Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 525
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Pineal Res ; 76(1): e12923, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37990784

RESUMEN

Immune-pineal axis activation is part of the assembly of immune responses. Proinflammatory cytokines inhibit the pineal synthesis of melatonin while inducing it in macrophages by mechanisms dependent on nuclear factor-κB (NF-κB) activation. Cytokines activating the Janus kinase/signal transducer and activator of transcription (STAT) pathways, such as interferon-gamma (IFN-γ) and interleukin-10 (IL-10), modulate melatonin synthesis in the pineal, bone marrow (BM), and spleen. The stimulatory effect of IFN-γ upon the pineal gland depends on STAT1/NF-κB interaction, but the mechanisms controlling IL-10 effects on melatonin synthesis remain unclear. Here, we evaluated the role of STAT3 and NF-κB activation by IL-10 upon the melatonin synthesis of rats' pineal gland, BM, spleen, and peritoneal cells. The results show that IL-10-induced interaction of (p)STAT3 with specific NF-κB dimmers leads to different cell effects. IL-10 increases the pineal's acetylserotonin O-methyltransferase (ASMT), N-acetylserotonin, and melatonin content via nuclear translocation of NF-κB/STAT3. In BM, the nuclear translocation of STAT3/p65-NF-κB complexes increases ASMT expression and melatonin content. Increased pSTAT3/p65-NF-κB nuclear translocation in the spleen enhances phosphorylated serotonin N-acetyltransferase ((p)SNAT) expression and melatonin content. Conversely, in peritoneal cells, IL-10 leads to NF-κB p50/p50 inhibitory dimmer nuclear translocation, decreasing (p)SNAT expression and melatonin content. In conclusion, IL-10's effects on melatonin production depend on the NF-κB subunits interacting with (p)STAT3. Thus, variations of IL-10 levels and downstream pathways during immune responses might be critical regulatory factors adjusting pineal and extra-pineal synthesis of melatonin.


Asunto(s)
Melatonina , Glándula Pineal , Ratas , Animales , FN-kappa B/metabolismo , Glándula Pineal/metabolismo , Melatonina/farmacología , Interleucina-10/metabolismo , Transducción de Señal
2.
J Chem Inf Model ; 64(10): 4218-4230, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38684937

RESUMEN

Due to its detrimental impact on human health and the environment, regulations demand ultralow sulfur levels on fossil fuels, in particular in diesel. However, current desulfurization techniques are expensive and cannot efficiently remove heteroaromatic sulfur compounds, which are abundant in crude oil and concentrate in the diesel fraction after distillation. Biodesulfurization via the four enzymes of the metabolic 4S pathway of the bacterium Rhodococcus erythropolis (DszA-D) is a possible solution. However, the 4S pathway needs to operate at least 500 times faster for industrial applicability, a goal currently pursued through enzyme engineering. In this work, we unveil the catalytic mechanism of the flavin monooxygenase DszA. Surprisingly, we found that this enzyme follows a recently proposed atypical mechanism that passes through the formation of an N5OOH intermediate at the re side of the cofactor, aided by a well-defined, predominantly hydrophobic O2 pocket. Besides clarifying the unusual chemical mechanism of the complex DszA enzyme, with obvious implications for understanding the puzzling chemistry of flavin-mediated catalysis, the result is crucial for the rational engineering of DszA, contributing to making biodesulfurization attractive for the oil refining industry.


Asunto(s)
Biocatálisis , Rhodococcus , Rhodococcus/enzimología , Rhodococcus/metabolismo , Modelos Moleculares , Azufre/metabolismo , Azufre/química , Oxigenasas de Función Mixta/metabolismo , Oxigenasas de Función Mixta/química , Carbono/química , Carbono/metabolismo
3.
Anal Bioanal Chem ; 416(20): 4605-4618, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38965103

RESUMEN

"Purple Drank", a soft drink containing promethazine (PMZ) and codeine (COD), has gained global popularity for its hallucinogenic effects. Consuming large amounts of this combination can lead to potentially fatal events. The binding of these drugs to plasma proteins can exacerbate the issue by increasing the risk of drug interactions, side effects, and/or toxicity. Herein, the binding affinity to human serum albumin (HSA) of PMZ and its primary metabolites [N-desmethyl promethazine (DMPMZ) and promethazine sulphoxide (PMZSO)], along with COD, was investigated by high-performance affinity chromatography (HPAC) though zonal approach. PMZ and its metabolites exhibited a notable binding affinity for HSA (%b values higher than 80%), while COD exhibited a %b value of 65%. To discern the specific sites of HSA to which these compounds were bound, displacement experiments were performed using warfarin and (S)-ibuprofen as probes for sites I and II, respectively, which revealed that all analytes were bound to both sites. Molecular docking studies corroborated the experimental results, reinforcing the insights gained from the empirical data. The in silico data also suggested that competition between PMZ and its metabolites with COD can occur in both sites of HSA, but mainly in site II. As the target compounds are chiral, the enantioselectivity for HSA binding was also explored, showing that the binding for these compounds was not enantioselective.


Asunto(s)
Cromatografía de Afinidad , Codeína , Simulación del Acoplamiento Molecular , Prometazina , Unión Proteica , Humanos , Prometazina/metabolismo , Prometazina/química , Codeína/metabolismo , Codeína/química , Cromatografía de Afinidad/métodos , Albúmina Sérica Humana/química , Albúmina Sérica Humana/metabolismo , Sitios de Unión , Cromatografía Líquida de Alta Presión/métodos
4.
Nature ; 554(7693): 528-532, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443967

RESUMEN

Peptidoglycan is the main component of the bacterial wall and protects cells from the mechanical stress that results from high intracellular turgor. Peptidoglycan biosynthesis is very similar in all bacteria; bacterial shapes are therefore mainly determined by the spatial and temporal regulation of peptidoglycan synthesis rather than by the chemical composition of peptidoglycan. The form of rod-shaped bacteria, such as Bacillus subtilis or Escherichia coli, is generated by the action of two peptidoglycan synthesis machineries that act at the septum and at the lateral wall in processes coordinated by the cytoskeletal proteins FtsZ and MreB, respectively. The tubulin homologue FtsZ is the first protein recruited to the division site, where it assembles in filaments-forming the Z ring-that undergo treadmilling and recruit later divisome proteins. The rate of treadmilling in B. subtilis controls the rates of both peptidoglycan synthesis and cell division. The actin homologue MreB forms discrete patches that move circumferentially around the cell in tracks perpendicular to the long axis of the cell, and organize the insertion of new cell wall during elongation. Cocci such as Staphylococcus aureus possess only one type of peptidoglycan synthesis machinery, which is diverted from the cell periphery to the septum in preparation for division. The molecular cue that coordinates this transition has remained elusive. Here we investigate the localization of S. aureus peptidoglycan biosynthesis proteins and show that the recruitment of the putative lipid II flippase MurJ to the septum, by the DivIB-DivIC-FtsL complex, drives peptidoglycan incorporation to the midcell. MurJ recruitment corresponds to a turning point in cytokinesis, which is slow and dependent on FtsZ treadmilling before MurJ arrival but becomes faster and independent of FtsZ treadmilling after peptidoglycan synthesis activity is directed to the septum, where it provides additional force for cell envelope constriction.


Asunto(s)
Citocinesis , Peptidoglicano/biosíntesis , Proteínas de Transferencia de Fosfolípidos/metabolismo , Staphylococcus aureus/citología , Staphylococcus aureus/metabolismo , Proteínas Bacterianas/metabolismo , Pared Celular/química , Pared Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Cinética , Microscopía Fluorescente , Piridinas/farmacología , Análisis de la Célula Individual , Staphylococcus aureus/efectos de los fármacos , Tiazoles/farmacología , Uridina Difosfato Ácido N-Acetilmurámico/análogos & derivados , Uridina Difosfato Ácido N-Acetilmurámico/metabolismo
5.
J Fish Biol ; 104(1): 320-323, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37749828

RESUMEN

Squalius alburnoides (Steindachner, 1866) is an endemic threatened species from the Iberian Peninsula. Here, we report the first observations of intraspecific cleaning behavior in isolated summer pools in the Guadiana River Basin (Portugal). We found that focal S. alburnoides solicited cleaning by adopting an immobile tail-stand position known as "posing," which immediately signaled a response to a few conspecifics that approached and inspect them. Our study expands the list of cleanerfish species in freshwaters, giving emphasis to the importance of mutual positive behavior within an endangered species, particularly when facing seasonal disturbance.


Asunto(s)
Cyprinidae , Cipriniformes , Animales , Ríos , Portugal , Agua Dulce
6.
J Physiol ; 601(3): 535-549, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36287128

RESUMEN

Chronic inflammatory diseases are triggered by causal stimuli that might occur long before the appearance of the symptoms. Increasing evidence suggests that these stimuli are necessary but not always sufficient to induce the diseases. The murine model of type II collagen emulsified in Freund's incomplete adjuvant (collagen-induced arthritis) to induce rheumatoid arthritis (RA) follows this pattern as some animals do not develop the chronically inflamed phenotype. Considering that in the immune-pineal axis (IPA) theory adrenal-pineal cross-talk adjusts early phases of inflammatory processes, we investigated whether differences in IPA activation could explain why some animals are resistant (RES) while others develop RA. We observed a similar increase in 6-sulfatoxymelatonin (aMT6s) excretion from day 3 to 13 in both RES and RA animals, followed by a significant decrease in RA animals. This pattern of aMT6s excretion positively correlated with plasma corticosterone (CORT) in RES animals. Additionally, RA animals presented a lower aMT6s/CORT ratio than saline-injected or RES animals. Plasmatic levels of tumour necrosis factor were similar in both groups, but interleukin (IL)-1ß and monocyte chemotactic protein 1 (MCP-1) levels were lower in RES compared to RA animals. IL-2 and IL-4 were decreased in RES animals compared to saline-injected animals. The aMT6s/CORT ratio inversely correlated with the paw thickness and the inflammatory score (levels of IL-1ß, MCP-1, IL-2 and IL-4 combined). Thus, adrenocortical-pineal positive interaction is an early defence mechanism for avoiding inflammatory chronification. KEY POINTS: Immune-pineal axis imbalance is observed in early-phase rheumatoid arthritis development. Only resistant animals present a positive association between adrenal and pineal hormones. The 6-sulfatoxymelatonin/corticosterone ratio is decreased in animals that develop rheumatoid arthritis. The inflammatory score combining the levels of nocturnal interleukin (IL)-1ß, monocyte chemotactic protein 1, IL-2 and IL-4 presents a very strong positive correlation with the size of inflammatory lesion. The 6-sulfatoxymelatonin/corticosterone ratio presents a strong negative correlation with the inflammatory score and paw oedema size.


Asunto(s)
Artritis Experimental , Artritis Reumatoide , Ratas , Ratones , Animales , Quimiocina CCL2 , Corticosterona , Interleucina-4/efectos adversos , Interleucina-2 , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Artritis Experimental/inducido químicamente , Artritis Experimental/patología , Citocinas/metabolismo
7.
Acta Psychiatr Scand ; 148(4): 316-326, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37539719

RESUMEN

INTRODUCTION: Psychiatric patients are considered at risk for malnutrition due to pharmacological treatments, lifestyle habits and the mental illness by itself. Even though metabolic risk factors have been related to worse outcomes in certain conditions, the evidence regarding the nutritional status and its impact on the length of stay in psychiatric inpatients is scarce. This study aims to characterize the nutritional status in acute psychiatric patients, to correlate it with the length of stay, and to find specific potential indicators of malnutrition. METHODS: Adult patients admitted to the Hospital Clínic of Barcelona acute psychiatric ward throughout a 1-year period were included in this cross-sectional study. Sociodemographic and clinical variables were registered, including length of stay and the nutritional status measured with the CONUT score. RESULTS: Malnutrition was observed in 42.5% of patients. Plasmatic transferrin saturation, protein and iron levels were inversely correlated with length of stay, having low iron levels an association with longer hospitalizations. The length of stay was not influenced by diagnosis or treatment. Negative correlations with the nutritional status were found in: BMI, cholesterol, triglycerides, albumin, total proteins, prealbumin, iron, lymphocytes and zinc levels, and transferrin saturation. The multivariate analysis showed a significant association for cholesterol and zinc levels, lymphocyte count, and BMI. CONCLUSIONS: Our results suggest that nutritional status might influence the course of psychiatric admissions. Cholesterol and zinc levels, lymphocyte count, and BMI might be factors strongly associated with malnutrition. This consideration might allow the identification of profiles in which lifestyle interventions could be implemented.


Asunto(s)
Desnutrición , Servicio de Psiquiatría en Hospital , Adulto , Humanos , Evaluación Nutricional , Estudios Transversales , Desnutrición/epidemiología , Desnutrición/diagnóstico , Desnutrición/etiología , Colesterol , Hierro/metabolismo , Transferrinas , Zinc/metabolismo
8.
J Chem Inf Model ; 63(20): 6354-6365, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37791530

RESUMEN

Due to the emergence of antibiotic resistance, the need to explore novel antibiotics and/or novel strategies to counter antibiotic resistance is of utmost importance. In this work, we explored the molecular and mechanistic details of the degradation of a streptogramin B antibiotic by virginiamycin B (Vgb) lyase of Staphylococcus aureus using classical molecular dynamics simulations and multiscale quantum mechanics/molecular mechanics methods. Our results were in line with available experimental kinetic information. Although we were able to identify a stepwise mechanism, in the wild-type enzyme, the intermediate is short-lived, showing a small barrier to decay to the product state. The impact of point mutations on the reaction was also assessed, showing not only the importance of active site residues to the reaction catalyzed by Vgb lyase but also of near positive and negative residues surrounding the active site. Using molecular dynamics simulations, we also predicted the most likely protonation state of the 3-hydroxypicolinic moiety of the antibiotic and the impact of mutants on antibiotic binding. All this information will expand our understanding of linearization reactions of cyclic antibiotics, which are crucial for the development of novel strategies that aim to tackle antibiotic resistance.


Asunto(s)
Liasas , Virginiamicina , Virginiamicina/química , Virginiamicina/metabolismo , Simulación de Dinámica Molecular , Liasas/metabolismo , Antibacterianos/química , Catálisis
9.
J Chem Inf Model ; 63(1): 20-26, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36534708

RESUMEN

We describe an approach to identify enzyme mutants with increased turnover using the enzyme DszC as a case study. Our approach is based on recalculating the barriers of alanine mutants through single-point energy calculations at the hybrid QM/MM level in the wild-type reactant and transition state geometries. We analyze the difference in the electron density between the reactant and transition state to identify sites/residues where electrostatic interactions stabilize the transition state over the reactants. We also assess the insertion of a unit probe charge to identify positions in which the introduction of charged residues lowers the barrier.


Asunto(s)
Catálisis
10.
J Chem Inf Model ; 63(13): 4056-4069, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37092784

RESUMEN

Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.


Asunto(s)
Antivenenos , Daboia , Animales , Antivenenos/farmacología , Zinc , Venenos de Víboras/química , Venenos de Víboras/toxicidad , Metaloproteasas
11.
Chem Rev ; 121(15): 9502-9553, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34156235

RESUMEN

Fatty acids are crucial molecules for most living beings, very well spread and conserved across species. These molecules play a role in energy storage, cell membrane architecture, and cell signaling, the latter through their derivative metabolites. De novo synthesis of fatty acids is a complex chemical process that can be achieved either by a metabolic pathway built by a sequence of individual enzymes, such as in most bacteria, or by a single, large multi-enzyme, which incorporates all the chemical capabilities of the metabolic pathway, such as in animals and fungi, and in some bacteria. Here we focus on the multi-enzymes, specifically in the animal fatty acid synthase (FAS). We start by providing a historical overview of this vast field of research. We follow by describing the extraordinary architecture of animal FAS, a homodimeric multi-enzyme with seven different active sites per dimer, including a carrier protein that carries the intermediates from one active site to the next. We then delve into this multi-enzyme's detailed chemistry and critically discuss the current knowledge on the chemical mechanism of each of the steps necessary to synthesize a single fatty acid molecule with atomic detail. In line with this, we discuss the potential and achieved FAS applications in biotechnology, as biosynthetic machines, and compare them with their homologous polyketide synthases, which are also finding wide applications in the same field. Finally, we discuss some open questions on the architecture of FAS, such as their peculiar substrate-shuttling arm, and describe possible reasons for the emergence of large megasynthases during evolution, questions that have fascinated biochemists from long ago but are still far from answered and understood.


Asunto(s)
Ácido Graso Sintasas/química , Ácido Graso Sintasas/metabolismo , Ácidos Grasos/biosíntesis , Animales , Dominio Catalítico , Redes y Vías Metabólicas , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo
12.
J Prosthet Dent ; 130(1): 87-95, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34711406

RESUMEN

STATEMENT OF PROBLEM: Microgap and bacterial microleakage at the implant-prosthetic abutment interface are recognized concerns for implant-supported restorations, leading to inflammation of the peri-implant tissues, with deleterious consequences for crestal bone levels. However, little is known regarding the interface established between the implant and the healing abutment or cover screw placed for the osseointegration phase. PURPOSE: The purpose of this in vitro study was to characterize the implant-cover screw and implant-healing abutment interfaces of a platform-switched implant system to determine the microgap and bacterial microleakage of the system and evaluate the biological response and functionality of an interface sealing agent. MATERIAL AND METHODS: The interfacial microgaps of the implant-healing abutment and implant-cover screw interfaces were characterized by scanning electron microscopy (n=10), and bacterial microleakage was evaluated after colonization with Enterococcus faecalis in a 30-day follow-up (n=10). The sealing efficacy and irritation potential of a silicone-based sealer were determined by using the hen's egg test on chorioallantoic membrane assay. The 2-sample t test was performed to compare means between groups, and data presented with the Kaplan-Meier method were compared statistically by using the log-rank test (α=.05). RESULTS: The interfacial microgap was less than 2.5 µm for both systems. Bacterial microleakage was noted in approximately 50% of the specimens, particularly at early time points, at both the healing abutment and cover screw interfaces. The silicone-based sealer prevented bacterial leakage in the experimental setting. CONCLUSIONS: The implant-healing abutment and implant-cover screw interfaces of the tested system, despite the low microgap, allowed for bacterial microleakage after internal colonization. The use of a nonirritating silicone-based sealing agent effectively sealed the system.


Asunto(s)
Implantes Dentales , Oseointegración , Animales , Femenino , Pollos , Pilares Dentales , Implantes Dentales/microbiología , Bacterias , Diseño de Implante Dental-Pilar
13.
Molecules ; 28(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298742

RESUMEN

(S)-Norcoclaurine is synthesized in vivo through a metabolic pathway that ends with (S)-norcoclaurine synthase (NCS). The former constitutes the scaffold for the biosynthesis of all benzylisoquinoline alkaloids (BIAs), including many drugs such as the opiates morphine and codeine and the semi-synthetic opioids oxycodone, hydrocodone, and hydromorphone. Unfortunately, the only source of complex BIAs is the opium poppy, leaving the drug supply dependent on poppy crops. Therefore, the bioproduction of (S)-norcoclaurine in heterologous hosts, such as bacteria or yeast, is an intense area of research nowadays. The efficiency of (S)-norcoclaurine biosynthesis is strongly dependent on the catalytic efficiency of NCS. Therefore, we identified vital NCS rate-enhancing mutations through the rational transition-state macrodipole stabilization method at the Quantum Mechanics/Molecular Mechanics (QM/MM) level. The results are a step forward for obtaining NCS variants able to biosynthesize (S)-norcoclaurine on a large scale.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Ligasas de Carbono-Nitrógeno , Papaver , Alcaloides/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Codeína , Papaver/genética , Papaver/metabolismo
14.
Molecules ; 28(8)2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-37110775

RESUMEN

Brewer's spent yeast (BSY) mannoproteins have been reported to possess thickening and emulsifying properties. The commercial interest in yeast mannoproteins might be boosted considering the consolidation of their properties supported by structure/function relationships. This work aimed to attest the use of extracted BSY mannoproteins as a clean label and vegan source of ingredients for the replacement of food additives and protein from animal sources. To achieve this, structure/function relationships were performed by isolating polysaccharides with distinct structural features from BSY, either by using alkaline extraction (mild treatment) or subcritical water extraction (SWE) using microwave technology (hard treatment), and assessment of their emulsifying properties. Alkaline extractions solubilized mostly highly branched mannoproteins (N-linked type; 75%) and glycogen (25%), while SWE solubilized mannoproteins with short mannan chains (O-linked type; 55%) and (1→4)- and (ß1→3)-linked glucans, 33 and 12%, respectively. Extracts with high protein content yielded the most stable emulsions obtained by hand shaking, while the extracts composed of short chain mannans and ß-glucans yielded the best emulsions by using ultraturrax stirring. ß-Glucans and O-linked mannoproteins were found to contribute to emulsion stability by preventing Ostwald ripening. When applied in mayonnaise model emulsions, BSY extracts presented higher stability and yet similar texture properties as the reference emulsifiers. When used in a mayonnaise formulation, the BSY extracts were also able to replace egg yolk and modified starch (E1422) at 1/3 of their concentration. This shows that BSY alkali soluble mannoproteins and subcritical water extracted ß-glucans can be used as replacers of animal protein and additives in sauces.


Asunto(s)
Saccharomyces cerevisiae , beta-Glucanos , Animales , Humanos , Saccharomyces cerevisiae/metabolismo , Emulsiones/metabolismo , Veganos , Polisacáridos/química , Mananos/metabolismo , Agua/análisis , Pared Celular/química , beta-Glucanos/metabolismo , Extractos Vegetales/análisis
15.
J Bacteriol ; 204(8): e0016222, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35862765

RESUMEN

Exposure of Staphylococcus aureus to cell wall inhibitors leads to the activation of the VraTSR three-component sensory regulatory system. This system is composed of VraS, a membrane histidine kinase; VraR, its cognate response regulator, and VraT, a protein required for the full activity of VraTSR. The exact function of VraT remains mostly uncharacterized, although it has been proposed to detect the unknown stimulus sensed by the VraTSR system. Here, we elucidate the topology of VraT, showing that its C-terminal domain is extracellular. We also demonstrate that the signal sensed by VraTSR is not an intermediate in the peptidoglycan synthesis pathway, as previously suggested. Instead, the specific inhibition of the penicillin-binding protein (PBP)2 leads to strong activation of the system. IMPORTANCE The Gram-positive bacterial pathogen Staphylococcus aureus is currently the second most frequent cause of global deaths associated with antibiotic resistance. Its response to cell wall-targeting antibiotics requires the VraTSR three-component system, which senses cell wall damage. Here, we show that the signal sensed by VraTSR is not an intermediate in the peptidoglycan synthesis pathway, as previously suggested. Instead, the specific inhibition of the penicillin-binding protein (PBP)2, the major peptidoglycan synthase in S. aureus, leads to strong activation of the system. Identifying the exact cell wall damage signal is key to fully understanding the response of S. aureus to cell wall-targeting antibiotics.


Asunto(s)
Infecciones Estafilocócicas , Staphylococcus aureus , Antibacterianos/metabolismo , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Humanos , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano/metabolismo , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
16.
Chembiochem ; 23(10): e202100623, 2022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34971022

RESUMEN

Plant-derived natural compounds have been used for treating diseases since prehistorical times. The supply of many plant-derived natural compounds for medicinal purposes, such as thebaine, morphine, and codeine, is primarily dependent on opium poppy crop harvesting. This dependency adds an extra risk factor to ensuring the supply chain because crops are highly susceptible to environmental conditions. Emerging technologies, such as biocatalysis, might help to solve this problem by diversifying the sources of supply of these compounds. Here we review the first committed step in the production of alkaloid painkillers, the production of S-norcoclaurine, and the enzymes involved. The improvement of these enzymes can be carried out experimentally by directed evolution and rational design strategies, supported by computational methods, to create variants that produce the S-norcoclaurine precursor for alkaloid painkillers in heterologous organisms, meeting the pharmaceutical industry standards and needs without depending on opium poppy crops.


Asunto(s)
Alcaloides , Papaver
17.
Opt Express ; 30(16): 28385-28400, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299035

RESUMEN

Detecting and recognizing different kinds of urban objects is an important problem, in particular, in autonomous driving. In this context, we studied the potential of Mueller matrix polarimetry for classifying a set of relevant real-world objects: vehicles, pedestrians, traffic signs, pavements, vegetation and tree trunks. We created a database with their experimental Mueller matrices measured at 1550 nm and trained two machine learning classifiers, support vector machine and artificial neural network, to classify new samples. The overall accuracy of over 95% achieved with this approach, with either models, reveals the potential of polarimetry, specially combined with other remote sensing techniques, to enhance object recognition.

18.
Chemistry ; 28(42): e202201066, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35686565

RESUMEN

The influence of the dynamical flexibility of enzymes on reaction mechanisms is a cornerstone in biological sciences. In this study, we aim to 1) study the convergence of the activation free energy by using the first step of the reaction catalysed by HIV-1 protease as a case study, and 2) provide further evidence for a mechanistic divergence in this enzyme, as two different reaction pathways were seen to contribute to this step. We used quantum mechanics/molecular mechanics molecular dynamics simulations, on four different initial conformations that led to different barriers in a previous study. Despite the sampling, the four activation free energies still spanned a range of 5.0 kcal ⋅ mol-1 . Furthermore, the new simulations did confirm the occurrence of an unusual mechanistic divergence, with two different mechanistic pathways displaying equivalent barriers. An active-site water molecule is proposed to influence the mechanistic pathway.


Asunto(s)
Proteasa del VIH , Dominio Catalítico , Proteasa del VIH/metabolismo , Simulación de Dinámica Molecular , Teoría Cuántica , Termodinámica
19.
Chemphyschem ; 23(13): e202200159, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35499146

RESUMEN

We employed QM/MM molecular dynamics (MD) simulations to characterize the rate-limiting step of the glycosylation reaction of pancreatic α-amylase with combined DFT/molecular dynamics methods (PBE/def2-SVP : AMBER). Upon careful choice of four starting active site conformations based on thorough reactivity criteria, Gibbs energy profiles were calculated with umbrella sampling simulations within a statistical convergence of 1-2 kcal ⋅ mol-1 . Nevertheless, Gibbs activation barriers and reaction energies still varied from 11.0 to 16.8 kcal ⋅ mol-1 and -6.3 to +3.8 kcal ⋅ mol-1 depending on the starting conformations, showing that despite significant state-of-the-art QM/MM MD sampling (0.5 ns/profile) the result still depends on the starting structure. The results supported the one step dissociative mechanism of Asp197 glycosylation preceded by an acid-base reaction by the Glu233, which are qualitatively similar to those from multi-PES QM/MM studies, and thus support the use of the latter to determine enzyme reaction mechanisms.


Asunto(s)
Simulación de Dinámica Molecular , Teoría Cuántica , Dominio Catalítico , Termodinámica
20.
Chemphyschem ; 23(20): e202200269, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-35925549

RESUMEN

Hydrolysis of lignocellulosic biomass, composed of a lignin-carbohydrate-complex (LCC) matrix, is critical for producing bioethanol from glucose. However, current methods for LCC processing require costly and polluting processes. The fungal Thermothelomyces thermophila glucuronoyl esterase (TtGE) is a promising thermophilic enzyme that hydrolyses LCC ester bonds. This study describes the TtGE catalytic mechanism using QM/MM methods. Two nearly-degenerate rate-determining transition states were found, with barriers of 16 and 17 kcal ⋅ mol-1 , both with a zwitterionic nature that results from a proton interplay from His346 to either the Ser213-hydroxyl or the lignin leaving group and the rehybridisation of the ester moiety of the substrate to an alkoxide. An oxyanion hole, characteristic of esterases, was provided by the conserved Arg214 through its backbone and sidechain. Our work further suggests that a mutation of Glu267 to a non-negative residue will decrease the energetic barrier in ca. -5 kcal ⋅ mol-1 , improving the catalytic rate of TtGE.


Asunto(s)
Esterasas , Lignina , Esterasas/química , Lignina/química , Biomasa , Ácido Glucurónico/química , Protones , Hidrólisis , Carbohidratos/química , Ésteres/química , Glucosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA