Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cytokine ; 162: 156088, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36462220

RESUMEN

INTRODUCTION: Hepatic Glycogen Storage Diseases (GSD) are rare genetic disorders in which the gluconeogenesis pathway is impaired. Cytokines control virtually every aspect of physiology and may help to elucidate some unsolved questions about phenotypes presented by GSD patients. METHODS: This was an exploratory study in which 27 GSD patients on treatment (Ia = 16, Ib = 06, III = 02, IXα = 03) and 24 healthy age- and sex-matched subjects had plasma samples tested for a panel of 20 cytokines (G-CSF,GM-CSF, IL-1α,IL-1ß, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, GRO, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1ß/CCL4, MDC/CCL22, IFN-γ, TNF-α, TNF-ß, VEGF) through a multiplex kit and analyzed in comparison to controls and among patients, regarding to clinical features as anemia, hepatic adenocarcinoma and triglyceride levels. RESULTS: Patients (GSD-Ia/III/IX) presented reduced levels of IL-4 (p = 0.040), MIP-1α/CCL3 (p = 0.003), MDC/CCL22 (p < 0.001), TNF-ß (p = 0.045) and VEGF (p = 0.043) compared to controls. When different types of GSD were compared, G-CSF was higher in GSD-Ib than -Ia (p < 0.001) and than -III/IX (p = 0.033) patients; IL-10 was higher in GSD-Ib than in GSD-Ia patients (p = 0.019); and GSD-III/IX patients had increased levels of IP-10/CXCL10 than GSD-Ib patients (p = 0.019). When GSD-I patients were gathered into the same group and compared with GSD-III/IX patients, IP10/CXCL10 and MCP-1 were higher in the latter group (p = 0.005 and p = 0.013, respectively). GSD-I patients with anemia presented higher levels of IL-4 and MIP-1α in comparison with patients who had not. Triglyceride level was correlated with neutrophil count and MDC levels on GSD-Ia patients without HCA. CONCLUSION: Altogether, altered levels of cytokines in GSD-I patients reflect an imbalance in immunoregulation process. This study also indicates that neutrophils and some cytokines are affected by triglyceride levels, and future studies on the theme should consider this variable.


Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo I , Interleucina-10 , Humanos , Quimiocina CCL3 , Quimiocina CXCL10 , Interleucina-4 , Linfotoxina-alfa , Factor A de Crecimiento Endotelial Vascular , Citocinas , Enfermedad del Almacenamiento de Glucógeno Tipo I/patología , Factor Estimulante de Colonias de Granulocitos , Triglicéridos
2.
FEMS Microbiol Ecol ; 97(4)2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33571355

RESUMEN

Seed germination events modulate microbial community composition, which ultimately influences seed-to-seedling growth performance. Here, we evaluate the germinated maize (variety SHS 5050) root bacterial community of disinfected seed (DS) and non-disinfected seed (NDS). Using a gnotobiotic system, sodium hypochlorite (1.25%; 30 min)-treated seeds showed a reduction of bacterial population size and an apparent increase of bacterial community diversity associated with a significant selective reduction of Burkholderia-related sequences. The shift in the bacterial community composition in DS negatively affects germination speed, seedling growth and reserve mobilization rates compared with NDS. A synthetic bacterial community (syncom) formed by 12 isolates (9 Burkholderia spp., 2 Bacillus spp., and 1 Staphylococcus sp.) obtained from natural microbiota maize seeds herein was capable of recovering germination and seedling growth when reintroduced in DS. Overall, results showed that changes in bacterial community composition and selective reduction of Burkholderia-related members' dominance interfere with germination events and the initial growth of the maize. By cultivation-dependent and -independent approaches, we deciphered seed-maize microbiome structure, bacterial niches location and bacterial taxa with relevant roles in seedling growth performance. A causal relationship between seed microbial community succession and germination performance opens opportunities in seed technologies to build-up microbial communities to boost plant growth and health.


Asunto(s)
Germinación , Microbiota , Plantones , Semillas , Zea mays
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA