Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Nucleic Acids Res ; 48(2): 788-801, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799608

RESUMEN

In all organisms, a selected type of proteins accomplishes critical roles in cellular processes that govern gene expression. The multifunctional protein Gemin5 cooperates in translation control and ribosome binding, besides acting as the RNA-binding protein of the survival of motor neuron (SMN) complex. While these functions reside on distinct domains located at each end of the protein, the structure and function of the middle region remained unknown. Here, we solved the crystal structure of an extended tetratricopeptide (TPR)-like domain in human Gemin5 that self-assembles into a previously unknown canoe-shaped dimer. We further show that the dimerization module is functional in living cells driving the interaction between the viral-induced cleavage fragment p85 and the full-length Gemin5, which anchors splicing and translation members. Disruption of the dimerization surface by a point mutation in the TPR-like domain prevents this interaction and also abrogates translation enhancement induced by p85. The characterization of this unanticipated dimerization domain provides the structural basis for a role of the middle region of Gemin5 as a central hub for protein-protein interactions.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/genética , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas del Complejo SMN/química
2.
Nucleic Acids Res ; 46(14): 7339-7353, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-29771365

RESUMEN

Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem-loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem-loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.


Asunto(s)
Retroalimentación Fisiológica , Biosíntesis de Proteínas , ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Sitios de Unión/genética , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Células K562 , Unión Proteica , Dominios Proteicos , ARN/química , ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN
3.
Molecules ; 24(7)2019 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-30925703

RESUMEN

Improvements in Systematic Evolution of Ligands by EXponential enrichment (SELEX) technology and DNA sequencing methods have led to the identification of a large number of active nucleic acid molecules after any aptamer selection experiment. As a result, the search for the fittest aptamers has become a laborious and time-consuming task. Herein, we present an optimized approach for the label-free characterization of DNA and RNA aptamers in parallel. The developed method consists in an Enzyme-Linked OligoNucleotide Assay (ELONA) coupled to either real-time quantitative PCR (qPCR, for DNA aptamers) or reverse transcription qPCR (RTqPCR, for RNA aptamers), which allows the detection of aptamer-target interactions in the high femtomolar range. We have applied this methodology to the affinity analysis of DNA and RNA aptamers selected against the poly(C)-binding protein 2 (PCBP-2). In addition, we have used ELONA-(RT)qPCR to quantify the dissociation constant (Kd) and maximum binding capacity (Bmax) of 16 high affinity DNA and RNA aptamers. The Kd values of the high affinity DNA aptamers were compared to those derived from colorimetric ELONA performed in parallel. Additionally, Electrophoretic Mobility Shift Assays (EMSA) were used to confirm the binding of representative PCBP-2-specific RNA aptamers in solution. We propose this ELONA-(RT)qPCR approach as a general strategy for aptamer characterization, with a broad applicability in biotechnology and biomedicine.


Asunto(s)
Aptámeros de Nucleótidos/metabolismo , Bioensayo/métodos , ADN/metabolismo , Oligonucleótidos/metabolismo , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Técnica SELEX de Producción de Aptámeros/métodos , Calibración , ADN/química , Cinética , Conformación de Ácido Nucleico , ARN/química , Proteínas de Unión al ARN , Soluciones
4.
Nucleic Acids Res ; 44(17): 8335-51, 2016 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-27507887

RESUMEN

RNA-binding proteins (RBPs) play crucial roles in all organisms. The protein Gemin5 harbors two functional domains. The N-terminal domain binds to snRNAs targeting them for snRNPs assembly, while the C-terminal domain binds to IRES elements through a non-canonical RNA-binding site. Here we report a comprehensive view of the Gemin5 interactome; most partners copurified with the N-terminal domain via RNA bridges. Notably, Gemin5 sediments with the subcellular ribosome fraction, and His-Gemin5 binds to ribosome particles via its N-terminal domain. The interaction with the ribosome was lost in F381A and Y474A Gemin5 mutants, but not in W14A and Y15A. Moreover, the ribosomal proteins L3 and L4 bind directly with Gemin5, and conversely, Gemin5 mutants impairing the binding to the ribosome are defective in the interaction with L3 and L4. The overall polysome profile was affected by Gemin5 depletion or overexpression, concomitant to an increase or a decrease, respectively, of global protein synthesis. Gemin5, and G5-Nter as well, were detected on the polysome fractions. These results reveal the ribosome-binding capacity of the N-ter moiety, enabling Gemin5 to control global protein synthesis. Our study uncovers a crosstalk between this protein and the ribosome, and provides support for the view that Gemin5 may control translation elongation.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribosomas/metabolismo , Extractos Celulares , Cromatografía de Afinidad , Células HEK293 , Humanos , Espectrometría de Masas , Modelos Biológicos , Polirribosomas/metabolismo , Unión Proteica , Dominios Proteicos , ARN/metabolismo , ARN Interferente Pequeño/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas , Proteínas del Complejo SMN
5.
Bioinformatics ; 32(12): i360-i368, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27307638

RESUMEN

MOTIVATION: RNA thermometers (RNATs) are cis-regulatory elements that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation. RESULTS: Solving the 2-temperature inverse folding problem is critical for RNAT engineering. Here we introduce RNAiFold2T, the first Constraint Programming (CP) and Large Neighborhood Search (LNS) algorithms to solve this problem. Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and genetic algorithm) inverse folding show that our software generates two orders of magnitude more solutions, thus allowing ample exploration of the space of solutions. Subsequently, solutions can be prioritized by computing various measures, including probability of target structure in the ensemble, melting temperature, etc. Using this strategy, we rationally designed two thermosensor internal ribosome entry site (thermo-IRES) elements, whose normalized cap-independent translation efficiency is approximately 50% greater at 42 °C than 30 °C, when tested in reticulocyte lysates. Translation efficiency is lower than that of the wild-type IRES element, which on the other hand is fully resistant to temperature shift-up. This appears to be the first purely computational design of functional RNA thermoswitches, and certainly the first purely computational design of functional thermo-IRES elements. AVAILABILITY: RNAiFold2T is publicly available as part of the new release RNAiFold3.0 at https://github.com/clotelab/RNAiFold and http://bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as well. The software is written in C ++ and uses OR-Tools CP search engine. CONTACT: clote@bc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Pliegue del ARN , Algoritmos , Secuencia de Bases , Sitios Internos de Entrada al Ribosoma , Conformación de Ácido Nucleico , ARN , Programas Informáticos
6.
Methods ; 91: 3-12, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26142759

RESUMEN

Translation control often takes place through the mRNA untranslated regions, involving direct interactions with RNA-binding proteins (RBPs). Internal ribosome entry site elements (IRESs) are cis-acting RNA regions that promote translation initiation using a cap-independent mechanism. A subset of positive-strand RNA viruses harbor IRESs as a strategy to ensure efficient viral protein synthesis. IRESs are organized in modular structural domains with a division of functions. However, viral IRESs vary in nucleotide sequence, secondary RNA structure, and transacting factor requirements. Therefore, in-depth studies are needed to understand how distinct types of viral IRESs perform their function. In this review we describe methods to isolate and identify RNA-binding proteins important for IRES activity, and to study the impact of RNA structure and RNA-protein interactions on IRES activity.


Asunto(s)
Sitios Internos de Entrada al Ribosoma , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Cromatografía de Afinidad/métodos , Electroforesis Capilar , Espectrometría de Masas , Conformación de Ácido Nucleico , Virus ARN/genética , Virus ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/aislamiento & purificación
7.
Nucleic Acids Res ; 42(9): 5742-54, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24598255

RESUMEN

Ribonucleic acid (RNA)-binding proteins are key players of gene expression control. We have shown that Gemin5 interacts with internal ribosome entry site (IRES) elements and modulates initiation of translation. However, little is known about the RNA-binding sites of this protein. Here we show that the C-terminal region of Gemin5 bears two non-canonical bipartite RNA-binding sites, encompassing amino acids 1297-1412 (RBS1) and 1383-1508 (RBS2). While RBS1 exhibits greater affinity for RNA than RBS2, it does not affect IRES-dependent translation in G5-depleted cells. In solution, the RBS1 three-dimensional structure behaves as an ensemble of flexible conformations rather than having a defined tertiary structure. However, expression of the polypeptide G51383-1508, bearing the low RNA-binding affinity RBS2, repressed IRES-dependent translation. A comparison of the RNA-binding capacity and translation control properties of constructs expressed in mammalian cells to that of the Gemin5 proteolysis products observed in infected cells reveals that non-repressive products accumulated during infection while the repressor polypeptide is not stable. Taken together, our results define the low affinity RNA-binding site as the minimal element of the protein being able to repress internal initiation of translation.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Ribonucleoproteínas Nucleares Pequeñas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sitios de Unión , Virus de la Fiebre Aftosa/genética , Silenciador del Gen , Células HEK293 , Humanos , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , ARN Mensajero/química , ARN Mensajero/genética , ARN Viral/química , ARN Viral/genética , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN
8.
Int J Mol Sci ; 14(11): 21705-26, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24189219

RESUMEN

RNA-binding proteins (RBPs) are pivotal regulators of all the steps of gene expression. RBPs govern gene regulation at the post-transcriptional level by virtue of their capacity to assemble ribonucleoprotein complexes on certain RNA structural elements, both in normal cells and in response to various environmental stresses. A rapid cellular response to stress conditions is triggered at the step of translation initiation. Two basic mechanisms govern translation initiation in eukaryotic mRNAs, the cap-dependent initiation mechanism that operates in most mRNAs, and the internal ribosome entry site (IRES)-dependent mechanism activated under conditions that compromise the general translation pathway. IRES elements are cis-acting RNA sequences that recruit the translation machinery using a cap-independent mechanism often assisted by a subset of translation initiation factors and various RBPs. IRES-dependent initiation appears to use different strategies to recruit the translation machinery depending on the RNA organization of the region and the network of RBPs interacting with the element. In this review we discuss recent advances in understanding the implications of RBPs on IRES-dependent translation initiation.


Asunto(s)
Iniciación de la Cadena Peptídica Traduccional , Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Regulación de la Expresión Génica , Humanos , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Ribosomas/genética
9.
Methods Mol Biol ; 2323: 109-119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086277

RESUMEN

RNA motifs guide the interaction with specific proteins leading to the assembly of ribonucleoprotein complexes that perform key functions in cellular processes. Internal ribosome entry site (IRES) elements are organized in structural domains that determine internal initiation of translation. In this chapter we describe a pull-down assay using streptavidin-aptamer tagged RNAs that combines RNA structure-dependent protein isolation with proteomic analysis to identify novel interactors recognizing RNA structural domains. This approach takes advantage of tRNA-scaffold guided expression, allowing the identification of factors belonging to networks involved in RNA and protein metabolism.


Asunto(s)
Motivos de Nucleótidos , Proteínas de Unión al ARN/aislamiento & purificación , Aptámeros de Nucleótidos , Electroforesis en Gel de Poliacrilamida , Humanos , Sitios Internos de Entrada al Ribosoma , Espectrometría de Masas , Motivos de Nucleótidos/genética , Biosíntesis de Proteínas , Proteómica/métodos , ARN/aislamiento & purificación , ARN/metabolismo , ARN de Transferencia/biosíntesis , ARN de Transferencia/química , Proteínas de Unión al ARN/metabolismo , Estreptavidina , Especificidad por Sustrato
10.
Genome Biol ; 20(1): 141, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31315652

RESUMEN

BACKGROUND: The long introns of mammals are pools of evolutionary potential due to the multiplicity of sequences that permit the acquisition of novel exons. However, the permissibility of genes to this type of acquisition and its influence on the evolution of cell regulation is poorly understood. RESULTS: Here, we observe that human genes are highly permissive to the inclusion of novel exonic regions permitting the emergence of novel regulatory features. Our analysis reveals the potential for novel exon acquisition to occur in over 30% of evaluated human genes. Regulatory processes including the rate of splicing efficiency and RNA polymerase II (RNAPII) elongation control this process by modulating the "window of opportunity" for spliceosomal recognition. DNA damage alters this window promoting the inclusion of repeat-derived novel exons that reduce the ribosomal engagement of cell cycle genes. Finally, we demonstrate that the inclusion of novel exons is suppressed in hematological cancer samples and can be reversed by drugs modulating the rate of RNAPII elongation. CONCLUSION: Our work demonstrates that the inclusion of repeat-associated novel intronic regions is a tightly controlled process capable of expanding the regulatory capacity of cells.


Asunto(s)
Exones , Regulación de la Expresión Génica , Genoma Humano , Transcriptoma , Daño del ADN , Elementos Transponibles de ADN , Genes cdc , Neoplasias Hematológicas/metabolismo , Humanos , Intrones , Empalmosomas
11.
Life Sci Alliance ; 2(1)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30655362

RESUMEN

Internal ribosome entry site (IRES) elements are organized in domains that guide internal initiation of translation. Here, we have combined proteomic and imaging analysis to study novel foot-and-mouth disease virus IRES interactors recognizing specific RNA structural subdomains. Besides known picornavirus IRES-binding proteins, we identified novel factors belonging to networks involved in RNA and protein transport. Among those, Rab1b and ARF5, two components of the ER-Golgi, revealed direct binding to IRES transcripts. However, whereas Rab1b stimulated IRES function, ARF5 diminished IRES activity. RNA-FISH studies revealed novel features of the IRES element. First, IRES-RNA formed clusters within the cell cytoplasm, whereas cap-RNA displayed disperse punctate distribution. Second, the IRES-driven RNA localized in close proximity with ARF5 and Rab1b, but not with the dominant-negative of Rab1b that disorganizes the Golgi. Thus, our data suggest a role for domain 3 of the IRES in RNA localization around ER-Golgi, a ribosome-rich cellular compartment.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Virus de la Fiebre Aftosa/metabolismo , Sitios Internos de Entrada al Ribosoma , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al GTP rab1/metabolismo , Factores de Ribosilacion-ADP/genética , Animales , Retículo Endoplásmico/metabolismo , Fiebre Aftosa/virología , Silenciador del Gen , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Unión Proteica , Dominios Proteicos , Proteómica/métodos , Caperuzas de ARN , Transfección , Proteínas de Unión al GTP rab1/genética
12.
Front Microbiol ; 8: 2629, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29354113

RESUMEN

Internal ribosome entry site (IRES) elements are cis-acting RNA regions that promote internal initiation of protein synthesis using cap-independent mechanisms. However, distinct types of IRES elements present in the genome of various RNA viruses perform the same function despite lacking conservation of sequence and secondary RNA structure. Likewise, IRES elements differ in host factor requirement to recruit the ribosomal subunits. In spite of this diversity, evolutionarily conserved motifs in each family of RNA viruses preserve sequences impacting on RNA structure and RNA-protein interactions important for IRES activity. Indeed, IRES elements adopting remarkable different structural organizations contain RNA structural motifs that play an essential role in recruiting ribosomes, initiation factors and/or RNA-binding proteins using different mechanisms. Therefore, given that a universal IRES motif remains elusive, it is critical to understand how diverse structural motifs deliver functions relevant for IRES activity. This will be useful for understanding the molecular mechanisms beyond cap-independent translation, as well as the evolutionary history of these regulatory elements. Moreover, it could improve the accuracy to predict IRES-like motifs hidden in genome sequences. This review summarizes recent advances on the diversity and biological relevance of RNA structural motifs for viral IRES elements.

13.
Sci Rep ; 6: 24243, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27053355

RESUMEN

The function of Internal Ribosome Entry Site (IRES) elements is intimately linked to their RNA structure. Viral IRES elements are organized in modular domains consisting of one or more stem-loops that harbor conserved RNA motifs critical for internal initiation of translation. A conserved motif is the pyrimidine-tract located upstream of the functional initiation codon in type I and II picornavirus IRES. By computationally designing synthetic RNAs to fold into a structure that sequesters the polypyrimidine tract in a hairpin, we establish a correlation between predicted inaccessibility of the pyrimidine tract and IRES activity, as determined in both in vitro and in vivo systems. Our data supports the hypothesis that structural sequestration of the pyrimidine-tract within a stable hairpin inactivates IRES activity, since the stronger the stability of the hairpin the higher the inhibition of protein synthesis. Destabilization of the stem-loop immediately upstream of the pyrimidine-tract also decreases IRES activity. Our work introduces a hybrid computational/experimental method to determine the importance of structural motifs for biological function. Specifically, we show the feasibility of using the software RNAiFold to design synthetic RNAs with particular sequence and structural motifs that permit subsequent experimental determination of the importance of such motifs for biological function.


Asunto(s)
Sitios Internos de Entrada al Ribosoma/genética , Motivos de Nucleótidos/genética , Picornaviridae/genética , ARN Viral/genética , Secuencia de Bases , Modelos Moleculares , Conformación de Ácido Nucleico , Filogenia , Biosíntesis de Proteínas/genética , Pirimidinas/química , Pirimidinas/metabolismo , ARN Viral/síntesis química , ARN Viral/clasificación , Homología de Secuencia de Ácido Nucleico
14.
Biomolecules ; 5(2): 528-44, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25898402

RESUMEN

Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , Proteínas del Complejo SMN/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Infecciones por Picornaviridae/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/genética
15.
Virus Res ; 206: 62-73, 2015 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-25617758

RESUMEN

Internal ribosome entry site (IRES) elements were discovered in picornaviruses. These elements are cis-acting RNA sequences that adopt diverse three-dimensional structures and recruit the translation machinery using a 5' end-independent mechanism assisted by a subset of translation initiation factors and various RNA binding proteins termed IRES transacting factors (ITAFs). Many of these factors suffer important modifications during infection including cleavage by picornavirus proteases, changes in the phosphorylation level and/or redistribution of the protein from the nuclear to the cytoplasm compartment. Picornavirus IRES are amongst the most potent elements described so far. However, given their large diversity and complexity, the mechanistic basis of its mode of action is not yet fully understood. This review is focused to describe recent advances on the studies of RNA structure and RNA-protein interactions modulating picornavirus IRES activity.


Asunto(s)
Interacciones Huésped-Patógeno , Sitios Internos de Entrada al Ribosoma , Picornaviridae/fisiología , Biosíntesis de Proteínas , Proteínas/metabolismo , ARN Viral/genética , Ribosomas/metabolismo , Modelos Biológicos , Conformación de Ácido Nucleico , Picornaviridae/genética , Pliegue del ARN , ARN Viral/química , ARN Viral/metabolismo , Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA