Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Neuroinflammation ; 18(1): 60, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33632243

RESUMEN

BACKGROUND: The term sepsis is used to designate a systemic condition of infection and inflammation associated with hemodynamic changes that result in organic dysfunction. Gestational sepsis can impair the development of the central nervous system and may promote permanent behavior alterations in the offspring. The aim of our work was to evaluate the effects of maternal sepsis on inflammatory cytokine levels and synaptic proteins in the hippocampus, neocortex, frontal cortex, and cerebellum of neonatal, young, and adult mice. Additionally, we analyzed the motor development, behavioral features, and cognitive impairments in neonatal, young and adult offspring. METHODS: Pregnant mice at the 14th embryonic day (E14) were intratracheally instilled with saline 0.9% solution (control group) or Klebsiella spp. (3 × 108 CFU) (sepsis group) and started on meropenem after 5 h. The offspring was sacrificed at postnatal day (P) 2, P8, P30, and P60 and samples of liver, lung, and brain were collected for TNF-α, IL-1ß, and IL-6 measurements by ELISA. Synaptophysin, PSD95, and ß-tubulin levels were analyzed by Western blot. Motor tests were performed at all analyzed ages and behavioral assessments were performed in offspring at P30 and P60. RESULTS: Gestational sepsis induces a systemic pro-inflammatory response in neonates at P2 and P8 characterized by an increase in cytokine levels. Maternal sepsis induced systemic downregulation of pro-inflammatory cytokines, while in the hippocampus, neocortex, frontal cortex, and cerebellum an inflammatory response was detected. These changes in the brain immunity were accompanied by a reduction of synaptophysin and PSD95 levels in the hippocampus, neocortex, frontal cortex, and cerebellum, in all ages. Behavioral tests demonstrated motor impairment in neonates, and depressive-like behavior, fear-conditioned memory, and learning impairments in animals at P30 and P60, while spatial memory abilities were affected only at P60, indicating that gestational sepsis not only induces an inflammatory response in neonatal mouse brains, but also affects neurodevelopment, and leads to a plethora of behavioral alterations and cognitive impairments in the offspring. CONCLUSION: These data suggest that maternal sepsis may be causatively related to the development of depression, learning, and memory impairments in the litter.


Asunto(s)
Encéfalo/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Sepsis/inmunología , Animales , Conducta Animal , Encéfalo/metabolismo , Disfunción Cognitiva/etiología , Femenino , Inflamación , Ratones , Actividad Motora/fisiología , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Sepsis/complicaciones , Sinapsis/metabolismo
2.
Neuroimmunomodulation ; 28(1): 1-21, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33910207

RESUMEN

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has devastating effects on the population worldwide. Given this scenario, the extent of the impact of the disease on more vulnerable individuals, such as pregnant women, is of great concern. Although pregnancy may be a risk factor in respiratory virus infections, there are no considerable differences regarding COVID-19 severity observed between pregnant and nonpregnant women. In these circumstances, an emergent concern is the possibility of neurodevelopmental and neuropsychiatric harm for the offspring of infected mothers. Currently, there is no stronger evidence indicating vertical transmission of SARS-CoV-2; however, the exacerbated inflammatory response observed in the disease could lead to several impairments in the offspring's brain. Furthermore, in the face of historical knowledge on possible long-term consequences for the progeny's brain after infection by viruses, we must consider that this might be another deleterious facet of COVID-19. In light of neuroimmune interactions at the maternal-fetal interface, we review here the possible harmful outcomes to the offspring brains of mothers infected by SARS-CoV-2.


Asunto(s)
COVID-19/inmunología , Trastornos del Neurodesarrollo/fisiopatología , Neuroinmunomodulación/inmunología , Complicaciones Infecciosas del Embarazo/inmunología , Efectos Tardíos de la Exposición Prenatal/fisiopatología , COVID-19/metabolismo , COVID-19/fisiopatología , Síndrome de Liberación de Citoquinas/inmunología , Decidua/inmunología , Femenino , Humanos , Tolerancia Inmunológica/inmunología , Transmisión Vertical de Enfermedad Infecciosa , Neuroinmunomodulación/fisiología , Placenta/inmunología , Embarazo , Complicaciones Infecciosas del Embarazo/metabolismo , Complicaciones Infecciosas del Embarazo/fisiopatología , SARS-CoV-2 , Cordón Umbilical/inmunología
3.
Neurosci Lett ; 763: 136197, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34437989

RESUMEN

An insult can trigger a protective response or even cell death depending on different factors that include the duration and magnitude of the event and the ability of the cell to activate protective intracellular signals, including inflammatory cytokines. Our previous work showed that the treatment of Lister Hooded rat retinal cell cultures with 50 ng/mL phorbol 12-myristate 13-acetate (PMA), a protein kinase C activator, increases the survival of retinal ganglion cells (RGCs) kept in culture for 48 h after axotomy. Here we aim to analyze how PMA modulates the levels of TNF-α and IL-1ß (both key inflammatory mediators) and the impact of this modulation on RGCs survival. We hypothesize that the increase in RGCs survival mediated by PMA treatment depends upon modulation of the levels of IL-1ß and TNF-α. The effect of PMA treatment was assayed on cell viability, caspase 3 activation, TNF-α and IL-1ß release and TNF receptor type I (TNFRI) and TNF receptor type II (TNFRII) levels. PMA treatment increases IL-1ß and TNF-α levels in 15 min in culture and increases the release of both cytokines after 30 min and 24 h, respectively. Both IL-1ß and TNF-α levels decrease after 48 h of PMA treatment. PMA treatment also induces an increase in TNFRII levels while decreasing TNFRI after 24 h. PMA also inhibited caspase-3 activation, and decreased ROS production and EthD-1/calcein ratio in retinal cell cultures leading to an increase in cell viability. The neutralization of IL-1ß (anti-IL1ß 0,1ng/mL), the neutralization of TNF-α (anti-TNF-α 0,1ng/mL) and the TNF-α inhibition using a recombinant soluble TNFRII abolished PMA effect on RGCs survival. These data suggest that PMA treatment induces IL1ß and TNF-α release and modulation of TNFRI/TNFRII expression promoting RGCs survival after axotomy.


Asunto(s)
Proteína Quinasa C/metabolismo , Células Ganglionares de la Retina/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Animales Recién Nacidos , Axotomía/efectos adversos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Interleucina-1beta/metabolismo , Masculino , Cultivo Primario de Células , Ratas , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Células Ganglionares de la Retina/metabolismo , Inhibidores del Factor de Necrosis Tumoral/farmacología , Factor de Necrosis Tumoral alfa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA