Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Org Biomol Chem ; 22(17): 3425-3438, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38590227

RESUMEN

We have applied the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction to prepare a library of ten coumarin-azasugar-benzyl conjugates and two phthalimide-azasugar-benzyl conjugates with potential anti-Alzheimer and anti-cancer properties. The compounds were evaluated as cholinesterase inhibitors, demonstrating a general preference, of up to 676-fold, for the inhibition of butyrylcholinesterase (BuChE) over acetylcholinesterase (AChE). Nine of the compounds behaved as stronger BuChE inhibitors than galantamine, one of the few drugs in clinical use against Alzheimer's disease. The most potent BuChE inhibitor (IC50 = 74 nM) was found to exhibit dual activities, as it also showed high activity (GI50 = 5.6 ± 1.1 µM) for inhibiting the growth of WiDr (colon cancer cells). In vitro studies on this dual-activity compound on Cerebellar Granule Neurons (CGNs) demonstrated that it displays no neurotoxicity.


Asunto(s)
Antineoplásicos , Butirilcolinesterasa , Proliferación Celular , Inhibidores de la Colinesterasa , Cumarinas , Cumarinas/química , Cumarinas/farmacología , Cumarinas/síntesis química , Butirilcolinesterasa/metabolismo , Humanos , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/síntesis química , Proliferación Celular/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Animales , Línea Celular Tumoral , Relación Estructura-Actividad , Estructura Molecular , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Aza/química , Compuestos Aza/farmacología , Compuestos Aza/síntesis química , Relación Dosis-Respuesta a Droga , Neuronas/efectos de los fármacos
2.
Bioorg Chem ; 145: 107168, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38354500

RESUMEN

Being aware of the need to develop more efficient therapies against cancer, herein we disclose an innovative approach for the design of selective antiproliferative agents. We have accomplished the conjugation of a coumarin fragment with lipophilic cations (triphenylphosphonium salts, guanidinium) for providing mitochondriotropic agents that simultaneously target also carbonic anhydrases IX and XII, involved in the development and progression of cancer. The new compounds prepared herein turned out to be strong inhibitors of carbonic anhydrases IX and XII of human origin (low-to-mid nM range), also endowed with high selectivity, exhibiting negligible activity towards cytosolic CA isoforms. Key interactions with the enzyme were analysed using docking and molecular dynamics simulations. Regarding their in vitro antiproliferative activities, an increase of the tether length connecting both pharmacophores led to a clear improvement in potency, reaching the submicromolar range for the lead compounds, and an outstanding selectivity towards tumour cell lines (S.I. up to >357). Cytotoxic effects were also analysed on MDR cell lines under hypoxic and normoxic conditions. Chemoresistance exhibited by phosphonium salts, and not by guanidines, against MDR cells was based on the fact that the former were found to be substrates of P-glycoprotein (P-gp), the pump responsible for extruding foreign chemicals; this situation was reversed by administrating tariquidar, a third generation P-gp inhibitor. Moreover, phosphonium salts provoked a profound depolarization of mitochondria membranes from tumour cells, thus probably compromising their oxidative metabolism. To gain insight into the mode of action of title compounds, continuous live cell microscopy was employed; interestingly, this technique revealed two different antiproliferative mechanisms for both families of mitocans. Whereas phosphonium salts had a cytostatic effect, blocking cell division, guanidines led to cell death via apoptosis.


Asunto(s)
Antineoplásicos , Anhidrasas Carbónicas , Compuestos Organofosforados , Humanos , Anhidrasas Carbónicas/metabolismo , Sales (Química) , Relación Estructura-Actividad , Antígenos de Neoplasias/metabolismo , Antineoplásicos/química , Cumarinas/química , Guanidinas , Inhibidores de Anhidrasa Carbónica/química , Estructura Molecular
3.
Bioorg Chem ; 133: 106410, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36822000

RESUMEN

Most of the currently available cytotoxic agents for tackling cancer are devoid of selectivity, thus causing severe side-effects. This situation stimulated us to develop new antiproliferative agents with enhanced affinity towards tumour cells. We focused our attention on novel chalcogen-containing compounds (thiosemicarbazones, disulfides, selenoureas, thio- and selenocyanates), and particularly on selenium derivatives, as it has been documented that this kind of compounds might act as prodrugs releasing selenium-based reactive species on tumour cells. Particularly interesting in terms of potency and selectivity was a pharmacophore comprised by a selenocyanato-alkyl fragment connected to a p-phenylenediamine residue, where the nature of the second amino moiety (free, Boc-protected, enamine-protected) provided a wide variety of antiproliferative activities, ranging from the low micromolar to the nanomolar values. The optimized structure was in turn conjugated through a peptide linkage with biotin (vitamin B7), a cellular growth promoter, whose receptor is overexpressed in numerous cancer cells; the purpose was to develop a selective vector towards malignant cells. Such biotinylated derivative behaved as a very strong antiproliferative agent, achieving GI50 values in the low nM range for most of the tested cancer cells; moreover, it was featured with an outstanding selectivity, with GI50 > 100 µM against human fibroblasts. Mechanistic studies on the mode of inhibition of the biotinylated selenocyanate revealed (Annexin-V assay) a remarkable increase in the number of apoptotic cells compared to the control experiment; moreover, depolarization of the mitochondrial membrane was detected by flow cytometry analysis, and with fluorescent microscopy, what supports the apoptotic cell death. Prior to the apoptotic events, cytostatic effects were observed against SW1573 cells using label-free cell-living imaging; therefore, tumour cell division was prevented. Multidrug resistant cell lines exhibited a reduced sensitivity towards the biotinylated selenocyanate, probably due to its P-gp-mediated efflux. Remarkably, antiproliferative levels could be restored by co-administration with tariquidar, a P-gp inhibitor; this approach can, therefore, overcome multidrug resistance mediated by the P-gp efflux system.


Asunto(s)
Antineoplásicos , Citostáticos , Selenio , Humanos , Citostáticos/farmacología , Línea Celular Tumoral , Selenio/farmacología , Cianatos/farmacología , Apoptosis , Proliferación Celular , Antineoplásicos/farmacología , Antineoplásicos/química , Relación Estructura-Actividad
4.
J Enzyme Inhib Med Chem ; 38(1): 349-360, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36458374

RESUMEN

The copper-catalysed azide-alkyne cycloaddition was applied to prepare three enantiomeric pairs of heterodimers containing a tacrine residue and a 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) or 1,4-dideoxy-1,4-imino-L-arabinitol (LAB) moiety held together via linkers of variable lengths containing a 1,2,3-triazole ring and 3, 4, or 7 CH2 groups. The heterodimers were tested as inhibitors of butyrylcholinesterase (BuChE) and acetylcholinesterase (AChE). The enantiomeric heterodimers with the longest linkers exhibited the highest inhibition potencies for AChE (IC50 = 9.7 nM and 11 nM) and BuChE (IC50 = 8.1 nM and 9.1 nM). AChE exhibited the highest enantioselectivity (ca. 4-fold). The enantiomeric pairs of the heterodimers were found to be inactive (GI50 > 100 µM), or to have weak antiproliferative properties (GI50 = 84-97 µM) against a panel of human cancer cells.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , Humanos , Tacrina/farmacología , Alquinos
5.
Int J Mol Sci ; 24(11)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37298353

RESUMEN

The involvement of carbonic anhydrases (CAs) in a myriad of biological events makes the development of new inhibitors of these metalloenzymes a hot topic in current Medicinal Chemistry. In particular, CA IX and XII are membrane-bound enzymes, responsible for tumour survival and chemoresistance. Herein, a bicyclic carbohydrate-based hydrophilic tail (imidazolidine-2-thione) has been appended to a CA-targeting pharmacophore (arylsulfonamide, coumarin) with the aim of studying the influence of the conformational restriction of the tail on the CA inhibition. For this purpose, the coupling of sulfonamido- or coumarin-based isothiocyanates with reducing 2-aminosugars, followed by the sequential acid-promoted intramolecular cyclization of the corresponding thiourea and dehydration reactions, afforded the corresponding bicyclic imidazoline-2-thiones in good overall yield. The effects of the carbohydrate configuration, the position of the sulfonamido motif on the aryl fragment, and the tether length and substitution pattern on the coumarin were analysed in the in vitro inhibition of human CAs. Regarding sulfonamido-based inhibitors, the best template turned out to be a d-galacto-configured carbohydrate residue, meta-substitution on the aryl moiety (9b), with Ki against CA XII within the low nM range (5.1 nM), and remarkable selectivity indexes (1531 for CA I and 181.9 for CA II); this provided an enhanced profile in terms of potency and selectivity compared to more flexible linear thioureas 1-4 and the drug acetazolamide (AAZ), used herein as a reference compound. For coumarins, the strongest activities were found for substituents devoid of steric hindrance (Me, Cl), and short linkages; derivatives 24h and 24a were found to be the most potent inhibitors against CA IX and XII, respectively (Ki = 6.8, 10.1 nM), and also endowed with outstanding selectivity (Ki > 100 µM against CA I, II, as off-target enzymes). Docking simulations were conducted on 9b and 24h to gain more insight into the key inhibitor-enzyme interactions.


Asunto(s)
Anhidrasas Carbónicas , Neoplasias , Humanos , Estructura Molecular , Inhibidores de Anhidrasa Carbónica/farmacología , Inhibidores de Anhidrasa Carbónica/química , Relación Estructura-Actividad , Anhidrasa Carbónica IX/metabolismo , Anhidrasas Carbónicas/metabolismo , Antígenos de Neoplasias , Cumarinas/farmacología , Cumarinas/química , Glicoconjugados , Carbohidratos
6.
Bioorg Med Chem ; 68: 116807, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653868

RESUMEN

The chromane ring system is widely distributed in nature and has proven to be a highly potent pharmacophore in medicinal chemistry, which includes the area of Alzheimer's and Parkinson's diseases. We report on the development of a gem-dimethylchroman-4-ol family that was shown to give good inhibition of equine serum butyrylcholinesterase (eqBuChE) (in the range 2.9 - 7.3 µM) and in the same range of currently used drugs. We also synthesized a small library of gem-dimethylchroman-4-amine compounds, via a simple reductive amination of the corresponding chromanone precursor, that were also selective for eqBuChE presenting inhibitions in the range 7.6 - 67 µM. Kinetic studies revealed that they were mixed inhibitors. Insights into their mechanism of action were obtained through molecular docking and STD-NMR experiments, and the most active examples showed excellent drug-likeness and pharmacological properties predicted using Swiss-ADME. We also prepared a set of propargyl gem-dimethylchromanamines, for monoamine oxidase (MAO) inhibition but they were only moderately active (the best being 28% inhibition at 1 µM on MAO-B). Overall, our compounds were found to be best suited as inhibitors for BuChE.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Caballos , Cinética , Simulación del Acoplamiento Molecular , Estructura Molecular , Monoaminooxidasa/metabolismo , Inhibidores de la Monoaminooxidasa/química , Inhibidores de la Monoaminooxidasa/farmacología , Relación Estructura-Actividad
7.
Bioorg Chem ; 127: 105983, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35779403

RESUMEN

Concerned by the urgent need to explore new approaches for the treatment of Alzheimer's disease, we herein describe the synthesis and evaluation of new multitarget molecules. In particular, we have focused our attention on modulating the activity of cholinesterases (AChE, BuChE) in order to restore the levels of the neurotransmitter acetylcholine, and of O-GlcNAcase (OGA), which is associated with hyperphosphorylation of tau protein, in turn related to the formation of neurofibrillary tangles in the brain. Specifically, we considered the possibility of using carbohydrate-fused 1,3-selenazolines, decorated with a 2-alkylamino or 2-alkoxy moieties. On the one hand, the presence of a selenium atom might be useful in modulating the intrinsic oxidative stress in AD. On the other hand, such bicyclic structure might behave as a transition state analogue of OGA hydrolysis. Moreover, upon protonation, it could mimic the ammonium cation of acetylcholine. The lead compound, bearing a propylamino moiety on C-2 position of the selenazoline motif, proved to be a good candidate against AD; it turned out to be a strong inhibitor of BuChE (IC50 = 0.46 µM), the most prevalent cholinesterase in advanced disease stages, with a roughly 4.8 selectivity index in connection to AChE (IC50 = 2.2 µM). This compound exhibited a roughly 12-fold increase in activity compared to galantamine, one of the currently marketed drugs against AD, and a selective AChE inhibitor, and virtually the same activity as rivastigmine, a selective BuChE inhibitor. Furthermore, it was also endowed with a strong inhibitory activity against human OGA, within the nanomolar range (IC50 = 0.053 µM for hOGA, >100 µM for hHexB), and, thus, with an outstanding selectivity (IC50(hHexB)/IC50(hOGA) > 1887). The title compounds also exhibited an excellent selectivity against a panel of glycosidases and a negligible cytotoxicity against tumor and non-tumor cell lines. Docking simulations performed on the three target enzymes (AChE, BuChE, and OGA) revealed the key interactions to rationalize the biological data.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Colinesterasas , beta-N-Acetilhexosaminidasas , Acetilcolina , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Carbohidratos , Inhibidores de la Colinesterasa/química , Colinesterasas/metabolismo , Humanos , Simulación del Acoplamiento Molecular , Nootrópicos/farmacología , Relación Estructura-Actividad , beta-N-Acetilhexosaminidasas/antagonistas & inhibidores
8.
J Enzyme Inhib Med Chem ; 37(1): 2395-2402, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36065944

RESUMEN

The synthesis of four heterodimers in which the copper(I)-catalysed azide-alkyne cycloaddition was employed to connect a 1-deoxynojirimycin moiety with a benzotriazole scaffold is reported. The heterodimers were investigated as inhibitors against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The heterodimers displayed preferential inhibition (> 9) of BuChE over AChE in the micromolar concentration range (IC50 = 7-50 µM). For the most potent inhibitor of BuChE, Cornish-Bowden plots were used, which demonstrated that it behaves as a mixed inhibitor. Modelling studies of the same inhibitor demonstrated that the benzotriazole and 1-deoxynojirimycin moiety is accommodated in the peripheral anionic site and catalytic anionic site, respectively, of AChE. The binding mode to BuChE was different as the benzotriazole moiety is accommodated in the catalytic anionic site.


Asunto(s)
Acetilcolinesterasa , Butirilcolinesterasa , 1-Desoxinojirimicina , Acetilcolinesterasa/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Triazoles
9.
J Enzyme Inhib Med Chem ; 37(1): 781-791, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35193444

RESUMEN

Herein, we report the preparation of a panel of Schiff bases analogues as antiprotozoal agents by modification of the stereoelectronic effects of the substituents on N-1 and N-4 and the nature of the chalcogen atom (S, Se). These compounds were evaluated towards Trypanosoma cruzi and Trichomonas vaginalis. Thiosemicarbazide 31 showed the best trypanocidal profile (epimastigotes), similar to benznidazole (BZ): IC50 (31)=28.72 µM (CL-B5 strain) and 33.65 µM (Y strain), IC50 (BZ)=25.31 µM (CL-B5) and 22.73 µM (Y); it lacked toxicity over mammalian cells (CC50 > 256 µM). Thiosemicarbazones 49, 51 and 63 showed remarkable trichomonacidal effects (IC50 =16.39, 14.84 and 14.89 µM) and no unspecific cytotoxicity towards Vero cells (CC50 ≥ 275 µM). Selenoisosters 74 and 75 presented a slightly enhanced activity (IC50=11.10 and 11.02 µM, respectively). Hydrogenosome membrane potential and structural changes were analysed to get more insight into the trichomonacidal mechanism.


Asunto(s)
Antiprotozoarios/farmacología , Semicarbazonas/farmacología , Trichomonas vaginalis/efectos de los fármacos , Trypanosoma cruzi/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Relación Dosis-Respuesta a Droga , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Semicarbazonas/síntesis química , Semicarbazonas/química , Relación Estructura-Actividad
10.
J Enzyme Inhib Med Chem ; 37(1): 168-177, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34894971

RESUMEN

We have carried out the design, synthesis, and evaluation of a small library of 2-aminobenzoxazole-appended coumarins as novel inhibitors of tumour-related CAs IX and XII. Substituents on C-3 and/or C-4 positions of the coumarin scaffold, and on the benzoxazole moiety, together with the length of the linker connecting both units were modified to obtain useful structure-activity relationships. CA inhibition studies revealed a good selectivity towards tumour-associated CAs IX and XII (Ki within the mid-nanomolar range in most of the cases) in comparison with CAs I, II, IV, and VII (Ki > 10 µM); CA IX was found to be slightly more sensitive towards structural changes. Docking calculations suggested that the coumarin scaffold might act as a prodrug, binding to the CAs in its hydrolysed form, which is in turn obtained due to the esterase activity of CAs. An increase of the tether length and of the substituents steric hindrance was found to be detrimental to in vitro antiproliferative activities. Incorporation of a chlorine atom on C-3 of the coumarin moiety achieved the strongest antiproliferative agent, with activities within the low micromolar range for the panel of tumour cell lines tested.


Asunto(s)
Antineoplásicos/farmacología , Benzoxazoles/farmacología , Inhibidores de Anhidrasa Carbónica/farmacología , Anhidrasas Carbónicas/metabolismo , Cumarinas/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Benzoxazoles/síntesis química , Benzoxazoles/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Inhibidores de Anhidrasa Carbónica/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cumarinas/síntesis química , Cumarinas/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
11.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35887037

RESUMEN

(1) Background: carbonic anhydrases (CAs) are attractive targets for the development of new anticancer therapies; in particular, CAs IX and XII isoforms are overexpressed in numerous tumors. (2) Methods: following the tail approach, we have appended a hydrophobic aromatic tail to a pharmacophore responsible for the CA inhibition (aryl sulfonamide, coumarin). As a linker, we have used squaramides, featured with strong hydrogen bond acceptor and donor capacities. (3) Results: Starting from easily accessible dimethyl squarate, the title compounds were successfully obtained as crystalline solids, avoiding the use of chromatographic purifications. Interesting and valuable SARs could be obtained upon modification of the length of the hydrocarbon chain, position of the sulfonamido moiety, distance of the aryl sulfonamide scaffold to the squaramide, stereoelectronic effects on the aromatic ring, as well as the number and type of substituents on C-3 and C-4 positions of the coumarin. (4) Conclusions: For sulfonamides, the best profile was achieved for the m-substituted derivative 11 (Ki = 29.4, 9.15 nM, CA IX and XII, respectively), with improved selectivity compared to acetazolamide, a standard drug. Coumarin derivatives afforded an outstanding selectivity (Ki > 10,000 nM for CA I, II); the lead compound (16c) was a strong CA IX and XII inhibitor (Ki = 19.2, 7.23 nM, respectively). Docking simulations revealed the key ligand-enzyme interactions.


Asunto(s)
Neoplasias , Sulfonamidas , Antígenos de Neoplasias/química , Anhidrasa Carbónica IX/metabolismo , Inhibidores de Anhidrasa Carbónica/química , Inhibidores de Anhidrasa Carbónica/farmacología , Cumarinas/química , Cumarinas/farmacología , Estructura Molecular , Neoplasias/metabolismo , Quinina/análogos & derivados , Relación Estructura-Actividad , Sulfonamidas/química , Sulfonamidas/farmacología
12.
Molecules ; 27(4)2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35209105

RESUMEN

Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharmacophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure-activity relationships for the biological assays accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocarbamates 24-27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).


Asunto(s)
Desarrollo de Medicamentos , Compuestos de Organoselenio/química , Fenoles/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Radicales Libres/antagonistas & inhibidores , Humanos , Estructura Molecular , Relación Estructura-Actividad
13.
Org Biomol Chem ; 19(10): 2322-2337, 2021 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-33645607

RESUMEN

We have used the Cu(i)-catalyzed azide-alkyne Huisgen cycloaddition reaction to obtain two families of bivalent heterodimers where tacrine is connected to an azasugar or iminosugar, respectively, via linkers of variable length. The heterodimers were investigated as cholinesterase inhibitors and it was found that their activity increased with the length of the linker. Two of the heterodimers were significantly stronger acetylcholinesterase inhibitors than the monomeric tacrine. Molecular modelling indicated that the longer heterodimers fitted better into the active gorge of acetylcholinesterase than the shorter counterparts and the former provided more efficient simultaneous interaction with the tryptophan residues in the catalytic anionic binding site (CAS) and the peripheral anionic binding site (PAS).


Asunto(s)
Inhibidores de la Colinesterasa/química , Iminoazúcares/química , Tacrina/química , Acetilcolinesterasa/química , Acetilcolinesterasa/metabolismo , Animales , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/metabolismo , Electrophorus , Pruebas de Enzimas , Caballos , Iminoazúcares/síntesis química , Iminoazúcares/metabolismo , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Tacrina/síntesis química , Tacrina/metabolismo , Termodinámica
14.
J Enzyme Inhib Med Chem ; 36(1): 1659-1664, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34294013

RESUMEN

The synthesis of four tetra-tacrine clusters where the tacrine binding units are attached to a central scaffold via linkers of variable lengths is described. The multivalent inhibition potencies for the tacrine clusters were investigated for the inhibition of acetylcholinesterase. Two of the tacrine clusters displayed a small but significant multivalent inhibition potency in which the binding affinity of each of the tacrine binding units increased up to 3.2 times when they are connected to the central scaffold.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Desarrollo de Medicamentos , Tacrina/farmacología , Animales , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Estructura Molecular , Relación Estructura-Actividad , Tacrina/síntesis química , Tacrina/química
15.
J Enzyme Inhib Med Chem ; 36(1): 138-146, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33228403

RESUMEN

We have designed unprecedented cholinesterase inhibitors based on 1-deoxynojirimycin as potential anti-Alzheimer's agents. Compounds are comprised of three key structural motifs: the iminosugar, for interaction with cholinesterase catalytic anionic site (CAS); a hydrocarbon tether with variable lengths, and a fragment derived from 2-phenylethanol for promoting interactions with peripheral anionic site (PAS). Title compounds exhibited good selectivity towards BuChE, strongly depending on the substitution pattern and the length of the tether. The lead compounds were found to be strong mixed inhibitors of BuChE (IC50 = 1.8 and 1.9 µM). The presumptive binding mode of the lead compound was analysed using molecular docking simulations, revealing H-bond interactions with the catalytic subsite (His438) and CAS (Trp82 and Glu197) and van der Waals interactions with PAS (Thr284, Pro285, Asn289). They also lacked significant antiproliferative activity against tumour and non-tumour cells at 100 µM, making them promising new agents for tackling Alzheimer's disease through the cholinergic approach.


Asunto(s)
1-Desoxinojirimicina/farmacología , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , 1-Desoxinojirimicina/síntesis química , 1-Desoxinojirimicina/química , Animales , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Caballos , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad
16.
Bioorg Chem ; 98: 103753, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32200328

RESUMEN

Our goal was the evaluation of a series of N-1,2,3-triazole-isatin derivatives for multi-target activity which included cholinesterase (ChE) inhibition and ß-amyloid (Aß) peptide anti-aggregation. The compounds have shown considerable promise as butyrylcholinesterase (BuChE) inhibitors. Although the inhibition of eel acetylcholinesterase (eeAChE) was weak, the inhibitions against equine BuChE (eqBuChE) and human BuChE (hBuChE) were more significant with a best inhibition against eqBuChE of 0.46 µM. In some cases, these molecules gave better inhibitions for hBuChE than eqBuChE. For greater insights into their mode of action, molecular docking studies were carried out, followed by STD-NMR validation. In addition, some of these compounds showed weak Aß anti-aggregation activity. Hepatotoxicity studies showed that they were non-hepatoxic and neurotoxicity studies using neurite outgrowth experiments led to the conclusion that these compounds are only weakly neurotoxic.


Asunto(s)
Acetilcolinesterasa/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Isatina/farmacología , Triazoles/farmacología , Péptidos beta-Amiloides/metabolismo , Animales , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Células Hep G2 , Caballos , Humanos , Isatina/química , Estructura Molecular , Agregado de Proteínas , Relación Estructura-Actividad , Triazoles/química
17.
Org Biomol Chem ; 15(41): 8709-8712, 2017 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-29039854

RESUMEN

The preparation of a novel type of iminosugar including a hydrazide imide moiety is described. The sugar hydrazide imides (3S,4S,5R,6R)-1-amino-3,4,5-trihydroxy-6-(hydroxymethyl)-2-iminopiperidine acetate and (3S,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-imino-1-(methylamino)piperidine acetate presented here behave as inhibitors of α/ß-glucosidases in the low micromolar concentration range. The former inhibitor displays a pH-dependent inhibition of ß-glucosidase. The N-methylated counterpart behaves as an anomer-selective competitive micromolar inhibitor of α-glucosidase.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Hidrazinas/farmacología , Imidas/farmacología , Azúcares/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Glicósido Hidrolasas/metabolismo , Hidrazinas/química , Imidas/química , Conformación Molecular , Relación Estructura-Actividad , Azúcares/química
18.
Org Biomol Chem ; 15(23): 5041-5054, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-28574071

RESUMEN

Starting from natural steroids (diosgenin, hecogenin, smilagenin, estrone), we have prepared a wide panel of selenoderivatives, including benzoselenazolones, selenosemicarbazones, isoselenocyanates, selenoureas, selenocyanates and diselenides, with the aim of developing new families of potential chemotherapeutic agents. The modification of the organoselenium moieties, and their position on the steroid provided valuable information concerning the antiproliferative activities. Among all the families accessed herein, the best profile was achieved for selenoureas on the A ring of estrone, which exhibited GI50 values in the range 2.0-4.1 µM for all the tested tumor cell lines, with increased potency compared with commonly used chemotherapeutic agents, like 5-fluorouracil and cisplatin. Cell cycle analysis revealed that selenoureas induced accumulation of cells in the G1 phase of the cell cycle in the breast cancer cell lines HBL-100 and T-47D; therefore, a different mechanism than cisplatin, that induces cell cycle accumulation in the S phase as a result of DNA damage, must be involved. In the rest of the tumor cells, a slight increase of the S compartment was observed. Moreover, selenosteoids turned out to be excellent glutathione peroxidase (GPx) mimics for the catalytic removal of deleterious H2O2 (t1/2 8.0-22.5 min) and alkyl peroxides (t1/2 23.0-38.9 min) when used in substoichiometric amounts (1% molar ratio), thus providing a valuable tool for reducing the intrinsic oxidative stress in tumor progression.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Depuradores de Radicales Libres/química , Depuradores de Radicales Libres/farmacología , Compuestos de Organoselenio/química , Compuestos de Organoselenio/farmacología , Esteroides/química , Compuestos de Bifenilo/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Peróxido de Hidrógeno/química , Picratos/química
20.
J Med Chem ; 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283654

RESUMEN

This study introduces a novel multitargeting strategy that combines carbonic anhydrase (CA) activators and cholinesterase (ChE) inhibitors to enhance cognitive functions. A series of tacrine-based derivatives with amine/amino acid moieties were synthesized and evaluated for their dual activity on brain CA isoforms and ChEs (AChE and BChE). Several derivatives, notably compounds 26, 30, 34, and 40, demonstrated potent CA activation, particularly of hCA II and VII, and strong ChE inhibition with subnanomolar to low nanomolar IC50 values. In vivo studies using a mouse model of social recognition memory showed that these derivatives significantly improved memory consolidation at doses 10-100 times lower than the reference compounds (either alone or in combination). Molecular modeling and ADMET predictions elucidated the compound binding modes and confirmed favorable pharmacokinetic and safety profiles. The findings suggest that dual modulation of CA and ChE activities is a promising strategy for treating cognitive deficits associated with neurodegenerative and psychiatric disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA