Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell Proteomics ; 22(8): 100606, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356495

RESUMEN

Osteoarthritis (OA) is the most prevalent rheumatic pathology. However, OA is not simply a process of wear and tear affecting articular cartilage but rather a disease of the entire joint. One of the most common locations of OA is the knee. Knee tissues have been studied using molecular strategies, generating a large amount of complex data. As one of the goals of the Rheumatic and Autoimmune Diseases initiative of the Human Proteome Project, we applied a text-mining strategy to publicly available literature to collect relevant information and generate a systematically organized overview of the proteins most closely related to the different knee components. To this end, the PubPular literature-mining software was employed to identify protein-topic relationships and extract the most frequently cited proteins associated with the different knee joint components and OA. The text-mining approach searched over eight million articles in PubMed up to November 2022. Proteins associated with the six most representative knee components (articular cartilage, subchondral bone, synovial membrane, synovial fluid, meniscus, and cruciate ligament) were retrieved and ranked by their relevance to the tissue and OA. Gene ontology analyses showed the biological functions of these proteins. This study provided a systematic and prioritized description of knee-component proteins most frequently cited as associated with OA. The study also explored the relationship of these proteins to OA and identified the processes most relevant to proper knee function and OA pathophysiology.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Humanos , Cartílago Articular/metabolismo , Articulación de la Rodilla/metabolismo , Articulación de la Rodilla/patología , Osteoartritis de la Rodilla/metabolismo
2.
Ann Rheum Dis ; 83(5): 661-668, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38182405

RESUMEN

OBJECTIVE: Early diagnosis of knee osteoarthritis (KOA) in asymptomatic stages is essential for the timely management of patients using preventative strategies. We develop and validate a prognostic model useful for predicting the incidence of radiographic KOA (rKOA) in non-radiographic osteoarthritic subjects and stratify individuals at high risk of developing the disease. METHODS: Subjects without radiographic signs of KOA according to the Kellgren and Lawrence (KL) classification scale (KL=0 in both knees) were enrolled in the OA initiative (OAI) cohort and the Prospective Cohort of A Coruña (PROCOAC). Prognostic models were developed to predict rKOA incidence during a 96-month follow-up period among OAI participants based on clinical variables and serum levels of the candidate protein biomarkers APOA1, APOA4, ZA2G and A2AP. The predictive capability of the biomarkers was assessed based on area under the curve (AUC), and internal validation was performed to correct for overfitting. A nomogram was plotted based on the regression parameters. Model performance was externally validated in the PROCOAC. RESULTS: 282 participants from the OAI were included in the development dataset. The model built with demographic, anthropometric and clinical data (age, sex, body mass index and WOMAC pain score) showed an AUC=0.702 for predicting rKOA incidence during the follow-up. The inclusion of ZA2G, A2AP and APOA1 data significantly improved the model's sensitivity and predictive performance (AUC=0.831). The simplest model, including only clinical covariates and ZA2G and A2AP serum levels, achieved an AUC=0.826. Both models were internally cross-validated. Predictive performance was externally validated in an independent dataset of 100 individuals from the PROCOAC (AUC=0.713). CONCLUSION: A novel prognostic model based on common clinical variables and protein biomarkers was developed and externally validated to predict rKOA incidence over a 96-month period in individuals without any radiographic signs of disease. The resulting nomogram is a useful tool for stratifying high-risk populations and could potentially lead to personalised medicine strategies for treating OA.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/diagnóstico por imagen , Osteoartritis de la Rodilla/epidemiología , Pronóstico , Estudios Prospectivos , Incidencia , Articulación de la Rodilla , Biomarcadores , Progresión de la Enfermedad
3.
Ann Rheum Dis ; 82(7): 974-984, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37024296

RESUMEN

OBJECTIVES: To identify mitochondrial DNA (mtDNA) genetic variants associated with the risk of rapid progression of knee osteoarthritis (OA) and to characterise their functional significance using a cellular model of transmitochondrial cybrids. METHODS: Three prospective cohorts contributed participants. The osteoarthritis initiative (OAI) included 1095 subjects, the Cohort Hip and Cohort Knee included 373 and 326 came from the PROspective Cohort of Osteoarthritis from A Coruña. mtDNA variants were screened in an initial subset of 450 subjects from the OAI by in-depth sequencing of mtDNA. A meta-analysis of the three cohorts was performed. A model of cybrids was constructed to study the functional consequences of harbouring the risk mtDNA variant by assessing: mtDNA copy number, mitochondrial biosynthesis, mitochondrial fission and fusion, mitochondrial reactive oxygen species (ROS), oxidative stress, autophagy and a whole transcriptome analysis by RNA-sequencing. RESULTS: mtDNA variant m.16519C is over-represented in rapid progressors (combined OR 1.546; 95% CI 1.163 to 2.054; p=0.0027). Cybrids with this variant show increased mtDNA copy number and decreased mitochondrial biosynthesis; they produce higher amounts of mitochondrial ROS, are less resistant to oxidative stress, show a lower expression of the mitochondrial fission-related gene fission mitochondrial 1 and an impairment of autophagic flux. In addition, its presence modulates the transcriptome of cybrids, especially in terms of inflammation, where interleukin 6 emerges as one of the most differentially expressed genes. CONCLUSIONS: The presence of the mtDNA variant m.16519C increases the risk of rapid progression of knee OA. Among the most modulated biological processes associated with this variant, inflammation and negative regulation of cellular process stand out. The design of therapies based on the maintenance of mitochondrial function is recommended.


Asunto(s)
ADN Mitocondrial , Osteoartritis de la Rodilla , Humanos , ADN Mitocondrial/genética , Osteoartritis de la Rodilla/genética , Especies Reactivas de Oxígeno , Estudios Prospectivos , Mitocondrias/genética , Inflamación/metabolismo
4.
Mol Cell Proteomics ; 19(4): 574-588, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980557

RESUMEN

In osteoarthritis (OA), impairment of cartilage regeneration can be related to a defective chondrogenic differentiation of mesenchymal stromal cells (MSCs). Therefore, understanding the proteomic- and metabolomic-associated molecular events during the chondrogenesis of MSCs could provide alternative targets for therapeutic intervention. Here, a SILAC-based proteomic analysis identified 43 proteins related with metabolic pathways whose abundance was significantly altered during the chondrogenesis of OA human bone marrow MSCs (hBMSCs). Then, the level and distribution of metabolites was analyzed in these cells and healthy controls by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), leading to the recognition of characteristic metabolomic profiles at the early stages of differentiation. Finally, integrative pathway analysis showed that UDP-glucuronic acid synthesis and amino sugar metabolism were downregulated in OA hBMSCs during chondrogenesis compared with healthy cells. Alterations in these metabolic pathways may disturb the production of hyaluronic acid (HA) and other relevant cartilage extracellular matrix (ECM) components. This work provides a novel integrative insight into the molecular alterations of osteoarthritic MSCs and potential therapeutic targets for OA drug development through the enhancement of chondrogenesis.


Asunto(s)
Redes y Vías Metabólicas , Terapia Molecular Dirigida , Osteoartritis/tratamiento farmacológico , Osteoartritis/metabolismo , Estudios de Casos y Controles , Condrogénesis , Humanos , Células Madre Mesenquimatosas/metabolismo , Metaboloma , Vía de Pentosa Fosfato , Uridina Difosfato Ácido Glucurónico/biosíntesis
5.
Mol Cell Proteomics ; 18(10): 2018-2028, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31352363

RESUMEN

Osteoarthritis (OA) is a pathology characterized by the loss of articular cartilage. In this study, we performed a peptidomic strategy to identify endogenous peptides (neopeptides) that are released from human osteoarthritic tissue, which may serve as disease markers. With this aim, secretomes of osteoarthritic and healthy articular cartilages obtained from knee and hip were analyzed by shotgun peptidomics. This discovery step led to the identification of 1175 different peptides, corresponding to 101 proteins, as products of the physiological or pathological turnover of cartilage extracellular matrix. Then, a targeted multiple reaction monitoring-mass spectrometry method was developed to quantify the panel of best marker candidates on a larger set of samples (n = 62). Statistical analyses were performed to evaluate the significance of the observed differences and the ability of the neopeptides to classify the tissue. Eight of them were differentially abundant in the media from wounded zones of OA cartilage compared with the healthy tissue (p < 0.05). Three neopeptides belonging to Clusterin and one from Cartilage Oligomeric Matrix Protein showed a disease-dependent decrease specifically in hip OA, whereas two from Prolargin (PRELP) and one from Cartilage Intermediate Layer Protein 1 were significantly increased in samples from knee OA. The release of one peptide from PRELP showed the best metrics for tissue classification (AUC = 0.834). The present study reveals specific neopeptides that are differentially released from knee or hip human osteoarthritic cartilage compared with healthy tissue. This evidences the intervention of characteristic pathogenic pathways in OA and provides a novel panel of peptidic candidates for biomarker development.


Asunto(s)
Biomarcadores/metabolismo , Cartílago Articular/citología , Osteoartritis de la Cadera/metabolismo , Osteoartritis de la Rodilla/metabolismo , Péptidos/metabolismo , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Cartílago Articular/metabolismo , Cartílago Articular/patología , Estudios de Casos y Controles , Células Cultivadas , Cromatografía Liquida , Medios de Cultivo Condicionados/química , Matriz Extracelular/metabolismo , Femenino , Humanos , Masculino , Especificidad de Órganos , Osteoartritis de la Cadera/patología , Osteoartritis de la Rodilla/patología , Espectrometría de Masas en Tándem
6.
J Proteome Res ; 18(3): 1043-1053, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30585730

RESUMEN

Endometrial cancer (EC) is the most frequent gynecological cancer. Tumor dissemination affecting ∼20% of EC patients is characterized at the primary carcinoma by epithelial-to-mesenchymal transition (EMT) associated with myometrial infiltration. At distant sites, the interaction of circulating tumor cells (CTCs) with the microenvironment is crucial for metastatic colonization, with a participation of the extracellular vesicles (EVs). We comprehensively approached these primary and secondary sites to study the impact of tumor EVs on the metastatic efficiency of CTCs in EC. Tumor EVs in circulation reproduce the epithelial phenotype predominant in the primary carcinoma, whereas CTCs are characterized by an EMT phenotype. We modeled this EMT-related clinical scenario in the Hec1A endometrial cell line and characterized the epithelial-like EVs in circulation by SILAC proteome analysis. The identification of proteins involved in cell-cell and cell-matrix interaction and binding, together with in vitro evidence of an improved adhesion of CTC to a functionalized endothelium, suggests a contribution of the epithelial-like EVs in the homing of CTCs at metastatic sites. Accordingly, adhesion protein LGALS3BP was found to be significantly enriched in circulating EVs from a cohort of EC patients with a high risk of recurrence by targeted proteomics (multiple reaction monitoring), highlighting its potential in liquid biopsy in EC.


Asunto(s)
Antígenos de Neoplasias/genética , Biomarcadores de Tumor/genética , Neoplasias Endometriales/genética , Proteoma/genética , Proteómica , Adulto , Anciano , Anciano de 80 o más Años , Antígenos de Neoplasias/sangre , Biomarcadores de Tumor/sangre , Neoplasias Endometriales/sangre , Neoplasias Endometriales/patología , Transición Epitelial-Mesenquimal/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/patología , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Marcaje Isotópico , Persona de Mediana Edad , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Microambiente Tumoral/genética
7.
Mol Cell Proteomics ; 14(7): 1831-45, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25903580

RESUMEN

We have previously reported that articular chondrocytes in tissue contain long cytoplasmic arms that physically connect two distant cells. Cell-to-cell communication occurs through connexin channels termed Gap Junction (GJ) channels, which achieve direct cellular communication by allowing the intercellular exchange of ions, small RNAs, nutrients, and second messengers. The Cx43 protein is overexpressed in several human diseases and inflammation processes and in articular cartilage from patients with osteoarthritis (OA). An increase in the level of Cx43 is known to alter gene expression, cell signaling, growth, and cell proliferation. The interaction of proteins with the C-terminal tail of connexin 43 (Cx43) directly modulates GJ-dependent and -independent functions. Here, we describe the isolation of Cx43 complexes using mild extraction conditions and immunoaffinity purification. Cx43 complexes were extracted from human primary articular chondrocytes isolated from healthy donors and patients with OA. The proteomic content of the native complexes was determined using LC-MS/MS, and protein associations with Cx43 were validated using Western blot and immunolocalization experiments. We identified >100 Cx43-associated proteins including previously uncharacterized proteins related to nucleolar functions, RNA transport, and translation. We also identified several proteins involved in human diseases, cartilage structure, and OA as novel functional Cx43 interactors, which emphasized the importance of Cx43 in the normal physiology and structural and functional integrity of chondrocytes and articular cartilage. Gene Ontology (GO) terms of the proteins identified in the OA samples showed an enrichment of Cx43-interactors related to cell adhesion, calmodulin binding, the nucleolus, and the cytoskeleton in OA samples compared with healthy samples. However, the mitochondrial proteins SOD2 and ATP5J2 were identified only in samples from healthy donors. The identification of Cx43 interactors will provide clues to the functions of Cx43 in human cells and its roles in the development of several diseases, including OA.


Asunto(s)
Conexina 43/metabolismo , Osteoartritis/metabolismo , Mapeo de Interacción de Proteínas , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Cartílago Articular/patología , Núcleo Celular/metabolismo , Condrocitos/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Humanos , Espectrometría de Masas , Persona de Mediana Edad , Osteoartritis/patología , Unión Proteica , Transporte de Proteínas , Vimentina/metabolismo
8.
Ann Rheum Dis ; 74(1): 275-84, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24225059

RESUMEN

OBJECTIVE: This study investigated whether chondrocytes within the cartilage matrix have the capacity to communicate through intercellular connections mediated by voltage-gated gap junction (GJ) channels. METHODS: Frozen cartilage samples were used for immunofluorescence and immunohistochemistry assays. Samples were embedded in cacodylate buffer before dehydration for scanning electron microscopy. Co-immunoprecipitation experiments and mass spectrometry (MS) were performed to identify proteins that interact with the C-terminal end of Cx43. GJ communication was studied through in situ electroporation, electrophysiology and dye injection experiments. A transwell layered culture system and MS were used to identify and quantify transferred amino acids. RESULTS: Microscopic images revealed the presence of multiple cellular projections connecting chondrocytes within the matrix. These projections were between 5 and 150 µm in length. MS data analysis indicated that the C-terminus of Cx43 interacts with several cytoskeletal proteins implicated in Cx trafficking and GJ assembly, including α-tubulin and ß-tubulin, actin, and vinculin. Electrophysiology experiments demonstrated that 12-mer oligonucleotides could be transferred between chondrocytes within 12 min after injection. Glucose was homogeneously distributed within 22 and 35 min. No transfer was detected when glucose was electroporated into A549 cells, which have no GJs. Transwell layered culture systems coupled with MS analysis revealed connexins can mediate the transfer of L-lysine and L-arginine between chondrocytes. CONCLUSIONS: This study reveals that intercellular connections between chondrocytes contain GJs that play a key role in cell-cell communication and a metabolic function by exchange of nutrients including glucose and essential amino acids. A three-dimensional cellular network mediated through GJs might mediate metabolic and physiological homeostasis to maintain cartilage tissue.


Asunto(s)
Cartílago Articular/metabolismo , Comunicación Celular , Condrocitos/metabolismo , Conexinas/metabolismo , Uniones Comunicantes/metabolismo , Aminoácidos Esenciales/metabolismo , Animales , Cartílago Articular/ultraestructura , Condrocitos/ultraestructura , Conexinas/ultraestructura , Uniones Comunicantes/ultraestructura , Glucosa/metabolismo , Homeostasis , Humanos , Inmunohistoquímica , Inmunoprecipitación , Articulación de la Rodilla , Microscopía Electrónica de Rastreo , Porcinos
9.
Expert Rev Proteomics ; 12(4): 433-43, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26152498

RESUMEN

Osteoarthritis is the most common rheumatic pathology and one of the leading causes of disability worldwide. It is a very complex disease whose etiopathogenesis is not fully understood. Furthermore, there are serious limitations for its management, since it lacks specific and sensitive biomarkers for early diagnosis, prognosis and therapeutic monitoring. Proteomic approaches performed in the last few decades have contributed to the knowledge on the molecular mechanisms that participate in this pathology and they have also led to interesting panels of putative biomarker candidates. In the next few years, further efforts should be made for translating these findings into the clinical routines. It is expected that targeted proteomics strategies will be highly valuable for the verification and qualification of biomarkers of osteoarthritis.


Asunto(s)
Biomarcadores/metabolismo , Osteoartritis/metabolismo , Proteómica , Humanos , Osteoartritis/diagnóstico , Osteoartritis/fisiopatología , Pronóstico
10.
J Proteome Res ; 13(12): 6096-106, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25383958

RESUMEN

Osteoarthritis (OA) is the most common rheumatic pathology and is characterized primarily by articular cartilage degradation. Despite its high prevalence, there is no effective therapy to slow disease progression or regenerate the damaged tissue. Therefore, new diagnostic and monitoring tests for OA are urgently needed, which would also promote the development of alternative therapeutic strategies. In the present study, we have performed an iTRAQ-based quantitative proteomic analysis of secretomes from healthy human articular cartilage explants, comparing their protein profile to those from unwounded (early disease) and wounded (advanced disease) zones of osteoarthritic tissue. This strategy allowed us to identify a panel of 76 proteins that are distinctively released by the diseased tissue. Clustering analysis allowed the classification of proteins according to their different profile of release from cartilage. Among these proteins, the altered release of osteoprotegerin (decreased in OA) and periostin (increased in OA), both involved in bone remodelling processes, was verified in further analyses. Moreover, periostin was also increased in the synovial fluid of OA patients. Altogether, the present work provides a novel insight into the mechanisms of human cartilage degradation and a number of new cartilage-characteristic proteins with possible biomarker value for early diagnosis and prognosis of OA.


Asunto(s)
Cartílago Articular/metabolismo , Osteoartritis/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Anciano , Anciano de 80 o más Años , Biomarcadores/metabolismo , Western Blotting , Cartílago Articular/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Cromatografía Liquida , Femenino , Humanos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Osteoartritis/diagnóstico , Osteoartritis/genética , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Proteoma/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal , Líquido Sinovial/metabolismo , Espectrometría de Masas en Tándem , Técnicas de Cultivo de Tejidos
11.
J Proteome Res ; 13(4): 1930-7, 2014 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-24521361

RESUMEN

We tested a semiautomated protocol for the proper storage and conservation in a hospital biobank of tryptic peptide extracts coming from samples with low and high protein complexity for subsequent mass spectrometry analysis. Low-complexity samples (serum albumin, serotransferrin. and alpha-S1-casein) were loaded in replicates in SDS-PAGE and subjected to standard in-gel trypsin digestion. For LC-MALDI-TOF/TOF analysis, purified ß-galactosidase and human serum samples were in-solution digested following standard procedures and desalted with C18 stage-tips. In both cases, peptides extracts were aliquoted in individually 2D coded tubes, vacuum-dried, barcode-read, and stored in an automated -20 °C freezer in the Biobank facility. Samples were kept dried at -20 °C until the corresponding time-point of analysis, then reconstituted in the proper buffer and analyzed by either MALDI-TOF/TOF (peptide fingerprinting and MS/MS) or LC-MALDI-TOF/TOF following a highly reproducible pattern to ensure the reproducibility of the results. Protein identification was done with either Mascot or Protein Pilot as search engines using constant parameters. Over a period of 1 year we checked six different time points at days 0, 7, 30, 90, 180, and 365. We compared MS and MS/MS protein score, number of identified peptides, and coverage of the identified proteins. In the low complexity samples, the number of peptides detected gradually decreased over time, especially affecting the MS score. However, two of the three proteins - serum albumin and serotransferrin - were identified by both PMF and MS/MS at day 90. By day 180, only MS/MS identification in some replicates was possible. By LC-MS/MS, ß-galactosidase and the most abundant serum proteins were identified with good scores at all time points even by day 365, with no detectable peptide loss or decrease in the fragmentation efficiency, although a progressive decrease in peptide intensity indicates that detection of low abundant proteins could not be optimal after very long periods of time. Our results encourage us to use the biobank facility in the future for long-term storage - up to 3 months - of dried peptide extracts.


Asunto(s)
Bancos de Muestras Biológicas , Criopreservación/métodos , Fragmentos de Péptidos/química , Proteoma/química , Proteómica/métodos , Humanos , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Tripsina/metabolismo
12.
J Proteome Res ; 13(2): 460-76, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24299215

RESUMEN

Desiccation tolerance contributes to the maintenance of bacterial populations in hospital settings and may partly explain its propensity to cause outbreaks. Identification and relative quantitation of proteins involved in bacterial desiccation tolerance was made using label-free quantitation and iTRAQ labeling. Under desiccating conditions, the population of the Acinetobacter baumannii clinical strain AbH12O-A2 decreased in the first week, and thereafter, a stable population of 0.5% of the original population was maintained. Using label-free quantitation and iTRAQ labeling, 727 and 765 proteins, respectively, were detected; 584 of them by both methods. Proteins overexpressed under desiccation included membrane and periplasmic proteins. Proteins associated with antimicrobial resistance, efflux pumps, and quorum quenching were overexpressed in the samples subjected to desiccation stress. Electron microscopy revealed clear morphological differences between desiccated and control bacteria. We conclude that A. baumannii is able to survive long periods of desiccation through the presence of cells in a dormant state, via mechanisms affecting control of cell cycling, DNA coiling, transcriptional and translational regulation, protein stabilization, antimicrobial resistance, and toxin synthesis, and that a few surviving cells embedded in a biofilm matrix are able to resume growth and restore the original population in appropriate environmental conditions following a "bust-and-boom" strategy.


Asunto(s)
Acinetobacter baumannii/fisiología , Desecación , Estrés Fisiológico , Acinetobacter baumannii/crecimiento & desarrollo , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/metabolismo , Biopelículas , Cromatografía Liquida , Electroforesis en Gel de Poliacrilamida , Microscopía Electrónica de Transmisión , Análisis de Componente Principal , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
13.
J Proteome Res ; 13(1): 158-72, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24138474

RESUMEN

The Spanish team of the Human Proteome Project (SpHPP) marked the annotation of Chr16 and data analysis as one of its priorities. Precise annotation of Chromosome 16 proteins according to C-HPP criteria is presented. Moreover, Human Body Map 2.0 RNA-Seq and Encyclopedia of DNA Elements (ENCODE) data sets were used to obtain further information relative to cell/tissue specific chromosome 16 coding gene expression patterns and to infer the presence of missing proteins. Twenty-four shotgun 2D-LC-MS/MS and gel/LC-MS/MS MIAPE compliant experiments, representing 41% coverage of chromosome 16 proteins, were performed. Furthermore, mapping of large-scale multicenter mass spectrometry data sets from CCD18, MCF7, Jurkat, and Ramos cell lines into RNA-Seq data allowed further insights relative to correlation of chromosome 16 transcripts and proteins. Detection and quantification of chromosome 16 proteins in biological matrices by SRM procedures are also primary goals of the SpHPP. Two strategies were undertaken: one focused on known proteins, taking advantage of MS data already available, and the second, aimed at the detection of the missing proteins, is based on the expression of recombinant proteins to gather MS information and optimize SRM methods that will be used in real biological samples. SRM methods for 49 known proteins and for recombinant forms of 24 missing proteins are reported in this study.


Asunto(s)
Cromosomas Humanos Par 16 , Proteoma , Transcriptoma , Cromatografía Liquida , Humanos , Espectrometría de Masas , Análisis de Secuencia de ARN
14.
Mol Cell Proteomics ; 11(6): M111.013417, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22203690

RESUMEN

Chondroitin sulfate (CS) is a symptomatic slow acting drug for osteoarthritis (OA) widely used for the treatment of this highly prevalent disease, characterized by articular cartilage degradation. However, little is known about its mechanism of action, and recent large scale clinical trials have reported variable results on OA symptoms. Herein, we aimed to study the modulations in the intracellular proteome and the secretome of human articular cartilage cells (chondrocytes) treated with three different CS compounds, with different origin or purity, by two complementary proteomic approaches. Osteoarthritic cells were treated with 200 µg/ml of each brand of CS. Quantitative proteomics experiments were carried out by the DIGE and stable isotope labeling with amino acids in cell culture (SILAC) techniques, followed by LC-MALDI-MS/MS analysis. The DIGE study, carried out on chondrocyte whole cell extracts, led to the detection of 46 spots that were differential between conditions in our study: 27 were modulated by CS1, 4 were modulated by CS2, and 15 were modulated by CS3. The SILAC experiment, carried out on the subset of chondrocyte-secreted proteins, allowed us to identify 104 different proteins. Most of them were extracellular matrix components, and 21 were modulated by CS1, 13 were modulated by CS2, and 9 were modulated by CS3. Each of the studied compounds induces a characteristic protein profile in OA chondrocytes. CS1 displayed the widest effect but increased the mitochondrial superoxide dismutase, the cartilage oligomeric matrix protein, and some catabolic or inflammatory factors like interstitial collagenase, stromelysin-1, and pentraxin-related protein. CS2 and CS3, on the other hand, increased a number of structural proteins, growth factors, and extracellular matrix proteins. Our study shows how, from the three CS compounds tested, CS1 induces the activation of inflammatory and catabolic pathways, whereas CS2 and CS3 induce an anti-inflammatory and anabolic response. The data presented emphasize the importance of employing high quality CS compounds, supported by controlled clinical trials, in the therapy of OA. Finally, the present work exemplifies the usefulness of proteomic approaches in pharmacological studies.


Asunto(s)
Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Sulfatos de Condroitina/farmacología , Proteoma/metabolismo , Secuencia de Aminoácidos , Extractos Celulares/química , Células Cultivadas , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Líquido Intracelular/metabolismo , Datos de Secuencia Molecular , Osteoartritis/metabolismo , Osteoartritis/patología , Fragmentos de Péptidos/química , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Electroforesis Bidimensional Diferencial en Gel
15.
J Proteome Res ; 11(11): 5350-61, 2012 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22989065

RESUMEN

Human mesenchymal stem cells (hMSCs), residing in bone marrow as well as in the synovial lining of joints, can be triggered to differentiate toward chondrocytes. Thus, hMSCs harbor great therapeutic potential for the repair of cartilage defects in osteoarthritis (OA) and other articular diseases. However, the molecular mechanisms underlying the chondrogenesis process are still in part unknown. In this work, we applied for the first time the stable isotope labeling by amino acids in cell culture (SILAC) technique for the quantitative analysis of protein modulation during the chondrogenic differentiation process of hMSCs. First, we have standardized the metabolic labeling procedure on MSCs isolated from bone marrow (hBMSCs), and we have assessed the quality of chondrogenesis taking place in these conditions. Then, chondrogenic differentiation was induced on these labeled cells, and a quantitative proteomics approach has been followed to evaluate protein changes between two differentiation days. With this strategy, we could identify 622 different proteins by LC-MALDI-TOF/TOF analysis and find 65 proteins whose abundance was significantly modulated between day 2 and day 14 of chondrogenesis. Immunohistochemistry analyses were performed to verify the changes on a panel of six proteins that play different biological roles in the cell: fibronectin, gelsolin, vimentin, alpha-ATPase, mitochondrial superoxide dismutase, and cyclophilin A. All of these proteins were increased at day 14 compared to day 2 of chondrogenic induction, thus being markers of the enhanced extracellular matrix synthesis, cell adhesion, metabolism, and response to stress processes that take place in the early steps of chondrogenesis. Our strategy has allowed an additional insight into both specific protein function and the mechanisms of chondrogenesis and has provided a panel of protein markers of this differentiation process in hBMSCs.


Asunto(s)
Células de la Médula Ósea/metabolismo , Diferenciación Celular , Condrocitos/citología , Células Madre Mesenquimatosas/metabolismo , Secuencia de Bases , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Células Cultivadas , Cromatografía Liquida , Cartilla de ADN , Bases de Datos de Proteínas , Humanos , Células Madre Mesenquimatosas/citología , Proteómica , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
16.
Proteome Sci ; 10(1): 55, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22971006

RESUMEN

BACKGROUND: The field of biomarker discovery, development and application has been the subject of intense interest and activity, especially with the recent emergence of new technologies, such as proteomics-based approaches. In proteomics, search for biomarkers in biological fluids such as human serum is a challenging issue, mainly due to the high dynamic range of proteins present in these types of samples. Methods for reducing the content of most highly abundant proteins have been developed, including immunodepletion or protein equalization. In this work, we report for the first time the combination of a chemical sequential depletion method based in two protein precipitations with acetonitrile and DTT, with a subsequent two-dimensional difference in-gel electrophoresis (2D-DIGE) analysis for the search of osteoarthritis (OA) biomarkers in human serum. The depletion method proposed is non-expensive, of easy implementation and allows fast sample throughput. RESULTS: Following this workflow, we have compared sample pools of human serum obtained from 20 OA patients and 20 healthy controls. The DIGE study led to the identification of 16 protein forms (corresponding to 14 different proteins) that were significantly (p < 0.05) altered in OA when compared to controls (8 increased and 7 decreased). Immunoblot analyses confirmed for the first time the increase of an isoform of Haptoglobin beta chain (HPT) in sera from OA patients. CONCLUSIONS: Altogether, these data demonstrate the utility of the proposed chemical sequential depletion for the analysis of sera in protein biomarker discovery approaches, exhibit the usefulness of quantitative 2D gel-based strategies for the characterization of disease-specific patterns of protein modifications, and also provide a list of OA biomarker candidates for validation.

17.
Biochimie ; 198: 48-59, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35307483

RESUMEN

Bacillus sp. HR21-6 is capable of the chemo- and regioselective synthesis of lipophilic partially acetylated phenolic compounds derived from olive polyphenols, which are powerful antioxidants important in the formulation of functional foods. In this work, an acetyl esterase was identified in the secretome of this strain by non-targeted proteomics, and classified in the GDSL family (superfamily SGNH). The recombinant protein was expressed and purified from Escherichia coli in the soluble form, and biochemically characterized. Site-directed mutagenesis was performed to understand the role of different amino acids that are conserved among GDSL superfamily of esterases. Mutation of Ser-10, Gly-45 or His-185 abolished the enzyme activity, while mutation of Asn-77 or Thr-184 altered the substrate specificity of the enzyme. This new enzyme is able to perform chemoselective conversions of olive phenolic compounds with great interest in the food industry, such as hydroxytyrosol, 3,4-dihydroxyphenylglycol, and oleuropein.


Asunto(s)
Acetilesterasa , Bacillus , Proteínas Bacterianas , Acetilesterasa/química , Acetilesterasa/genética , Secuencia de Aminoácidos/genética , Bacillus/enzimología , Bacillus/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Escherichia coli , Esterasas/metabolismo , Mutagénesis Sitio-Dirigida , Especificidad por Sustrato/genética
18.
Front Med (Lausanne) ; 9: 963540, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388911

RESUMEN

Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation of the joints and presence of systemic autoantibodies, with a great clinical and molecular heterogeneity. Rheumatoid Factor (RF) and anti-citrullinated protein antibodies (ACPA) are routinely used for the diagnosis of RA. However, additional serological markers are needed to improve the clinical management of this disease, allowing for better patient stratification and the desirable application of precision medicine strategies. In the present study, we investigated those systemic molecular changes that are associated with the RF and ACPA status of RA patients. To achieve this objective, we followed a proteomic biomarker pipeline from the discovery phase to validation. First, we performed an iTRAQ-based quantitative proteomic experiment on serum samples from the RA cohort of the Hospital of Santiago de Compostela (CHUS). In this discovery phase, serum samples from the CHUS cohort were pooled according to their RF/ACPA status. Shotgun analysis revealed that, in comparison with the double negative group (RF-/ACPA-), the abundance of 12 proteins was altered in the RF+/ACPA+ pool, 16 in the RF+/ACPA- pool and 10 in the RF-/ACPA+ pool. Vitamin D binding protein and haptoglobin were the unique proteins increased in all the comparisons. For the verification phase, 80 samples from the same cohort were analyzed individually. To this end, we developed a Multiple Reaction Monitoring (MRM) method that was employed in a comprehensive targeted analysis with the aim of verifying the results obtained in the discovery phase. Thirty-one peptides belonging to 12 proteins associated with RF and/or ACPA status were quantified by MRM. In a final validation phase, the serum levels of alpha-1-acid glycoprotein 1 (A1AG1), haptoglobin (HPT) and retinol-binding protein 4 (RET4) were measured by immunoassays in the RA cohort of the Hospital of A Coruña (HUAC). The increase of two of these putative biomarkers in the double seropositive group was validated in 260 patients from this cohort (p = 0.009 A1AG1; p = 0.003 HPT). The increased level of A1AG1 showed association with RF rather than ACPA (p = 0.023), whereas HPT showed association with ACPA rather than RF (p = 0.013). Altogether, this study has allowed a further classification of the RA seropositive patients into two novel clusters: RF+A1AG+ and ACPA+HPT+. The determination of A1AG1 and HPT in serum would provide novel information useful for RA patient stratification, which could facilitate the effective implementation of personalized medicine in routine clinical practice.

19.
J Proteomics ; 251: 104409, 2022 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-34758407

RESUMEN

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Asunto(s)
Proteoma , Proteómica , Laboratorios , Fosfoproteínas/análisis , Fosforilación , Proteoma/análisis , Proteómica/métodos , Estándares de Referencia , Reproducibilidad de los Resultados
20.
Proteomics ; 11(12): 2555-9, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21591256

RESUMEN

Most of the archived pathological specimens in hospitals are kept as formalin-fixed paraffin-embedded tissues (FFPE) for long-term preservation. Up to now, these samples are only used for immunohistochemistry in a clinical routine as it is difficult to recover intact protein from these FFPE tissues. Here, we report a novel, short time-consuming and cost-effective method to extract full-length, non-degraded proteins from FFPE tissues. This procedure is combined with an effective and non-toxic deparaffinisation process and an extraction method based on antigen-retrieval, high concentration of SDS and high temperature. We have obtained enough intact protein to be detected by Western blotting analysis. This technique will allow utilising these stored FFPE tissues in several applications for protein analysis helping to advance the translational studies in cancer and other diseases.


Asunto(s)
Neoplasias del Colon/química , Proteínas de Neoplasias , Proteómica/métodos , Antígenos/análisis , Biopsia , Western Blotting , Neoplasias del Colon/patología , Fijadores , Formaldehído/química , Humanos , Inmunohistoquímica/métodos , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/aislamiento & purificación , Parafina , Adhesión en Parafina , Dodecil Sulfato de Sodio/química , Temperatura , Fijación del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA