunto(s)
Pintura Cromosómica , Columbidae/genética , Gorriones/genética , Animales , Pollos , Inversión Cromosómica , Cromosomas/genética , Evolución Molecular , Reordenamiento Génico , Humanos , Cariotipo , Sintenía
20.
Int J Mol Sci ; 20(18)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510061

RESUMEN

The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.


Asunto(s)
Arvicolinae/genética , Cromosomas de los Mamíferos/genética , Especiación Genética , Variación Genética , Translocación Genética/genética , Animales , Arvicolinae/clasificación , Bandeo Cromosómico , Diploidia , Geografía , Hibridación Genética , Cariotipo , Tayikistán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA