Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros

País de afiliación
Intervalo de año de publicación
1.
J Immunol ; 211(4): 601-611, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37395686

RESUMEN

Retinoic acid (RA) is a fundamental vitamin A metabolite involved in regulating immune responses through the nuclear RA receptor (RAR) and retinoid X receptor. While performing experiments using THP-1 cells as a model for Mycobacterium tuberculosis infection, we observed that serum-supplemented cultures displayed high levels of baseline RAR activation in the presence of live, but not heat-killed, bacteria, suggesting that M. tuberculosis robustly induces the endogenous RAR pathway. Using in vitro and in vivo models, we have further explored the role of endogenous RAR activity in M. tuberculosis infection through pharmacological inhibition of RARs. We found that M. tuberculosis induces classical RA response element genes such as CD38 and DHRS3 in both THP-1 cells and human primary CD14+ monocytes via a RAR-dependent pathway. M. tuberculosis-stimulated RAR activation was observed with conditioned media and required nonproteinaceous factor(s) present in FBS. Importantly, RAR blockade by (4-[(E)-2-[5,5-dimethyl-8-(2-phenylethynyl)-6H-naphthalen-2-yl]ethenyl]benzoic acid), a specific pan-RAR inverse agonist, in a low-dose murine model of tuberculosis significantly reduced SIGLEC-F+CD64+CD11c+high alveolar macrophages in the lungs, which correlated with 2× reduction in tissue mycobacterial burden. These results suggest that the endogenous RAR activation axis contributes to M. tuberculosis infection both in vitro and in vivo and reveal an opportunity for further investigation of new antituberculosis therapies.


Asunto(s)
Mycobacterium tuberculosis , Receptores de Ácido Retinoico , Ratones , Humanos , Animales , Receptores de Ácido Retinoico/metabolismo , Mycobacterium tuberculosis/metabolismo , Agonismo Inverso de Drogas , Tretinoina/farmacología , Receptores X Retinoide
2.
J Dairy Sci ; 105(7): 5685-5699, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35636996

RESUMEN

More than 30 types of artisanal cheeses are known in Brazil; however, microorganisms, such as Staphylococcus spp., can contaminate raw milk cheeses through different sources, from milking to processing. Staphylococcal food poisoning results from the consumption of food in which coagulase-positive staphylococci, mostly Staphylococcus aureus, have developed and produced enterotoxins. In addition, an emerging public health concern is the increasing antimicrobial resistance of some Staphylococcus strains. Furthermore, the ability of Staphylococcus spp. in sharing antibiotic resistance-related genes with other bacteria increases this problem. In light of these observations, this review aims to discuss the presence of, enterotoxins of, and antibiotic-resistant of Staphylococcus spp. in Brazilian artisanal cheese produced with raw milk.


Asunto(s)
Queso , Animales , Antibacterianos/farmacología , Brasil , Queso/microbiología , Farmacorresistencia Bacteriana , Enterotoxinas/genética , Microbiología de Alimentos , Humanos , Leche/química , Staphylococcus , Estudiantes
3.
Crit Rev Microbiol ; 43(5): 602-620, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28581360

RESUMEN

Staphylococcus aureus biofilms represent a unique micro-environment that directly contribute to the bacterial fitness within hospital settings. The accumulation of this structure on implanted medical devices has frequently caused the development of persistent and chronic S. aureus-associated infections, which represent an important social and economic burden worldwide. ica-independent biofilms are composed of an assortment of bacterial products and modulated by a multifaceted and overlapping regulatory network; therefore, biofilm composition can vary among S. aureus strains. In the microniches formed by biofilms-produced by a number of bacterial species and composed by different structural components-drug refractory cell subpopulations with distinct physiological characteristics can emerge and result in therapeutic failures in patients with recalcitrant bacterial infections. In this review, we highlight the importance of biofilms in the development of persistence and chronicity in some S. aureus diseases, the main molecules associated with ica-independent biofilm development and the regulatory mechanisms that modulate ica-independent biofilm production, accumulation, and dispersion.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Enfermedades Transmisibles/patología , Proteínas de la Membrana/metabolismo , Infecciones Estafilocócicas/patología , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/patogenicidad , Adhesión Bacteriana/genética , Adhesión Bacteriana/fisiología , Enfermedades Transmisibles/tratamiento farmacológico , Enfermedades Transmisibles/microbiología , Farmacorresistencia Bacteriana Múltiple , Regulación Bacteriana de la Expresión Génica/genética , Humanos , Proteínas de la Membrana/genética , Prótesis e Implantes/microbiología , Infecciones Relacionadas con Prótesis/tratamiento farmacológico , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Relacionadas con Prótesis/patología , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos
4.
Int J Med Microbiol ; 305(1): 140-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25547264

RESUMEN

Biofilm formation is considered an important virulence factor in implanted device-associated infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Recent studies demonstrated that the ica-independent biofilms produced by MRSA are multifactorial. Despite the recent progress achieved in this field, the bacterial factors associated with biofilm formation/accumulation and regulation among clinical MRSA isolates remain largely unknown. In this study, using MRSA isolates from diverse multilocus sequence typing (MLST) clonal complexes that produce different amounts of biofilm, and a number of phenotypic and molecular approaches, we investigated the correlation between biofilm-associated factors and the ability of the bacteria to accumulate biofilm.


Asunto(s)
Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/fisiología , Factores de Virulencia/metabolismo , Animales , Proteínas Bacterianas/genética , Modelos Animales de Enfermedad , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/crecimiento & desarrollo , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Ratones Endogámicos BALB C , Infecciones Relacionadas con Prótesis/microbiología , Infecciones Estafilocócicas/microbiología , Factores de Virulencia/genética
5.
Mem Inst Oswaldo Cruz ; 109(3): 265-78, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24789555

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is one of the most important bacterial pathogens based on its incidence and the severity of its associated infections. In addition, severe MRSA infections can occur in hospitalised patients or healthy individuals from the community. Studies have shown the infiltration of MRSA isolates of community origin into hospitals and variants of hospital-associated MRSA have caused infections in the community. These rapid epidemiological changes represent a challenge for the molecular characterisation of such bacteria as a hospital or community-acquired pathogen. To efficiently control the spread of MRSA, it is important to promptly detect the mecA gene, which is the determinant of methicillin resistance, using a polymerase chain reaction-based test or other rapidly and accurate methods that detect the mecA product penicillin-binding protein (PBP)2a or PBP2'. The recent emergence of MRSA isolates that harbour a mecA allotype, i.e., the mecC gene, infecting animals and humans has raised an additional and significant issue regarding MRSA laboratory detection. Antimicrobial drugs for MRSA therapy are becoming depleted and vancomycin is still the main choice in many cases. In this review, we present an overview of MRSA infections in community and healthcare settings with focus on recent changes in the global epidemiology, with special reference to the MRSA picture in Brazil.


Asunto(s)
Proteínas Bacterianas/genética , Staphylococcus aureus Resistente a Meticilina/genética , Proteínas de Unión a las Penicilinas/genética , Infecciones Estafilocócicas/microbiología , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/clasificación , ADN Bacteriano/genética , Genes Bacterianos/genética , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Proteínas de Unión a las Penicilinas/clasificación , Reacción en Cadena de la Polimerasa
6.
Diagn Microbiol Infect Dis ; 108(1): 116089, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37931385

RESUMEN

Asymptomatically nasal colonization by Staphylococcus aureus is a well-established risk factor for S. aureus infections. The aimed of the study was to identify the prevalence and factors associated with nasal carriage of S. aureus and Methicillin-resistant S. aureus (MRSA) from individuals residing in one Brazilian nursing home (NH). Three time-separate nasal swab collections were obtained from the elderly enrolled. The S. aureus isolates identified were submitted to Antimicrobial Susceptibility test (AST). The study showed a high prevalence of S. aureus (n = 9; 60%) and MRSA (n = 4; 26.7%) among elderly. Resistance to erythromycin was the most detected. S. aureus or MRSA colonization could not be associated to the data collected on demographics, personal habits, and medical history of the participants. Despite the small number of individuals enrolled, our study can contribute to improve the control of S. aureus and MRSA dissemination within the community, especially among the most vulnerable like the elderly.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Anciano , Staphylococcus aureus , Brasil/epidemiología , Cavidad Nasal , Infecciones Estafilocócicas/epidemiología , Casas de Salud , Prevalencia , Portador Sano/epidemiología
7.
Diagn Microbiol Infect Dis ; 109(1): 116244, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38452557

RESUMEN

The study investigated the characteristics of Methicillin-resistant Staphylococcus aureus (MRSA) isolated in Santa Catarina. Findings revealed prevalent SCCmecII and IV, multiresistance, Leucocidin ED genes, and one ST105 isolate. The results indicated that the in-state MRSA isolates showed the same characteristics as the out-of-state isolates among the investigated features.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Brasil/epidemiología , Infecciones Estafilocócicas/epidemiología , Pruebas de Sensibilidad Microbiana
8.
J Food Prot ; 87(6): 100285, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697483

RESUMEN

Staphylococcus aureus is one of the primary pathogenic agents found in cheeses produced with raw milk. Some strains of S. aureus are enterotoxigenic, possessing the ability to produce toxins responsible for staphylococcal food poisoning when present in contaminated foods. This study aimed to genotypically characterize, assess the antimicrobial resistance profile, and examine the enterotoxigenic potential of strains of S. aureus isolated from artisanal colonial cheese. Additionally, a bacterial diversity assessment in the cheeses was conducted by sequencing the 16S rRNA gene. The metataxomic profile revealed the presence of 68 distinct species in the cheese samples. Fifty-seven isolates of S. aureus were identified, with highlighted resistance to penicillin in 33% of the isolates, followed by clindamycin (28%), erythromycin (26%), and tetracycline (23%). The evaluated strains also exhibited inducible resistance to clindamycin, with nine isolates considered multidrug-resistant (MDR). The agr type I was the most prevalent (62%) among the isolates, followed by agr type II (24%). Additionally, ten spa types were identified. Although no enterotoxins and their associated genes were detected in the samples and isolates, respectively, the Panton-Valentine leukocidin gene (lukS-lukF) was found in 39% of the isolates. The presence of MDR pathogens in the artisanal raw milk cheese production chain underscores the need for quality management to prevent the contamination and dissemination of S. aureus strains.


Asunto(s)
Antibacterianos , Queso , Leche , Staphylococcus aureus , Queso/microbiología , Brasil , Leche/microbiología , Animales , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Virulencia , Microbiología de Alimentos , Humanos , Farmacorresistencia Bacteriana , Contaminación de Alimentos/análisis , Enterotoxinas/genética
9.
BMC Microbiol ; 13: 93, 2013 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-23622558

RESUMEN

BACKGROUND: A novel variant of the ST1-SCCmecIV methicillin-resistant Staphylococcus aureus (MRSA) lineage, mostly associated with nosocomial bloodstream infections (BSI), has emerged in Rio de Janeiro. Bacterial biofilm has been considered a major virulence factor in central venous catheter-associated BSI. The mechanisms involved in biofilm formation/accumulation are multifactorial and complex. Studies have suggested that biofilm production was affected in vitro and vivo for agr-null mutants of S. aureus. RESULTS: The impact of naturally occurring inhibition of agr signaling on virulence profiles and infections associated with the ST1 variant was investigated. agr dysfunction was detected in a significant percentage (13%) of the isolates with concomitant increase in biofilm accumulation in vitro and in vivo, and enhanced ability to adhere to and invade airway cells. The biofilm formed by these ST1 isolates was ica-independent and proteinaceous in nature. In fact, the improved colonization properties were paralleled by an increased expression of the biofilm-associated genes fnbA, spa and sasG. The transcription of sarA, a positive regulator of agr, was two-times reduced for the agr-dysfunctional MRSA. Remarkably, the agr inhibition was genetically stable. Indeed, agr-dysfunctional isolates succeed to colonize and cause both acute and chronic infections in hospitalized patients, and also to effectively accumulate biofilm in a mouse subcutaneous catheter implant model. CONCLUSION: The ability of agr-dysfunctional isolates to cause infections in humans and to form biofilm in the animal model suggests that therapeutic approaches based on agr-inactivation strategies are unlikely to be effective in controlling human-device infections caused by ST1 isolates. The increased biofilm accumulation associated with the acquisition of multiple antimicrobial resistant traits might have influenced (at least in part) the expansion of this USA400 related clone in our hospitals.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Infecciones Relacionadas con Catéteres/microbiología , Staphylococcus aureus Resistente a Meticilina/fisiología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/microbiología , Transactivadores/deficiencia , Animales , Adhesión Bacteriana , Proteínas Bacterianas , Brasil , Modelos Animales de Enfermedad , Endocitosis , Genotipo , Humanos , Masculino , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Ratones , Ratones Endogámicos BALB C , Tipificación Molecular , Virulencia
10.
Biomolecules ; 13(1)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36671535

RESUMEN

Shrimp antilipopolysaccharide factors (ALFs) form a multifunctional and diverse family of antimicrobial host defense peptides (AMPs) composed of seven members (groups A to G), which differ in terms of their primary structure and biochemical properties. They are amphipathic peptides with two conserved cysteine residues stabilizing a central ß-hairpin that is understood to be the core region for their biological activities. In this study, we synthetized three linear (cysteine-free) peptides based on the amino acid sequence of the central ß-hairpin of the newly identified shrimp (Litopenaeus vannamei) ALFs from groups E to G. Unlike whole mature ALFs, the ALF-derived peptides exhibited an α-helix secondary structure. In vitro assays revealed that the synthetic peptides display a broad spectrum of activity against both Gram-positive and Gram-negative bacteria and fungi but not against the protozoan parasites Trypanosoma cruzi and Leishmania (L.) infantum. Remarkably, they displayed synergistic effects and showed the ability to permeabilize bacterial membranes, a mechanism of action of classical AMPs. Having shown low cytotoxicity to THP-1 human cells and being active against clinical multiresistant bacterial isolates, these nature-inspired peptides represent an interesting class of bioactive molecules with biotechnological potential for the development of novel therapeutics in medical sciences.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Antibacterianos/farmacología , Conformación Proteica en Hélice alfa , Lipopolisacáridos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Pruebas de Sensibilidad Microbiana
11.
Int J Food Microbiol ; 391-393: 110151, 2023 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-36871395

RESUMEN

Salmonella is the main human pathogen present in the poultry chain. Salmonella Heidelberg is one of the most important serovars for public health since it has been frequently isolated in broiler chickens from different countries and may present multidrug resistance (MDR). This study was carried out with 130 S. Heidelberg isolates collected from pre-slaughter broiler farms in 2019 and 2020 in 18 cities from three Brazilian states to study relevant aspects regarding their genotypic and phenotypic resistance. The isolates were tested and identified using somatic and flagellar antiserum (0:4, H:2, and H:r), and an antimicrobial susceptibility test (AST) was performed against 11 antibiotics for veterinary use. The strains were typed by Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR, and representatives of the main clusters of the identified profiles were sequenced by Whole Genome Sequencing (WGS). AST results showed that all isolates were resistant to sulfonamide, 54 % (70/130) were resistant to amoxicillin, and only one was sensitive to tetracycline. Twelve isolates (15.4 %) were MDR. The dendrogram obtained from the ERIC-PCR showed that the strains were grouped into 27 clusters with similarity above 90 %, with some isolates showing 100 % similarity but with different phenotypic profiles of antimicrobial resistance. Identical strains collected on the same farm on other dates were identified, indicating that they were residents. WGS identified 66 antibiotic-resistance genes. The sul2 (present in all sequenced samples) and tet(A) genes were highlighted and validated in the experimental analysis. The fosA7 gene was also identified in all sequenced samples, but resistance was not observed in the phenotypic test, possibly due to the heteroresistance of the S. Heidelberg strains evaluated. Considering that chicken meat is one of the most consumed meats in the world, the data obtained in the present study can corroborate the mapping of the origin and trends of antimicrobial resistance.


Asunto(s)
Pollos , Farmacorresistencia Bacteriana Múltiple , Animales , Humanos , Brasil , Farmacorresistencia Bacteriana Múltiple/genética , Pollos/microbiología , Pruebas de Sensibilidad Microbiana , Salmonella , Antibacterianos/farmacología
12.
Braz J Microbiol ; 53(4): 2335-2341, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36319942

RESUMEN

Staphylococcus pseudintermedius is the main coagulase-positive staphylococci associated with canine skin/soft tissue infections (SSTI), otitis externa, and surgical site infections. The international spread of an epidemic and multiresistant lineage of methicillin-resistant Staphylococcus pseudintermedius (MRSP), the so-called European clone-displaying sequence type (ST) 71-requires attention. The first isolation of an MRSP ST71 isolate in South America was reported in Rio de Janeiro city, in 2010; however, a limited number of canine isolates were analyzed. Thus, to have a better panel of the MRSP spread in this city, we were stimulated to continue this study and search for the presence of MRSP in 282 colonized or infected dogs in the city of Rio de Janeiro. Among the MRSP isolates collected (N = 17; 6.1%), the pulsed-field gel electrophoresis (PFGE) patterns were similar to those of European clone. All 17 isolates were classified as ST71 by multilocus sequence typing (MLST). In order to assess whether isolates of MRSP ST71 may have also spread to the Rio de Janeiro state countryside, we collected samples from 124 infected dogs in the city of Campos dos Goytacazes (232 km away from Rio de Janeiro city). Our data showed the presence of ST71 lineage in one isolate among three MRSP detected. S. pseudintermedius was isolated from 40.6% of the clinical samples (N = 165/406). A relatively high incidence of methicillin resistance, detected by a PCR-based method, was found in 12.1% of the S. pseudintermedius recovered from animals (N = 20/165). The resistance profile of these isolates was similar to that described for the international ST71 strains whose genomes are publicly available in the GenBank. The prospect of ST71 isolates being resistant to virtually all antimicrobials used in veterinary medicine is alarming and should be considered a central issue considering that MRSP ST71 spreads over large geographic distances and its transmission from animals to humans.


Asunto(s)
Enfermedades de los Perros , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Perros , Animales , Resistencia a la Meticilina , Tipificación de Secuencias Multilocus , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/veterinaria , Infecciones Estafilocócicas/microbiología , Ciudades , Antibacterianos/farmacología , Enfermedades de los Perros/epidemiología , Enfermedades de los Perros/microbiología , Brasil/epidemiología , Pruebas de Sensibilidad Microbiana
13.
Microorganisms ; 9(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808095

RESUMEN

Our culture-independent nanopore shotgun metagenomic sequencing protocol on biopsies has the potential for same-day diagnostics of orthopaedic implant-associated infections (OIAI). As OIAI are frequently caused by Staphylococcus aureus, we included S. aureus genotyping and virulence gene detection to exploit the protocol to its fullest. The aim was to evaluate S. aureus genotyping, virulence and antimicrobial resistance genes detection using the shotgun metagenomic sequencing protocol. This proof of concept study included six patients with S. aureus-associated OIAI at Akershus University Hospital, Norway. Five tissue biopsies from each patient were divided in two: (1) conventional microbiological diagnostics and genotyping, and whole genome sequencing (WGS) of S. aureus isolates; (2) shotgun metagenomic sequencing of DNA from the biopsies. Consensus sequences were analysed using spaTyper, MLST, VirulenceFinder, and ResFinder from the Center for Genomic Epidemiology (CGE). MLST was also compared using krocus. All spa-types, one CGE and four krocus MLST results matched Sanger sequencing results. Virulence gene detection matched between WGS and shotgun metagenomic sequencing. ResFinder results corresponded to resistance phenotype. S. aureus spa-typing, and identification of virulence and antimicrobial resistance genes are possible using our shotgun metagenomics protocol. MLST requires further optimization. The protocol has potential application to other species and infection types.

14.
Microb Genom ; 7(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33885360

RESUMEN

Outbreak investigations are essential to control and prevent the dissemination of pathogens. This study developed and validated a complete analysis protocol for faster and more accurate surveillance and outbreak investigations of antibiotic-resistant microbes based on Oxford Nanopore Technologies (ONT) DNA whole-genome sequencing. The protocol was developed using 42 methicillin-resistant Staphylococcus aureus (MRSA) isolates identified from former well-characterized outbreaks. The validation of the protocol was performed using Illumina technology (MiSeq, Illumina). Additionally, a real-time outbreak investigation of six clinical S. aureus isolates was conducted to test the ONT-based protocol. The suggested protocol includes: (1) a 20 h sequencing run; (2) identification of the sequence type (ST); (3) de novo genome assembly; (4) polishing of the draft genomes; and (5) phylogenetic analysis based on SNPs. After the sequencing run, it was possible to identify the ST in 2 h (20 min per isolate). Assemblies were achieved after 4 h (40 min per isolate) while the polishing was carried out in 7 min per isolate (42 min in total). The phylogenetic analysis took 0.6 h to confirm an outbreak. Overall, the developed protocol was able to at least discard an outbreak in 27 h (mean) after the bacterial identification and less than 33 h to confirm it. All these estimated times were calculated considering the average time for six MRSA isolates per sequencing run. During the real-time S. aureus outbreak investigation, the protocol was able to identify two outbreaks in less than 31 h. The suggested protocol enables identification of outbreaks in early stages using a portable and low-cost device along with a streamlined downstream analysis, therefore having the potential to be incorporated in routine surveillance analysis workflows. In addition, further analysis may include identification of virulence and antibiotic resistance genes for improved pathogen characterization.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Análisis de Secuencia de ADN/métodos , Infecciones Estafilocócicas/microbiología , Brotes de Enfermedades , Monitoreo Epidemiológico , Genoma Bacteriano , Humanos , Staphylococcus aureus Resistente a Meticilina/clasificación , Staphylococcus aureus Resistente a Meticilina/genética , Noruega/epidemiología , Filogenia , Infecciones Estafilocócicas/epidemiología
15.
Sci Rep ; 11(1): 4724, 2021 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-33633263

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is an important pathogen associated with a wide variety of infections in humans. The ability of MRSA to infect companion animals has gained increasing attention in the scientific literature. In this study, 334 dogs were screened for MRSA in two cities located in Rio de Janeiro State. The prevalence of MRSA in dogs was 2.7%. Genotyping revealed isolates from sequence types (ST) 1, 5, 30, and 239 either colonizing or infecting dogs. The genome of the canine ST5 MRSA (strain SA112) was compared with ST5 MRSA from humans-the main lineage found in Rio de Janeiro hospitals-to gain insights in the origin of this dog isolate. Phylogenetic analysis situated the canine genome and human strain CR14-035 in the same clade. Comparative genomics revealed similar virulence profiles for SA112 and CR14-035. Both genomes carry S. aureus genomic islands νSAα, νSAß, and νSAγ. The virulence potential of the canine and human strains was similar in a Caenorhabditis elegans model. Together, these results suggest a potential of canine MRSA to infect humans and vice versa. The circulation in community settings of a MRSA lineage commonly found in hospitals is an additional challenge for public health surveillance authorities.


Asunto(s)
Enfermedades de los Perros/microbiología , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/genética , Infecciones Estafilocócicas/microbiología , Animales , Perros , Genómica , Humanos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Virulencia
16.
Front Microbiol ; 10: 82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30873127

RESUMEN

The global spread of specific clones of methicillin-resistant Staphylococcus aureus (MRSA) has become a major public health problem, and understanding the dynamics of geographical spread requires worldwide surveillance. Over the past 20 years, the ST239 lineage of MRSA has been recognized as an emerging clone across the globe, with detailed studies focusing on isolates from Europe and Asia. Less is known about this lineage in South America, and, particularly, Brazil where it was the predominant lineage of MRSA in the early 1990s to 2000s. To gain a better understanding about the introduction and spread of ST239 MRSA in Brazil we undertook a comparative phylogenomic analysis of ST239 genomes, adding seven completed, closed Brazilian genomes. Brazilian ST239 isolates grouped in a subtree with those from South American, and Western, romance-language-speaking, European countries, here designated the South American clade. After an initial worldwide radiation in the 1960s and 1970s, we estimate that ST239 began to spread in South America and Brazil in approximately 1988. This clone demonstrates specific genomic changes that are suggestive of local divergence and adaptational change including agrC single-nucleotide polymorphisms variants, and a distinct pattern of virulence-associated genes (mainly the presence of the chp and the absence of sea and sasX). A survey of a geographically and chronologically diverse set of 100 Brazilian ST239 isolates identified this virulence genotype as the predominant pattern in Brazil, and uncovered an unexpectedly high prevalence of agr-dysfunction (30%). ST239 isolates from Brazil also appear to have undergone transposon (IS256) insertions in or near global regulatory genes (agr and mgr) that likely led to rapid reprogramming of bacterial traits. In general, the overall pattern observed in phylogenomic analyses of ST239 is of a rapid initial global radiation, with subsequent local spread and adaptation in multiple different geographic locations. Most ST239 isolates harbor the ardA gene, which we show here to have in vivo anti-restriction activity. We hypothesize that this gene may have improved the ability of this lineage to acquire multiple resistance genes and distinct virulence-associated genes in each local context. The allopatric divergence pattern of ST239 also may suggest strong selective pressures for specific traits in different geographical locations.

17.
Genome Biol Evol ; 8(10): 3187-3192, 2016 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-27635055

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is still one of the most important hospital pathogen globally. The multiresistant isolates of the ST239-SCCmecIII lineage are spread over large geographic regions, colonizing and infecting hospital patients in virtually all continents. The balance between fitness (adaptability) and virulence potential is likely to represent an important issue in the clonal shift dynamics leading the success of some specific MRSA clones over another. The accessory gene regulator (agr) is the master quorum sensing system of staphylococci playing a role in the global regulation of key virulence factors. Consequently, agr inactivation in S. aureus may represent a significant mechanism of genetic variability in the adaptation of this healthcare-associated pathogen. We report here the complete genome sequence of the methicillin-resistant S. aureus, isolate HC1335, a variant of the ST239 lineage, which presents a natural insertion of an IS256 transposase element in the agrC gene encoding AgrC histidine kinase receptor.


Asunto(s)
Proteínas Bacterianas/genética , Genoma Bacteriano , Staphylococcus aureus Resistente a Meticilina/genética , Mutagénesis Insercional , Proteínas Quinasas/genética , Elementos Transponibles de ADN , Aptitud Genética , Variación Genética
18.
Stand Genomic Sci ; 11: 34, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27152133

RESUMEN

Staphylococcus aureus is a versatile Gram-positive coccus frequently found colonizing the skin and nasal membranes of humans. The acquisition of the staphylococcal cassette chromosome mec was a major milestone in the evolutionary path of methicillin-resistant S. aureus. This genetic element carries the mecA gene, the main determinant of methicillin resistance. MRSA is involved in a plethora of opportunistic infectious diseases. The accessory gene regulator is the major S. aureus quorum sensing system, playing an important role in staphylococcal virulence, including the development of biofilms. We report the complete genome sequence (NCBI BioProject ID: PRJNA264181) of the methicillin-resistant S. aureus strain GV69 (= CMVRS P4521), a variant of the ST239 lineage that presents with a natural attenuation of agr-RNAIII transcription and a moderate accumulation of biofilm.

20.
J Vet Diagn Invest ; 27(2): 231-5, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25680922

RESUMEN

It has been proposed, based on taxonomic and molecular studies, that all canine isolates belonging to Staphylococcus intermedius group (SIG) should be renamed Staphylococcus pseudintermedius. However, isolates of SIG and other coagulase-positive staphylococci share many phenotypic characteristics, which could lead to misidentification. The accuracy of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) for identifying S. pseudintermedius isolates obtained from canine infections was evaluated, using a polymerase chain reaction (PCR)-based identification as the gold standard. In addition, MALDI-TOF MS was compared with conventional biochemical tests. A central problem was the incorrect identification of S. pseudintermedius isolates as S. intermedius by either MALDI-TOF MS or biochemical identification. From the 49 S. pseudintermedius isolates identified by the molecular method, only 21 could be assigned to this species by the biochemical approach and only 12 by MALDI-TOF MS. The 6 S. aureus isolates were correctly identified by all 3 techniques. However, using biochemical tests, 9 S. pseudintermedius were mistakenly classified as S. aureus, indicating a reduced specificity relative to the MALDI-TOF MS system. Analysis with the MALDI-TOF MS platform allowed rapid and accurate identification of the 49 isolates to the S. intermedius group but the approach was very limited in identifying S. pseudintermedius isolates, as only 12 of 49 isolates were correctly identified, a sensitivity of 0.24 (95% confidence interval: 0.13-0.39).


Asunto(s)
Enfermedades de los Perros/diagnóstico , Infecciones Estafilocócicas/veterinaria , Staphylococcus intermedius/aislamiento & purificación , Animales , ADN Bacteriano/análisis , Enfermedades de los Perros/microbiología , Perros , Reacción en Cadena de la Polimerasa/veterinaria , Sensibilidad y Especificidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/veterinaria , Infecciones Estafilocócicas/diagnóstico , Staphylococcus intermedius/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA