Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32673397

RESUMEN

Tumor cells exposed to a physiological matrix of type I collagen fibers form elongated collagenolytic invadopodia, which differ from dotty-like invadopodia forming on the gelatin substratum model. The related scaffold proteins, TKS5 and TKS4, are key components of the mechanism of invadopodia assembly. The molecular events through which TKS proteins direct collagenolytic invadopodia formation are poorly defined. Using coimmunoprecipitation experiments, identification of bound proteins by mass spectrometry, and in vitro pull-down experiments, we found an interaction between TKS5 and FGD1, a guanine nucleotide exchange factor for the Rho-GTPase CDC42, which is known for its role in the assembly of invadopodial actin core structure. A novel cell polarity network is uncovered comprising TKS5, FGD1, and CDC42, directing invadopodia formation and the polarization of MT1-MMP recycling compartments, required for invadopodia activity and invasion in a 3D collagen matrix. Additionally, our data unveil distinct signaling pathways involved in collagenolytic invadopodia formation downstream of TKS4 or TKS5 in breast cancer cells.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Podosomas/metabolismo , Transducción de Señal/fisiología , Proteína de Unión al GTP cdc42/metabolismo , Actinas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Polaridad Celular/fisiología , Colágeno/metabolismo , Femenino , Humanos , Transfección/métodos , Proteínas de Unión al GTP rho/metabolismo
2.
Trends Cell Biol ; 29(2): 93-96, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30573318

RESUMEN

Matrix proteolysis mediated by MT1-MMP facilitates the invasive migration of tumor cells in dense tissues, which otherwise get trapped in the matrix because of limited nuclear deformability. A digest-on-demand response has been identified, which requires nucleus-microtubule linkage through the LINC complex and triggers MT1-MMP surface-exposure to facilitate nucleus movement.


Asunto(s)
Movimiento Celular , Núcleo Celular/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Podosomas/metabolismo , Humanos , Lamina Tipo A/metabolismo , Metaloproteinasa 14 de la Matriz/metabolismo , Microtúbulos/metabolismo , Modelos Biológicos , Invasividad Neoplásica , Neoplasias/patología
3.
Nat Commun ; 10(1): 4886, 2019 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-31653854

RESUMEN

Unraveling the mechanisms that govern the formation and function of invadopodia is essential towards the prevention of cancer spread. Here, we characterize the ultrastructural organization, dynamics and mechanical properties of collagenotytic invadopodia forming at the interface between breast cancer cells and a physiologic fibrillary type I collagen matrix. Our study highlights an uncovered role for MT1-MMP in directing invadopodia assembly independent of its proteolytic activity. Electron microscopy analysis reveals a polymerized Arp2/3 actin network at the concave side of the curved invadopodia in association with the collagen fibers. Actin polymerization is shown to produce pushing forces that repel the confining matrix fibers, and requires MT1-MMP matrix-degradative activity to widen the matrix pores and generate the invasive pathway. A theoretical model is proposed whereby pushing forces result from actin assembly and frictional forces in the actin meshwork due to the curved geometry of the matrix fibers that counterbalance resisting forces by the collagen fibers.


Asunto(s)
Complejo 2-3 Proteico Relacionado con la Actina/ultraestructura , Actinas/ultraestructura , Neoplasias de la Mama/patología , Colágeno Tipo I/ultraestructura , Metaloproteinasa 14 de la Matriz/metabolismo , Podosomas/ultraestructura , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Colágeno Tipo I/metabolismo , Matriz Extracelular , Humanos , Microscopía Electrónica , Modelos Teóricos , Invasividad Neoplásica , Podosomas/metabolismo , Polimerizacion , Proteolisis
4.
Cell Stem Cell ; 25(5): 639-653.e7, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31631013

RESUMEN

Cellular stress responses serve as crucial decision points balancing persistence or culling of hematopoietic stem cells (HSCs) for lifelong blood production. Although strong stressors cull HSCs, the linkage between stress programs and self-renewal properties that underlie human HSC maintenance remains unknown, particularly at quiescence exit when HSCs must also dynamically shift metabolic state. Here, we demonstrate distinct wiring of the sphingolipidome across the human hematopoietic hierarchy and find that genetic or pharmacologic modulation of the sphingolipid enzyme DEGS1 regulates lineage differentiation. Inhibition of DEGS1 in hematopoietic stem and progenitor cells during the transition from quiescence to cellular activation with N-(4-hydroxyphenyl) retinamide activates coordinated stress pathways that coalesce on endoplasmic reticulum stress and autophagy programs to maintain immunophenotypic and functional HSCs. Thus, our work identifies a linkage between sphingolipid metabolism, proteostatic quality control systems, and HSC self-renewal and provides therapeutic targets for improving HSC-based cellular therapeutics.


Asunto(s)
Autorrenovación de las Células/genética , Ácido Graso Desaturasas/antagonistas & inhibidores , Fenretinida/farmacología , Células Madre Hematopoyéticas/metabolismo , Proteostasis/genética , Esfingolípidos/metabolismo , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Autorrenovación de las Células/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Femenino , Regulación de la Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Células Madre Hematopoyéticas/enzimología , Humanos , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos NOD , Proteostasis/efectos de los fármacos , ARN Interferente Pequeño , RNA-Seq , Análisis de la Célula Individual , Esfingolípidos/química , Trasplante Heterólogo
5.
Nat Commun ; 9(1): 2443, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29934494

RESUMEN

Cancer cells' ability to migrate through constricting pores in the tissue matrix is limited by nuclear stiffness. MT1-MMP contributes to metastasis by widening matrix pores, facilitating confined migration. Here, we show that modulation of matrix pore size or of lamin A expression known to modulate nuclear stiffness directly impinges on levels of MT1-MMP-mediated pericellular collagenolysis by cancer cells. A component of this adaptive response is the centrosome-centered distribution of MT1-MMP intracellular storage compartments ahead of the nucleus. We further show that this response, including invadopodia formation in association with confining matrix fibrils, requires an intact connection between the nucleus and the centrosome via the linker of nucleoskeleton and cytoskeleton (LINC) complex protein nesprin-2 and dynein adaptor Lis1. Our results uncover a digest-on-demand strategy for nuclear translocation through constricted spaces whereby confined migration triggers polarization of MT1-MMP storage compartments and matrix proteolysis in front of the nucleus depending on nucleus-microtubule linkage.


Asunto(s)
1-Alquil-2-acetilglicerofosfocolina Esterasa/metabolismo , Movimiento Celular , Metaloproteinasa 14 de la Matriz/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias/patología , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Línea Celular Tumoral , Núcleo Celular/metabolismo , Centrosoma/metabolismo , Humanos , Lamina Tipo A/metabolismo , Invasividad Neoplásica/patología , Podosomas/metabolismo , Proteolisis
6.
Cell Stem Cell ; 16(3): 302-13, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25704240

RESUMEN

Regulated blood production is achieved through the hierarchical organization of dormant hematopoietic stem cell (HSC) subsets that differ in self-renewal potential and division frequency, with long-term (LT)-HSCs dividing the least. The molecular mechanisms underlying this variability in HSC division kinetics are unknown. We report here that quiescence exit kinetics are differentially regulated within human HSC subsets through the expression level of CDK6. LT-HSCs lack CDK6 protein. Short-term (ST)-HSCs are also quiescent but contain high CDK6 protein levels that permit rapid cell cycle entry upon mitogenic stimulation. Enforced CDK6 expression in LT-HSCs shortens quiescence exit and confers competitive advantage without impacting function. Computational modeling suggests that this independent control of quiescence exit kinetics inherently limits LT-HSC divisions and preserves the HSC pool to ensure lifelong hematopoiesis. Thus, differential expression of CDK6 underlies heterogeneity in stem cell quiescence states that functionally regulates this highly regenerative system.


Asunto(s)
División Celular/fisiología , Simulación por Computador , Quinasa 6 Dependiente de la Ciclina/biosíntesis , Regulación Enzimológica de la Expresión Génica/fisiología , Células Madre Hematopoyéticas/enzimología , Modelos Biológicos , Hematopoyesis/fisiología , Células Madre Hematopoyéticas/citología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA