Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 135(4): 609-22, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-19013273

RESUMEN

Telomerase confers limitless proliferative potential to most human cells through its ability to elongate telomeres, the natural ends of chromosomes, which otherwise would undergo progressive attrition and eventually compromise cell viability. However, the role of telomerase in organismal aging has remained unaddressed, in part because of the cancer-promoting activity of telomerase. To circumvent this problem, we have constitutively expressed telomerase reverse transcriptase (TERT), one of the components of telomerase, in mice engineered to be cancer resistant by means of enhanced expression of the tumor suppressors p53, p16, and p19ARF. In this context, TERT overexpression improves the fitness of epithelial barriers, particularly the skin and the intestine, and produces a systemic delay in aging accompanied by extension of the median life span. These results demonstrate that constitutive expression of Tert provides antiaging activity in the context of a mammalian organism.


Asunto(s)
Envejecimiento , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Neoplasias/metabolismo , Telomerasa/metabolismo , Animales , Supervivencia Celular , Epidermis/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/biosíntesis , Queratinocitos/citología , Ratones , Ratones Transgénicos , Modelos Biológicos , Células Madre/citología
2.
Mol Biol Evol ; 38(8): 3415-3435, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-33871658

RESUMEN

Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.


Asunto(s)
Envejecimiento/genética , Metilación de ADN , Epigénesis Genética , Epigenoma , Neoplasias/genética , Animales , Evolución Biológica , Islas de CpG , Humanos , Ratones , Especificidad de la Especie
3.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36142372

RESUMEN

Obesity is associated to a low grade of chronic inflammation leading to metabolic stress, insulin resistance, metabolic syndrome, dislipidemia, cardiovascular disease, and even cancer. A Mediterranean diet has been shown to reduce systemic inflammatory factors, insulin resistance, and metabolic syndrome. In this scenario, precision nutrition may provide complementary approaches to target the metabolic alterations associated to "unhealthy obesity". In a previous work, we described a pomegranate extract (PomE) rich in punicalagines to augment markers of browning and thermogenesis in human differentiated adipocytes and to augment the oxidative respiratory capacity in human differentiated myocytes. Herein, we have conducted a preclinical study of high-fat-diet (HFD)-induced obesity where PomE augments the systemic energy expenditure (EE) contributing to a reduction in the low grade of chronic inflammation and insulin resistance associated to obesity. At the molecular level, PomE promotes browning and thermogenesis in adipose tissue, reducing inflammatory markers and augmenting the reductive potential to control the oxidative stress associated to the HFD. PomE merits further investigation as a complementary approach to alleviate obesity, reducing the low grade of chronic inflammation and metabolic stress.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Granada (Fruta) , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético , Humanos , Inflamación/metabolismo , Síndrome Metabólico/etiología , Síndrome Metabólico/metabolismo , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Estrés Fisiológico , Termogénesis
4.
Mar Drugs ; 19(9)2021 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-34564179

RESUMEN

Phaeodactylum tricornutum is a rich source of fucoxanthin, a carotenoid with several health benefits. In the present study, high performance countercurrent chromatography (HPCCC) was used to isolate fucoxanthin from an extract of P. tricornutum. A multiple sequential injection HPCCC method was developed combining two elution modes (reverse phase and extrusion). The lower phase of a biphasic solvent system (n-heptane, ethyl acetate, ethanol and water, ratio 5/5/6/3, v/v/v/v) was used as the mobile phase, while the upper phase was the stationary phase. Ten consecutive sample injections (240 mg of extract each) were performed leading to the separation of 38 mg fucoxanthin with purity of 97% and a recovery of 98%. The process throughput was 0.189 g/h, while the efficiency per gram of fucoxanthin was 0.003 g/h. Environmental risk and general process evaluation factors were used for assessment of the developed separation method and compared with existing fucoxanthin liquid-liquid isolation methods. The isolated fucoxanthin retained its well-described ability to induce nuclear translocation of transcription factor FOXO3. Overall, the developed isolation method may represent a useful model to produce biologically active fucoxanthin from diatom biomass.


Asunto(s)
Diatomeas/química , Xantófilas/química , Animales , Cromatografía Líquida de Alta Presión , Distribución en Contracorriente
5.
EMBO Rep ; 19(9)2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30021836

RESUMEN

The NAD+-dependent deacetylase SIRT1 can be oncogenic or tumor suppressive depending on the tissue. Little is known about the role of SIRT1 in non-small cell lung carcinoma (NSCLC), one of the deadliest cancers, that is frequently associated with mutated K-RAS Therefore, we investigated the effect of SIRT1 on K-RAS-driven lung carcinogenesis. We report that SIRT1 protein levels are downregulated by oncogenic K-RAS in a MEK and PI3K-dependent manner in mouse embryo fibroblasts (MEFs), and in human lung adenocarcinoma cell lines. Furthermore, Sirt1 overexpression in mice delays the appearance of K-RasG12V-driven lung adenocarcinomas, reducing the number and size of carcinomas at the time of death and extending survival. Consistently, lower levels of SIRT1 are associated with worse prognosis in human NSCLCs. Mechanistically, analysis of mouse Sirt1-Tg pneumocytes, isolated shortly after K-RasG12V activation, reveals that Sirt1 overexpression alters pathways involved in tumor development: proliferation, apoptosis, or extracellular matrix organization. Our work demonstrates a tumor suppressive role of SIRT1 in the development of K-RAS-driven lung adenocarcinomas in mice and humans, suggesting that the SIRT1-K-RAS axis could be a therapeutic target for NSCLCs.


Asunto(s)
Adenocarcinoma del Pulmón/metabolismo , Carcinogénesis/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Sirtuina 1/metabolismo , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/patología , Células Epiteliales Alveolares , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Células Cultivadas , Regulación hacia Abajo , Fibroblastos/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Supervivencia sin Progresión , Proteínas Proto-Oncogénicas p21(ras)/genética
6.
Int J Cancer ; 141(12): 2379-2391, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-28631330

RESUMEN

Diabetes refers to a group of metabolic diseases characterized by impaired insulin signalling and high blood glucose. A growing body of epidemiological evidence links diabetes to several types of cancer but the underlying molecular mechanisms are poorly understood. The signalling cascade connecting insulin and FOXO proteins provides a compelling example for a conserved pathway at the interface between insulin signalling and cancer. FOXOs are transcription factors that orchestrate programs of gene expression known to control a variety of processes in response to cellular stress. Genes regulated by this family of proteins are involved in the regulation of cellular energy production, oxidative stress resistance and cell viability and proliferation. Accordingly, FOXO factors have been shown to play an important role in the suppression of tumour growth and in the regulation of metabolic homeostasis. There is emerging evidence that deregulation of FOXO factors might account for the association between insulin resistance-related metabolic disorders and cancer.


Asunto(s)
Diabetes Mellitus/metabolismo , Factores de Transcripción Forkhead/metabolismo , Insulina/metabolismo , Neoplasias/metabolismo , Animales , Proliferación Celular , Supervivencia Celular , Diabetes Mellitus/genética , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Humanos , Neoplasias/complicaciones , Estrés Oxidativo , Transducción de Señal
7.
Cytometry A ; 91(7): 721-729, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28375558

RESUMEN

Flow cytometry is a powerful multiparametric technology, widely used for the identification, quantification, and isolation of defined populations of cells based on the expression of target proteins. It also allows for the use of surrogate reporters, either enzymatic or fluorescent, to indirectly monitor the expression of these target proteins. In this work, we optimised the dissociation protocol for the detection of the enzymatic reporter LacZ using the FACS-Gal detection system with the fluorogenic substrate FDG to compare cis- versus trans-positioned reporters efficiency. Particularly, for the FACS-Gal optimization, we studied lung and haematopoietic tissues, focusing on cell recovery, viability, FDG loading conditions and distribution of cellular populations. Reporter genes such as LacZ can be placed together with the gene of interest in the same polycistronic mRNA (in cis), or in independent alleles (in trans), which can strongly affect the correlation with the reporter readout. To address this issue, we generated a mouse model containing both types of reporters for the same gene, and compared them. Our results clearly indicate that trans-positioned reporters can be misleading, and that using a reporter gene in cis rather than trans is a much more specific method to sort for cells undergoing Cre-mediated recombination. © 2017 International Society for Advancement of Cytometry.


Asunto(s)
Citometría de Flujo , Expresión Génica/fisiología , Genes Reporteros/fisiología , Animales , Citometría de Flujo/métodos , Colorantes Fluorescentes/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Supresoras de la Señalización de Citocinas/análisis
8.
Free Radic Biol Med ; 210: 448-461, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036067

RESUMEN

Non-alcoholic steatohepatitis (NASH) is one of the fastest growing liver diseases worldwide, and oxidative stress is one of NASH main key drivers. Nicotinamide adenine dinucleotide phosphate (NADPH) is the ultimate donor of reductive power to a number of antioxidant defences. Here, we explored the potential of increasing NADPH levels to prevent NASH progression. We used nicotinamide riboside (NR) supplementation or a G6PD-tg mouse line harbouring an additional copy of the human G6PD gene. In a NASH mouse model induced by feeding mice a methionine-choline deficient (MCD) diet for three weeks, both tools increased the hepatic levels of NADPH and ameliorated the NASH phenotype induced by the MCD intervention, but only in female mice. Boosting NADPH levels in females increased the liver expression of the antioxidant genes Gsta3, Sod1 and Txnrd1 in NR-treated mice, or of Gsr for G6PD-tg mice. Both strategies significantly reduced hepatic lipid peroxidation. NR-treated female mice showed a reduction of steatosis accompanied by a drop of the hepatic triglyceride levels, that was not observed in G6PD-tg mice. NR-treated mice tended to reduce their lobular inflammation, showed a reduction of the NK cell population and diminished transcription of the damage marker Lcn2. G6PD-tg female mice exhibited a reduction of their lobular inflammation and hepatocyte ballooning induced by the MCD diet, that was related to a reduction of the monocyte-derived macrophage population and the Tnfa, Ccl2 and Lcn2 gene expression. As conclusion, boosting hepatic NADPH levels attenuated the oxidative lipid damage and the exhausted antioxidant gene expression specifically in female mice in two different models of NASH, preventing the progression of the inflammatory process and hepatic injury.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Femenino , Ratones , Humanos , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , NADP/metabolismo , Antioxidantes/metabolismo , Hígado/metabolismo , Inflamación/metabolismo , Colina/metabolismo , Metionina/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
9.
Aging Cell ; 22(3): e13771, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36704839

RESUMEN

The enormous societal impact of the ongoing COVID-19 pandemic has been particularly harsh for some social groups, such as the elderly. Recently, it has been suggested that senescent cells could play a central role in pathogenesis by exacerbating the pro-inflammatory immune response against SARS-CoV-2. Therefore, the selective clearance of senescent cells by senolytic drugs may be useful as a therapy to ameliorate the symptoms of COVID-19 in some cases. Using the established COVID-19 murine model K18-hACE2, we demonstrated that a combination of the senolytics dasatinib and quercetin (D/Q) significantly reduced SARS-CoV-2-related mortality, delayed its onset, and reduced the number of other clinical symptoms. The increase in senescent markers that we detected in the lungs in response to SARS-CoV-2 may be related to the post-COVID-19 sequelae described to date. These results place senescent cells as central targets for the treatment of COVID-19, and make D/Q a new and promising therapeutic tool.


Asunto(s)
COVID-19 , Quercetina , Ratones , Humanos , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Dasatinib/farmacología , Dasatinib/uso terapéutico , SARS-CoV-2 , Senescencia Celular , Senoterapéuticos , Pandemias
10.
Nat Commun ; 14(1): 2779, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37188705

RESUMEN

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Asunto(s)
Envejecimiento , Antidepresivos , Harmina , Mitocondrias , Mitofagia , Monoaminooxidasa , Receptores de GABA-A , Harmina/análogos & derivados , Harmina/farmacología , Antidepresivos/farmacología , Mitocondrias/efectos de los fármacos , Mitofagia/efectos de los fármacos , Fibras Musculares Esqueléticas/efectos de los fármacos , Quinasas de la Proteína-Quinasa Activada por el AMP/metabolismo , Músculo Esquelético/efectos de los fármacos , Hígado/efectos de los fármacos , Envejecimiento/efectos de los fármacos , Resistencia a la Insulina , Intolerancia a la Glucosa/metabolismo , Estado Prediabético/metabolismo , Monoaminooxidasa/metabolismo , Receptores de GABA-A/metabolismo , Longevidad/efectos de los fármacos , Caenorhabditis elegans , Drosophila melanogaster , Fragilidad/prevención & control , Condicionamiento Físico Animal , Modelos Animales , Masculino , Femenino , Animales , Ratones , Hígado Graso/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos
11.
Biochim Biophys Acta ; 1812(8): 947-55, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21194563

RESUMEN

Liver receptor homolog-1 (NR5A2) is a nuclear receptor originally identified in the liver and mostly known for its regulatory role in cholesterol and bile acid homeostasis. More recently, liver receptor homolog-1 has emerged as a key regulator of intestinal function, coordinating unanticipated actions, such as cell renewal and local immune function with important implications to common intestinal diseases, including colorectal cancer and inflammatory bowel disease. Unlike most of the other nuclear receptors, liver receptor homolog-1 acts as a constitutively active transcription factor to drive the transcription of its target genes. Liver receptor homolog-1 activity however is to a major extent regulated by different corepressors and posttranslational modifications, which may account for its tissue-specific functions. This review will provide an update on the molecular aspects of liver receptor homolog-1 action and focus on some emerging aspects of its function in normal and diseased gut. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.


Asunto(s)
Intestinos/fisiología , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Humanos , Ratones
12.
EMBO J ; 27(16): 2181-93, 2008 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-18650932

RESUMEN

The atypical PKC-interacting protein, Par-4, inhibits cell survival and tumorigenesis in vitro, and its genetic inactivation in mice leads to reduced lifespan, enhanced benign tumour development and low-frequency carcinogenesis. Here, we demonstrate that Par-4 is highly expressed in normal lung but reduced in human lung cancer samples. We show, in a mouse model of lung tumours, that the lack of Par-4 dramatically enhances Ras-induced lung carcinoma formation in vivo, acting as a negative regulator of Akt activation. We also demonstrate in cell culture, in vivo, and in biochemical experiments that Akt regulation by Par-4 is mediated by PKCzeta, establishing a new paradigm for Akt regulation and, likely, for Ras-induced lung carcinogenesis, wherein Par-4 is a novel tumour suppressor.


Asunto(s)
Neoplasias Pulmonares/enzimología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptores de Trombina/metabolismo , Animales , Línea Celular , Núcleo Celular/enzimología , Activación Enzimática , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Pulmón/enzimología , Pulmón/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Fosforilación , Unión Proteica , Proteína Quinasa C/metabolismo , Receptores de Trombina/deficiencia , Receptores de Trombina/genética , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X
13.
Proc Natl Acad Sci U S A ; 106(31): 12962-7, 2009 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-19470463

RESUMEN

Prostate cancer is one of the most common neoplasias in men. The tumor suppressor Par-4 is an important negative regulator of the canonical NF-kappaB pathway and is highly expressed in prostate. Here we show that Par-4 expression is lost in a high percentage of human prostate carcinomas, and this occurs in association with phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss. Par-4 null mice, similar to PTEN-heterozygous mice, only develop benign prostate lesions, but, importantly, concomitant Par-4 ablation and PTEN-heterozygosity lead to invasive prostate carcinoma in mice. This strong tumorigenic cooperation is anticipated in the preneoplastic prostate epithelium by an additive increase in Akt activation and a synergistic stimulation of NF-kappaB. These results establish the cooperation between Par-4 and PTEN as relevant for the development of prostate cancer and implicate the NF-kappaB pathway as a critical event in prostate tumorigenesis.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/fisiología , FN-kappa B/metabolismo , Fosfohidrolasa PTEN/fisiología , Neoplasias de la Próstata/patología , Adenocarcinoma/patología , Animales , Proteínas Reguladoras de la Apoptosis/genética , Humanos , Masculino , Ratones , Mutación , Invasividad Neoplásica , Fosfohidrolasa PTEN/genética , Proteína Quinasa C/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo
14.
Genome Biol ; 23(1): 230, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316722

RESUMEN

BACKGROUND: Overweight and obesity are defined by an anomalous or excessive fat accumulation that may compromise health. To find single-nucleotide polymorphisms (SNPs) influencing metabolic phenotypes associated with the obesity state, we analyze multiple anthropometric and clinical parameters in a cohort of 790 healthy volunteers and study potential associations with 48 manually curated SNPs, in metabolic genes functionally associated with the mechanistic target of rapamycin (mTOR) pathway. RESULTS: We identify and validate rs2291007 within a conserved region in the 3'UTR of folliculin-interacting protein FNIP2 that correlates with multiple leanness parameters. The T-to-C variant represents the major allele in Europeans and disrupts an ancestral target sequence of the miRNA miR-181b-5p, thus resulting in increased FNIP2 mRNA levels in cancer cell lines and in peripheral blood from carriers of the C allele. Because the miRNA binding site is conserved across vertebrates, we engineered the T-to-C substitution in the endogenous Fnip2 allele in mice. Primary cells derived from Fnip2 C/C mice show increased mRNA stability, and more importantly, Fnip2 C/C mice replicate the decreased adiposity and increased leanness observed in human volunteers. Finally, expression levels of FNIP2 in both human samples and mice negatively associate with leanness parameters, and moreover, are the most important contributor in a multifactorial model of body mass index prediction. CONCLUSIONS: We propose that rs2291007 influences human leanness through an evolutionarily conserved modulation of FNIP2 mRNA levels.


Asunto(s)
MicroARNs , Sobrepeso , Humanos , Animales , Ratones , Regiones no Traducidas 3' , Sobrepeso/genética , Delgadez/genética , MicroARNs/genética , MicroARNs/metabolismo , Polimorfismo de Nucleótido Simple , ARN Mensajero/genética , ARN Mensajero/metabolismo , Obesidad/genética , Proteínas Portadoras/metabolismo
15.
Nat Commun ; 13(1): 5677, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36167809

RESUMEN

Fasting exerts beneficial effects in mice and humans, including protection from chemotherapy toxicity. To explore the involved mechanisms, we collect blood from humans and mice before and after 36 or 24 hours of fasting, respectively, and measure lipid composition of erythrocyte membranes, circulating micro RNAs (miRNAs), and RNA expression at peripheral blood mononuclear cells (PBMCs). Fasting coordinately affects the proportion of polyunsaturated versus saturated and monounsaturated fatty acids at the erythrocyte membrane; and reduces the expression of insulin signaling-related genes in PBMCs. When fasted for 24 hours before and 24 hours after administration of oxaliplatin or doxorubicin, mice show a strong protection from toxicity in several tissues. Erythrocyte membrane lipids and PBMC gene expression define two separate groups of individuals that accurately predict a differential protection from chemotherapy toxicity, with important clinical implications. Our results reveal a mechanism of fasting associated with lipid homeostasis, and provide biomarkers of fasting to predict fasting-mediated protection from chemotherapy toxicity.


Asunto(s)
Ayuno , MicroARNs , Animales , Biomarcadores , Doxorrubicina/toxicidad , Ayuno/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Monoinsaturados , Homeostasis , Humanos , Insulina , Leucocitos Mononucleares/metabolismo , Ratones , Oxaliplatino
16.
Cell Rep ; 34(11): 108851, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33730574

RESUMEN

Devil facial tumor disease (DFTD) and its lack of available therapies are propelling the Tasmanian devil population toward extinction. This study demonstrates that cholesterol homeostasis and carbohydrate energy metabolism sustain the proliferation of DFTD cells in a cell-type-dependent manner. In addition, we show that the liver-X nuclear receptor-ß (LXRß), a major cholesterol cellular sensor, and its natural ligand 24S-hydroxycholesterol promote the proliferation of DFTD cells via a metabolic switch toward aerobic glycolysis. As a proof of concept of the role of cholesterol homeostasis on DFTD proliferation, we show that atorvastatin, an FDA-approved statin-drug subtype used against human cardiovascular diseases that inhibits cholesterol synthesis, shuts down DFTD energy metabolism and prevents tumor growth in an in vivo DFTD-xenograft model. In conclusion, we show that intervention against cholesterol homeostasis and carbohydrate-dependent energy metabolism by atorvastatin constitutes a feasible biochemical treatment against DFTD, which may assist in the conservation of the Tasmanian devil.


Asunto(s)
Colesterol/metabolismo , Neoplasias Faciales/metabolismo , Neoplasias Faciales/veterinaria , Homeostasis , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Receptores X del Hígado/metabolismo , Marsupiales/metabolismo , Aerobiosis/efectos de los fármacos , Animales , Atorvastatina/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Faciales/patología , Femenino , Glucólisis/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Ratones Desnudos , Oxiesteroles/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Transl Res ; 233: 104-116, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33515780

RESUMEN

The p53/p21 pathway is activated in response to cell stress. However, its role in acute lung injury has not been elucidated. Acute lung injury is associated with disruption of the alveolo-capillary barrier leading to acute respiratory distress syndrome (ARDS). Mechanical ventilation may be necessary to support gas exchange in patients with ARDS, however, high positive airway pressures can cause regional overdistension of alveolar units and aggravate lung injury. Here, we report that acute lung injury and alveolar overstretching activate the p53/p21 pathway to maintain homeostasis and avoid massive cell apoptosis. A systematic pooling of transcriptomic data from animal models of lung injury demonstrates the enrichment of specific p53- and p21-dependent gene signatures and a validated senescence profile. In a clinically relevant, murine model of acid aspiration and mechanical ventilation, we observed changes in the nuclear envelope and the underlying chromatin, DNA damage and activation of the Tp53/p21 pathway. Absence of Cdkn1a decreased the senescent response, but worsened lung injury due to increased cell apoptosis. Conversely, treatment with lopinavir and/or ritonavir led to Cdkn1a overexpression and ameliorated cell apoptosis and lung injury. The activation of these mechanisms was associated with early markers of senescence, including expression of senescence-related genes and increases in senescence-associated heterochromatin foci in alveolar cells. Autopsy samples from lungs of patients with ARDS revealed increased senescence-associated heterochromatin foci. Collectively, these results suggest that acute lung injury activates p53/p21 as an antiapoptotic mechanism to ameliorate damage, but with the side effect of induction of senescence.


Asunto(s)
Lesión Pulmonar Aguda/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Ácidos/administración & dosificación , Ácidos/toxicidad , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/patología , Animales , Apoptosis , Senescencia Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/deficiencia , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Daño del ADN , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Respiración Artificial/efectos adversos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Transducción de Señal , Estrés Mecánico , Investigación Biomédica Traslacional , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
J Cachexia Sarcopenia Muscle ; 12(6): 1879-1896, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34704386

RESUMEN

BACKGROUND: Frailty is a major age-associated syndrome leading to disability. Oxidative damage plays a significant role in the promotion of frailty. The cellular antioxidant system relies on reduced nicotinamide adenine dinucleotide phosphate (NADPH) that is highly dependent on glucose 6-P dehydrogenase (G6PD). The G6PD-overexpressing mouse (G6PD-Tg) is protected against metabolic stresses. Our aim was to examine whether this protection delays frailty. METHODS: Old wild-type (WT) and G6PD-Tg mice were evaluated longitudinally in terms of frailty. Indirect calorimetry, transcriptomic profile, and different skeletal muscle quality markers and muscle regenerative capacity were also investigated. RESULTS: The percentage of frail mice was significantly lower in the G6PD-Tg than in the WT genotype, especially in 26-month-old mice where 50% of the WT were frail vs. only 13% of the Tg ones (P < 0.001). Skeletal muscle transcriptomic analysis showed an up-regulation of respiratory chain and oxidative phosphorylation (P = 0.009) as well as glutathione metabolism (P = 0.035) pathways in the G6PD-Tg mice. Accordingly, the Tg animals exhibited an increase in reduced glutathione (34.5%, P < 0.01) and a decrease on its oxidized form (-69%, P < 0.05) and in lipid peroxidation (4-HNE: -20.5%, P < 0.05). The G6PD-Tg mice also showed reduced apoptosis (BAX/Bcl2: -25.5%, P < 0.05; and Bcl-xL: -20.5%, P < 0.05), lower levels of the intramuscular adipocyte marker FABP4 (-54.7%, P < 0.05), and increased markers of mitochondrial content (COX IV: 89.7%, P < 0.05; Grp75: 37.8%, P < 0.05) and mitochondrial OXPHOS complexes (CII: 81.25%, P < 0.01; CIII: 52.5%, P < 0.01; and CV: 37.2%, P < 0.05). Energy expenditure (-4.29%, P < 0.001) and the respiratory exchange ratio were lower (-13.4%, P < 0.0001) while the locomotor activity was higher (43.4%, P < 0.0001) in the 20-month-old Tg, indicating a major energetic advantage in these mice. Short-term exercise training in young C57BL76J mice induced a robust activation of G6PD in skeletal muscle (203.4%, P < 0.05), similar to that achieved in the G6PD-Tg mice (142.3%, P < 0.01). CONCLUSIONS: Glucose 6-P dehydrogenase deficiency can be an underestimated risk factor for several human pathologies and even frailty. By overexpressing G6PD, we provide the first molecular model of robustness. Because G6PD is regulated by pharmacological and physiological interventions like exercise, our results provide molecular bases for interventions that by increasing G6PD will delay the onset of frailty.


Asunto(s)
Fragilidad , Glucosafosfato Deshidrogenasa , Animales , Glucosa , Glucosa 1-Deshidrogenasa , Glucosafosfato Deshidrogenasa/genética , Ratones , Músculos
19.
Aging (Albany NY) ; 12(12): 11337-11348, 2020 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-32584785

RESUMEN

Senescent cells accumulate with obesity in the white adipose tissue of mice and humans. These senescent cells enhance the pro-inflammatory environment that, with time, contributes to the onset of glucose intolerance and type 2 diabetes. Glucose intolerance in mouse models of obesity has been successfully reversed by the elimination of senescent cells with the senolytic compounds navitoclax or the combination of dasatinib and quercetin (D/Q). In this work, we generated obese mice by high-fat diet feeding, and treated them with five consecutive cycles of navitoclax or D/Q during 16 weeks. We observed an efficient reduction in the white adipose tissue of the senescence markers senescence-associated ß-galactosidase activity, Cdkn2a-p16 and Cdkn2a-p19 at the end of the 5 cycles. Mice treated with both navitoclax and D/Q showed an improvement of their insulin sensitivity and glucose tolerance during a short period of time (cycles 3 and 4), that disappeared at the fifth cycle. Also, these mice tended to increase the expression at their adipose tissue of the adipogenic genes Pparg and, Cebpa, as well as their plasma adiponectin levels. Together, our work shows that two different senolytic treatments, acting through independent pathways, are transiently effective in the treatment of obesity-induced metabolic disorders.


Asunto(s)
Compuestos de Anilina/administración & dosificación , Senescencia Celular/efectos de los fármacos , Dasatinib/administración & dosificación , Obesidad/tratamiento farmacológico , Quercetina/administración & dosificación , Sulfonamidas/administración & dosificación , Adipogénesis/efectos de los fármacos , Adiponectina/sangre , Adiponectina/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/efectos de los fármacos , Tejido Adiposo Blanco/metabolismo , Animales , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Senescencia Celular/fisiología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Esquema de Medicación , Combinación de Medicamentos , Intolerancia a la Glucosa/sangre , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/etiología , Intolerancia a la Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Obesos , Obesidad/sangre , Obesidad/etiología , Obesidad/metabolismo , PPAR gamma/metabolismo
20.
Nutrients ; 12(1)2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31906264

RESUMEN

: Colorectal cancer has the second highest cancer-related mortality rate, with an estimated 881,000 deaths worldwide in 2018. The urgent need to reduce the incidence and mortality rate requires innovative strategies to improve prevention, early diagnosis, prognostic biomarkers, and treatment effectiveness. Caloric restriction (CR) is known as the most robust nutritional intervention that extends lifespan and delays the progression of age-related diseases, with remarkable results for cancer protection. Other forms of energy restriction, such as periodic fasting, intermittent fasting, or fasting-mimicking diets, with or without reduction of total calorie intake, recapitulate the effects of chronic CR and confer a wide range of beneficial effects towards health and survival, including anti-cancer properties. In this review, the known molecular, cellular, and organismal effects of energy restriction in oncology will be discussed. Energy-restriction-based strategies implemented in colorectal models and clinical trials will be also revised. While energy restriction constitutes a promising intervention for the prevention and treatment of several malignant neoplasms, further investigations are essential to dissect the interplay between fundamental aspects of energy intake, such as feeding patterns, fasting length, or diet composition, with all of them influencing health and disease or cancer effects. Currently, effectiveness, safety, and practicability of different forms of fasting to fight cancer, particularly colorectal cancer, should still be contemplated with caution.


Asunto(s)
Restricción Calórica/métodos , Neoplasias Colorrectales/prevención & control , Dieta/métodos , Neoplasias Colorrectales/mortalidad , Ingestión de Energía , Ayuno , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA