Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Pharm ; 17(12): 4572-4588, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33125243

RESUMEN

Neurotensin (NTS)-polyplex is a multicomponent nonviral vector that enables gene delivery via internalization of the neurotensin type 1 receptor (NTSR1) to dopaminergic neurons and cancer cells. An approach to improving its therapeutic safety is replacing the viral karyophilic component (peptide KPSV40; MAPTKRKGSCPGAAPNKPK), which performs the nuclear import activity, by a shorter synthetic peptide (KPRa; KMAPKKRK). We explored this issue and the mechanism of plasmid DNA translocation through the expression of the green fluorescent protein or red fluorescent protein fused with KPRa and internalization assays and whole-cell patch-clamp configuration experiments in a single cell together with importin α/ß pathway blockers. We showed that KPRa electrostatically bound to plasmid DNA increased the transgene expression compared with KPSV40 and enabled nuclear translocation of KPRa-fused red fluorescent proteins and plasmid DNA. Such translocation was blocked with ivermectin or mifepristone, suggesting importin α/ß pathway mediation. KPRa also enabled NTS-polyplex-mediated expression of reporter or physiological genes such as human mesencephalic-derived neurotrophic factor (hMANF) in dopaminergic neurons in vivo. KPRa is a synthetic monopartite peptide that showed nuclear import activity in NTS-polyplex vector-mediated gene delivery. KPRa could also improve the transfection of other nonviral vectors used in gene therapy.


Asunto(s)
Portadores de Fármacos/síntesis química , Técnicas de Transferencia de Gen , Vectores Genéticos/administración & dosificación , Neurotensina/administración & dosificación , Fragmentos de Péptidos/síntesis química , Transporte Activo de Núcleo Celular , Animales , Línea Celular , Núcleo Celular/metabolismo , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/metabolismo , Terapia Genética/métodos , Vectores Genéticos/genética , Masculino , Ratones , Modelos Animales , Nanopartículas/química , Neurotensina/genética , Neurotensina/farmacocinética , Técnicas de Placa-Clamp , Plásmidos/genética , Ratas , Receptores de Neurotensina/metabolismo , Análisis de la Célula Individual , Técnicas Estereotáxicas
2.
Neural Regen Res ; 19(9): 2057-2067, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38227536

RESUMEN

JOURNAL/nrgr/04.03/01300535-202409000-00039/figure1/v/2024-01-16T170235Z/r/image-tiff Parkinsonism by unilateral, intranigral ß-sitosterol ß-D-glucoside administration in rats is distinguished in that the α-synuclein insult begins unilaterally but spreads bilaterally and increases in severity over time, thus replicating several clinical features of Parkinson's disease, a typical α-synucleinopathy. As Nurr1 represses α-synuclein, we evaluated whether unilateral transfected of rNurr1-V5 transgene via neurotensin-polyplex to the substantia nigra on day 30 after unilateral ß-sitosterol ß-D-glucoside lesion could affect bilateral neuropathology and sensorimotor deficits on day 30 post-transfection. This study found that rNurr1-V5 expression but not that of the green fluorescent protein (the negative control) reduced ß-sitosterol ß-D-glucoside-induced neuropathology. Accordingly, a bilateral increase in tyrosine hydroxylase-positive cells and arborization occurred in the substantia nigra and increased tyrosine hydroxylase-positive ramifications in the striatum. In addition, tyrosine hydroxylase-positive cells displayed less senescence marker ß-galactosidase and more neuron-cytoskeleton marker ßIII-tubulin and brain-derived neurotrophic factor. A significant decrease in activated microglia (positive to ionized calcium-binding adaptor molecule 1) and neurotoxic astrocytes (positive to glial fibrillary acidic protein and complement component 3) and increased neurotrophic astrocytes (positive to glial fibrillary acidic protein and S100 calcium-binding protein A10) also occurred in the substantia nigra. These effects followed the bilateral reduction in α-synuclein aggregates in the nigrostriatal system, improving sensorimotor behavior. Our results show that unilateral rNurr1-V5 transgene expression in nigral dopaminergic neurons mitigates bilateral neurodegeneration (senescence and loss of neuron-cytoskeleton and tyrosine hydroxylase-positive cells), neuroinflammation (activated microglia, neurotoxic astrocytes), α-synuclein aggregation, and sensorimotor deficits. Increased neurotrophic astrocytes and brain-derived neurotrophic factor can mediate the rNurr1-V5 effect, supporting its potential clinical use in the treatment of Parkinson's disease.

3.
Neural Regen Res ; 17(4): 854-866, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34472486

RESUMEN

Overexpression of neurotrophic factors in nigral dopamine neurons is a promising approach to reverse neurodegeneration of the nigrostriatal dopamine system, a hallmark in Parkinson's disease. The human cerebral dopamine neurotrophic factor (hCDNF) has recently emerged as a strong candidate for Parkinson's disease therapy. This study shows that hCDNF expression in dopamine neurons using the neurotensin-polyplex nanoparticle system reverses 6-hydroxydopamine-induced morphological, biochemical, and behavioral alterations. Three independent electron microscopy techniques showed that the neurotensin-polyplex nanoparticles containing the hCDNF gene, ranging in size from 20 to 150 nm, enabled the expression of a secretable hCDNF in vitro. Their injection in the substantia nigra compacta on day 21 after the 6-hydroxydopamine lesion resulted in detectable hCDNF in dopamine neurons, whose levels remained constant throughout the study in the substantia nigra compacta and striatum. Compared with the lesioned group, tyrosine hydroxylase-positive (TH+) nigral cell population and TH+ fiber density rose in the substantia nigra compacta and striatum after hCDNF transfection. An increase in ßIII-tubulin and growth-associated protein 43 phospho-S41 (GAP43p) followed TH+ cell recovery, as well as dopamine and its catabolite levels. Partial reversal (80%) of drug-activated circling behavior and full recovery of spontaneous motor and non-motor behavior were achieved. Brain-derived neurotrophic factor recovery in dopamine neurons that also occurred suggests its participation in the neurotrophic effects. These findings support the potential of nanoparticle-mediated hCDNF gene delivery to develop a disease-modifying treatment against Parkinson's disease. The Institutional Animal Care and Use Committee of Centro de Investigación y de Estudios Avanzados approved our experimental procedures for animal use (authorization No. 162-15) on June 9, 2019.

4.
J Immunol Res ; 2020: 5907591, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282962

RESUMEN

Chronic consumption of ß-sitosterol-ß-D-glucoside (BSSG), a neurotoxin contained in cycad seeds, leads to Parkinson's disease in humans and rodents. Here, we explored whether a single intranigral administration of BSSG triggers neuroinflammation and neurotoxic A1 reactive astrocytes besides dopaminergic neurodegeneration. We injected 6 µg BSSG/1 µL DMSO or vehicle into the left substantia nigra and immunostained with antibodies against tyrosine hydroxylase (TH) together with markers of microglia (OX42), astrocytes (GFAP, S100ß, C3), and leukocytes (CD45). We also measured nitric oxide (NO), lipid peroxidation (LPX), and proinflammatory cytokines (TNF-α, IL-1ß, IL-6). The Evans blue assay was used to explore the blood-brain barrier (BBB) permeability. We found that BSSG activates NO production on days 15 and 30 and LPX on day 120. Throughout the study, high levels of TNF-α were present in BSSG-treated animals, whereas IL-1ß was induced until day 60 and IL-6 until day 30. Immunoreactivity of activated microglia (899.0 ± 80.20%) and reactive astrocytes (651.50 ± 11.28%) progressively increased until day 30 and then decreased to remain 251.2 ± 48.8% (microglia) and 91.02 ± 39.8 (astrocytes) higher over controls on day 120. C3(+) cells were also GFAP and S100ß immunoreactive, showing they were neurotoxic A1 reactive astrocytes. BBB remained permeable until day 15 when immune cell infiltration was maximum. TH immunoreactivity progressively declined, reaching 83.6 ± 1.8% reduction on day 120. Our data show that BSSG acute administration causes chronic neuroinflammation mediated by activated microglia, neurotoxic A1 reactive astrocytes, and infiltrated immune cells. The severe neuroinflammation might trigger Parkinson's disease in BSSG intoxication.


Asunto(s)
Astrocitos/efectos de los fármacos , Astrocitos/inmunología , Inflamación/etiología , Neurotoxinas/inmunología , Sitoesteroles/administración & dosificación , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Animales , Astrocitos/metabolismo , Biomarcadores , Enfermedad Crónica , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Mediadores de Inflamación/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Microglía/inmunología , Microglía/metabolismo , Neurotoxinas/efectos adversos , Estrés Oxidativo/efectos de los fármacos , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Sustancia Negra/patología
5.
J Immunol Res ; 2018: 1838921, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29854828

RESUMEN

Models of Parkinson's disease with neurotoxins have shown that microglial activation does not evoke a typical inflammatory response in the substantia nigra, questioning whether neuroinflammation leads to neurodegeneration. To address this issue, the archetypal inflammatory stimulus, lipopolysaccharide (LPS), was injected into the rat substantia nigra. LPS induced fever, sickness behavior, and microglial activation (OX42 immunoreactivity), followed by astrocyte activation and leukocyte infiltration (GFAP and CD45 immunoreactivities). During the acute phase of neuroinflammation, pro- and anti-inflammatory cytokines (TNF-α, IL-1ß, IL-6, IL-4, and IL-10) responded differentially at mRNA and protein level. Increased NO production and lipid peroxidation occurred at 168 h after LPS injection. At this time, evidence of neurodegeneration could be seen, entailing decreased tyrosine hydroxylase (TH) immunoreactivity, irregular body contour, and prolongation discontinuity of TH+ cells, as well as apparent phagocytosis of TH+ cells by OX42+ cells. Altogether, these results show that LPS evokes a typical inflammatory response in the substantia nigra that is followed by dopaminergic neurodegeneration.


Asunto(s)
Astrocitos/fisiología , Neuronas Dopaminérgicas/fisiología , Leucocitos Mononucleares/fisiología , Lipopolisacáridos/inmunología , Microglía/fisiología , Enfermedades Neurodegenerativas/inmunología , Inflamación Neurogénica/inmunología , Enfermedad de Parkinson/inmunología , Porción Compacta de la Sustancia Negra/inmunología , Tirosina 3-Monooxigenasa/inmunología , Enfermedad Aguda , Animales , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Citocinas/metabolismo , Modelos Animales de Enfermedad , Humanos , Peroxidación de Lípido , Masculino , Ratas , Ratas Wistar
6.
PLoS One ; 12(11): e0188239, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29176874

RESUMEN

The structural effect of neurturin (NRTN) on the nigrostriatal dopaminergic system in animals remains unknown, although NRTN has been shown to be effective in Parkinson's disease animal models. Herein, we aimed to demonstrate that NRTN overexpression in dopaminergic neurons stimulates both neurite outgrowths in the nigrostriatal pathway and striatal dendritic spines in aging rats with chronic 6-hydroxydopamine (6-OHDA) lesion. At week 12 after lesion, pTracer-mNRTN-His or pGreenLantern-1 plasmids were intranigrally transfected using the NTS-polyplex nanoparticles system. We showed that the transgenic expression in dopaminergic neurons remained until the end of the study (12 weeks). Only animals expressing NRTN-His showed recovery of tyrosine hydroxylase (TH)+ cells (28 ± 2%), their neurites (32 ± 2%) and the neuron-specific cytoskeletal marker ß-III-tubulin in the substantia nigra; striatal TH(+) fibers were also recovered (52 ± 3%), when compared to the healthy condition. Neurotensin receptor type 1 levels were also significantly recovered in the substantia nigra and striatum. Dopamine recovery was 70 ± 4% in the striatum and complete in the substantia nigra. The number of dendritic spines of striatal medium spiny neurons was also significantly increased, but the recovery was not complete. Drug-activated circling behavior decreased by 73 ± 2% (methamphetamine) and 89 ± 1% (apomorphine). Similar decrease was observed in the spontaneous motor behavior. Our results demonstrate that NRTN causes presynaptic and postsynaptic restoration of the nigrostriatal dopaminergic system after a 6-OHDA-induced chronic lesion. However, those improvements did not reach the healthy condition, suggesting that NRTN exerts lesser neurotrophic effects than other neurotrophic approaches.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Neurturina/metabolismo , Terminales Presinápticos/metabolismo , Animales , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Citoesqueleto/metabolismo , Espinas Dendríticas/metabolismo , Dopamina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Miembro Anterior/fisiología , Masculino , Ratones , Neuritas/metabolismo , Oxidopamina , Ratas Wistar , Receptores de Neurotensina/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología , Transfección , Vibrisas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA