Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
New Phytol ; 234(2): 545-559, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35092024

RESUMEN

Meiotic recombination is a major evolutionary process generating genetic diversity at each generation in sexual organisms. However, this process is highly regulated, with the majority of crossovers lying in the distal chromosomal regions that harbor low DNA methylation levels. Even in these regions, some islands without recombination remain, for which we investigated the underlying causes. Genetic maps were established in two Brassica napus hybrids to detect the presence of such large nonrecombinant islands. The role played by DNA methylation and structural variations in this local absence of recombination was determined by performing bisulfite sequencing and whole genome comparisons. Inferred structural variations were validated using either optical mapping or oligo fluorescence in situ hybridization. Hypermethylated or inverted regions between Brassica genomes were associated with the absence of recombination. Pairwise comparisons of nine B. napus genome assemblies revealed that such inversions occur frequently and may contain key agronomic genes such as resistance to biotic stresses. We conclude that such islands without recombination can have different origins, such as DNA methylation or structural variations in B. napus. It is thus essential to take into account these features in breeding programs as they may hamper the efficient combination of favorable alleles in elite varieties.


Asunto(s)
Brassica napus , Brassica napus/genética , Cromosomas de las Plantas , Epigenómica , Genoma de Planta , Hibridación Fluorescente in Situ , Fitomejoramiento
2.
New Phytol ; 230(5): 2072-2084, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33638877

RESUMEN

Allopolyploids have globally higher fitness than their diploid progenitors; however, by comparison, most resynthesized allopolyploids have poor fertility and highly unstable genome. Elucidating the evolutionary processes promoting genome stabilization and fertility is thus essential to comprehend allopolyploid success. Using the Brassica model, we mimicked the speciation process of a nascent allopolyploid species by resynthesizing allotetraploid Brassica napus and systematically selecting for euploid individuals over eight generations in four independent allopolyploidization events with contrasted genetic backgrounds, cytoplasmic donors, and polyploid formation type. We evaluated the evolution of meiotic behavior and fertility and identified rearrangements in S1 to S9 lineages to explore the positive consequences of euploid selection on B. napus genome stability. Recurrent selection of euploid plants for eight generations drastically reduced the percentage of aneuploid progenies as early as the fourth generation, concomitantly with a decrease in number of newly fixed homoeologous rearrangements. The consequences of homoeologous rearrangements on meiotic behavior and seed number depended strongly on the genetic background and cytoplasm donor. The combined use of both self-fertilization and recurrent euploid selection allowed identification of genomic regions associated with fertility and meiotic behavior, providing complementary evidence to explain B. napus speciation success.


Asunto(s)
Brassica napus , Brassica , Aneuploidia , Brassica/genética , Brassica napus/genética , Genoma de Planta/genética , Poliploidía
3.
Plant J ; 98(3): 434-447, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30604905

RESUMEN

Several plastid macromolecular protein complexes are encoded by both nuclear and plastid genes. Therefore, cytonuclear interactions are held in place to prevent genomic conflicts that may lead to incompatibilities. Allopolyploidy resulting from hybridization and genome doubling of two divergent species can disrupt these fine-tuned interactions, as newly formed allopolyploid species confront biparental nuclear chromosomes with a uniparentally inherited plastid genome. To avoid any deleterious effects of unequal genome inheritance, preferential transcription of the plastid donor over the other donor has been hypothesized to occur in allopolyploids. We used Brassica as a model to study the effects of paleopolyploidy in diploid parental species, as well as the effects of recent and ancient allopolyploidy in Brassica napus, on genes implicated in plastid protein complexes. We first identified redundant nuclear copies involved in those complexes. Compared with cytosolic protein complexes and with genome-wide retention rates, genes involved in plastid protein complexes show a higher retention of genes in duplicated and triplicated copies. Those redundant copies are functional and are undergoing strong purifying selection. We then compared transcription patterns and sequences of those redundant gene copies between resynthesized allopolyploids and their diploid parents. The neopolyploids showed no biased subgenome expression or maternal homogenization via gene conversion, despite the presence of some non-synonymous substitutions between plastid genomes of parental progenitors. Instead, subgenome dominance was observed regardless of the maternal progenitor. Our results provide new insights on the evolution of plastid protein complexes that could be tested and generalized in other allopolyploid species.


Asunto(s)
Brassica/genética , Cloroplastos/genética , Duplicación de Gen/genética , Genoma de Plastidios/genética , Brassica napus/genética , Evolución Molecular , Poliploidía
4.
Mol Biol Evol ; 34(8): 2035-2040, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28472380

RESUMEN

Plants can show long-term effects of environmental stresses and in some cases a stress "memory" has been reported to persist across generations, potentially mediated by epigenetic mechanisms. However, few documented cases exist of transgenerational effects that persist for multiple generations and it remains unclear if or how epigenetic mechanisms are involved. Here, we show that the composition of small regulatory RNAs in apomictic dandelion lineages reveals a footprint of drought stress and salicylic acid treatment experienced two generations ago. Overall proportions of 21 and 24 nt RNA pools were shifted due to grandparental treatments. While individual genes did not show strong up- or downregulation of associated sRNAs, the subset of genes that showed the strongest shifts in sRNA abundance was significantly enriched for several GO terms including stress-specific functions. This suggests that a stress-induced signal was transmitted across multiple unexposed generations leading to persistent changes in epigenetic gene regulation.


Asunto(s)
ARN Pequeño no Traducido/química , Taraxacum/genética , Apomixis , Efecto de Cohortes , Metilación de ADN , Sequías , Ambiente , Epigénesis Genética/genética , Genoma de Planta , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN , ARN Pequeño no Traducido/genética , Ácido Salicílico/metabolismo , Estrés Fisiológico/genética
5.
New Phytol ; 217(2): 871-882, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29034954

RESUMEN

Parental environments can influence offspring traits. However, the magnitude of the impact of parental environments on offspring molecular phenotypes is poorly understood. Here, we test the direct effects and intergenerational effects of jasmonic acid (JA) treatment, which is involved in herbivory-induced defense signaling, on transcriptomes and metabolomes in apomictic common dandelion (Taraxacum officinale). In a full factorial crossed design with parental and offspring JA and control treatments, we performed leaf RNA-seq gene expression analysis, LC-MS metabolomics and total phenolics assays in offspring plants. Expression analysis, leveraged by a de novo assembled transcriptome, revealed an induced response to JA exposure that is consistent with known JA effects. The intergenerational effect of treatment was considerable: 307 of 858 detected JA-responsive transcripts were affected by parental JA treatment. In terms of the numbers of metabolites affected, the magnitude of the chemical response to parental JA exposure was c. 10% of the direct JA treatment response. Transcriptome and metabolome analyses both identified the phosphatidylinositol signaling pathway as a target of intergenerational JA effects. Our results highlight that parental environments can have substantial effects in offspring generations. Transcriptome and metabolome assays provide a basis for zooming in on the potential mechanisms of inherited JA effects.


Asunto(s)
Apomixis/genética , Ciclopentanos/farmacología , Ambiente , Metaboloma/genética , Oxilipinas/farmacología , Taraxacum/genética , Taraxacum/metabolismo , Transcriptoma/genética , Apomixis/efectos de los fármacos , Análisis por Conglomerados , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Metaboloma/efectos de los fármacos , Metabolómica , Fenoles/metabolismo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Taraxacum/efectos de los fármacos , Transcriptoma/efectos de los fármacos
6.
Mol Ecol ; 27(14): 2986-3000, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29862597

RESUMEN

Despite the severe impacts of the Deepwater Horizon oil spill, the foundation plant species Spartina alterniflora proved resilient to heavy oiling, providing an opportunity to identify mechanisms of response to the anthropogenic stress of crude oil exposure. We assessed plants from oil-affected and unaffected populations using a custom DNA microarray to identify genomewide transcription patterns and gene expression networks that respond to crude oil exposure. In addition, we used T-DNA insertion lines of the model grass Brachypodium distachyon to assess the contribution of four novel candidate genes to crude oil response. Responses in S. alterniflora to hydrocarbon exposure across the transcriptome as well as xenobiotic specific response pathways had little overlap with those previously identified in the model plant Arabidopsis thaliana. Among T-DNA insertion lines of B. distachyon, we found additional support for two candidate genes, one (ATTPS21) involved in volatile production, and the other (SUVH5) involved in epigenetic regulation of gene expression, that may be important in the response to crude oil. The architecture of crude oil response in S. alterniflora is unique from that of the model species A. thaliana, suggesting that xenobiotic response may be highly variable across plant species. In addition, further investigations of regulatory networks may benefit from more information about epigenetic response pathways.


Asunto(s)
Epigénesis Genética/efectos de los fármacos , Hidrocarburos/toxicidad , Contaminación por Petróleo/efectos adversos , Transcriptoma/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , ADN Bacteriano/efectos de los fármacos , ADN Bacteriano/genética , Epigénesis Genética/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Humanos , Hidrocarburos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Poaceae/efectos de los fármacos , Poaceae/genética , Transcriptoma/efectos de los fármacos , Compuestos Orgánicos Volátiles/toxicidad , Xenobióticos/toxicidad
7.
BMC Genomics ; 17: 203, 2016 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-26956152

RESUMEN

BACKGROUND: Asexual reproduction has the potential to enhance deleterious mutation accumulation and to constrain adaptive evolution. One source of mutations that can be especially relevant in recent asexuals is activity of transposable elements (TEs), which may have experienced selection for high transposition rates in sexual ancestor populations. Predictions of genomic divergence under asexual reproduction therefore likely include a large contribution of transposable elements but limited adaptive divergence. For plants empirical insight into genome divergence under asexual reproduction remains limited. Here, we characterize expression divergence between clone members of a single apomictic lineage of the common dandelion (Taraxacum officinale) to contribute to our knowledge of genome evolution under asexuality. RESULTS: Using RNA-Seq, we show that about one third of heritable divergence within the apomictic lineage is driven by TEs and TE-related gene activity. In addition, we identify non-random transcriptional differences in pathways related to acyl-lipid and abscisic acid metabolisms which might reflect functional divergence within the apomictic lineage. We analyze SNPs in the transcriptome to assess genetic divergence between the apomictic clone members and reveal that heritable expression differences between the accessions are not explained simply by genome-wide genetic divergence. CONCLUSION: The present study depicts a first effort towards a more complete understanding of apomictic plant genome evolution. We identify abundant TE activity and ecologically relevant functional genes and pathways affecting heritable within-lineage expression divergence. These findings offer valuable resources for future work looking at epigenetic silencing and Cis-regulation of gene expression with particular emphasis on the effects of TE activity on asexual species' genome.


Asunto(s)
Evolución Molecular , Taraxacum/genética , Transcriptoma , República Checa , Elementos Transponibles de ADN , Regulación de la Expresión Génica de las Plantas , Genética de Población , Alemania , Secuenciación de Nucleótidos de Alto Rendimiento , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , ARN de Planta/genética , Reproducción Asexuada/genética , Análisis de Secuencia de ARN
8.
BMC Genomics ; 17(1): 884, 2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27821059

RESUMEN

BACKGROUND: Transposable elements (TEs) are mobile pieces of genetic information with high mutagenic potential for the host genome. Transposition is often neutral or deleterious but may also generate potentially adaptive genetic variation. This additional source of variation could be especially relevant in non-recombining species reproducing asexually. However, evidence is lacking to determine the relevance of TEs in plant asexual genome evolution and their associated effects. Here, we characterize the repetitive fraction of the genome of the common dandelion, Taraxacum officinale and compare it between five accessions from the same apomictic lineage. The main objective of this study is to evaluate the extent of within-lineage divergence attributed to TE content and activity. We examined the repetitive genomic contribution, diversity, transcription and methylation changes to characterize accession-specific TEs. RESULTS: Using low-coverage genomic sequencing, we report a highly heterogeneous TE compartment in the triploid apomict T. officinale representing up to 38.6 % of the homoploid genome. The repetitive compartment is dominated by LTR retrotransposon families accompanied by few non-LTR retrotransposons and DNA transposons. Up to half of the repeat clusters are biased towards very high read identity, indicating recent and potentially ongoing activity of these TE families. Interestingly, the five accessions are divided into two main clades based on their TE composition. Clade 2 is more dynamic than clade 1 with higher abundance of Gypsy Chromovirus sequences and transposons. Furthermore, a few low-abundant genomic TE clusters exhibit high level of transcription in two of the accessions analysed. Using reduced representation bisulfite sequencing, we detected 18.9 % of loci differentially methylated, of which 25.4 and 40.7 % are annotated as TEs or functional genes, respectively. Additionally, we show clear evidence for accession-specific TE families that are differentially transcribed and differentially methylated within the apomictic lineage, including one Copia Ale II LTR element and a PIF-Harbinger DNA transposon. CONCLUSION: We report here a very young and dynamic repetitive compartment that enhances divergence within one asexual lineage of T. officinale. We speculate that accession-specific TE families that are both transcriptionally and epigenetically variable are more prone to trigger changes in expression on nearby coding sequences. These findings emphasize the potential of TE-induced mutations on functional genes during asexual genome evolution.


Asunto(s)
Elementos Transponibles de ADN , Variación Genética , Genoma de Planta , Genómica , Islas de CpG , Metilación de ADN , Heterogeneidad Genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Secuencias Repetitivas de Ácidos Nucleicos , Transcripción Genética
9.
Front Plant Sci ; 14: 1198909, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37457342

RESUMEN

The Asteraceae is the largest angiosperm family with more than 25,000 species. Individual studies have shown that MADS-box and TCP transcription factors are regulators of the development and symmetry of flowers, contributing to their iconic flower-head (capitulum) and floret. However, a systematic study of MADS-box and TCP genes across the Asteraceae is lacking. We performed a comparative analysis of genome sequences of 33 angiosperm species including our de novo assembly of diploid sexual dandelion (Taraxacum officinale) and 11 other Asteraceae to investigate the lineage-specific evolution of MADS-box and TCP genes in the Asteraceae. We compared the phylogenomic results of MADS-box and TCP genes with their expression in T. officinale floral tissues at different developmental stages to demonstrate the regulation of genes with Asteraceae-specific attributes. Here, we show that MADS-box MIKC c and TCP-CYCLOIDEA (CYC) genes have expanded in the Asteraceae. The phylogenomic analysis identified AGAMOUS-like (AG-like: SEEDSTICK [STK]-like), SEPALATA-like (SEP3-like), and TCP-PROLIFERATING CELL FACTOR (PCF)-like copies with lineage-specific genomic contexts in the Asteraceae, Cichorioideae, or dandelion. Different expression patterns of some of these gene copies suggest functional divergence. We also confirm the presence and revisit the evolutionary history of previously named "Asteraceae-Specific MADS-box genes (AS-MADS)." Specifically, we identify non-Asteraceae homologs, indicating a more ancient origin of this gene clade. Syntenic relationships support that AS-MADS is paralogous to FLOWERING LOCUS C (FLC) as demonstrated by the shared ancient duplication of FLC and SEP3.

10.
J Agric Food Chem ; 70(16): 5245-5261, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35420430

RESUMEN

Glucosinolate (GLS) and phenolic contents in Brassicaceae contribute to biotic and abiotic stress responses. Breeding crop accessions harboring agroecologically relevant metabolic profiles require a characterization of the chemical diversity in Brassica germplasm. This work investigates the diversity of specialized metabolites in 281 accessions of B. napus. First, an LC-HRMS2-based approach allowed the annotation of 32 phenolics and 36 GLSs, revealing 13 branched and linear alkyl-GLSs and 4 isomers of hydroxyphenylalkyl-GLSs, many of which have been rarely reported in Brassica. Then, quantitative UPLC-UV-MS-based profiling was performed in leaves and roots for the whole panel. This revealed striking variations in the content of 1-methylpropyl-GLS (glucocochlearin) and a large variation of tetra- and penta-glucosyl kaempferol derivatives among accessions. It also highlighted two main chemotypes related to sinapoyl-O-hexoside and kaempferol-O-trihexoside contents. By offering an unprecedented overview of the phytochemical diversity in B. napus, this work provides a useful resource for chemical ecology and breeding.


Asunto(s)
Brassica napus , Brassica , Brassica/metabolismo , Brassica napus/metabolismo , Cruzamiento , Glucosinolatos/metabolismo , Quempferoles , Fenoles
11.
Plant Reprod ; 33(1): 43-58, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32080762

RESUMEN

Polyploidy or whole genome duplication is a frequent and recurrent phenomenon in flowering plants that has played a major role in their diversification, adaptation and speciation. The adaptive success of polyploids relates to the different evolutionary fates of duplicated genes. In this study, we explored the impact of the whole genome triplication (WGT) event in the Brassiceae tribe on the genes involved in the self-incompatibility (SI) signalling pathway, a mechanism allowing recognition and rejection of self-pollen in hermaphrodite plants. By taking advantage of the knowledge acquired on this pathway as well as of several reference genomes in Brassicaceae species, we determined copy number of the different genes involved in this pathway and investigated their structural and functional evolutionary dynamics. We could infer that whereas most genes involved in the SI signalling returned to single copies after the WGT event (i.e. ARC1, JDP1, THL1, THL2, Exo70A01) in diploid Brassica species, a few were retained in duplicated (GLO1 and PLDα) or triplicated copies (MLPK). We also carefully studied the gene structure of these latter duplicated genes (including the conservation of functional domains and active sites) and tested their transcription in the stigma to identify which copies seem to be involved in the SI signalling pathway. By taking advantage of these analyses, we then explored the putative origin of a contrasted SI phenotype between two Brassica rapa varieties that have been fully sequenced and shared the same S-allele (S60).


Asunto(s)
Evolución Biológica , Brassica , Genoma de Planta , Transducción de Señal , Brassica/genética , Genoma de Planta/genética , Polen , Transducción de Señal/genética
12.
Front Plant Sci ; 11: 577536, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33281844

RESUMEN

Traditionally, reference genomes in crop species rely on the assembly of one accession, thus occulting most of intraspecific diversity. However, rearrangements, gene duplications, and transposable element content may have a large impact on the genomic structure, which could generate new phenotypic traits. Comparing two Brassica rapa genomes recently sequenced and assembled using long-read technology and optical mapping, we investigated structural variants and repetitive content between the two accessions and genome size variation among a core collection. We explored the structural consequences of the presence of large repeated sequences in B. rapa 'Z1' genome vs. the B. rapa 'Chiifu' genome, using comparative genomics and cytogenetic approaches. First, we showed that large genomic variants on chromosomes A05, A06, A09, and A10 are due to large insertions and inversions when comparing B. rapa 'Z1' and B. rapa 'Chiifu' at the origin of important length differences in some chromosomes. For instance, lengths of 'Z1' and 'Chiifu' A06 chromosomes were estimated in silico to be 55 and 29 Mb, respectively. To validate these observations, we compared using fluorescent in situ hybridization (FISH) the two A06 chromosomes present in an F1 hybrid produced by crossing these two varieties. We confirmed a length difference of 17.6% between the A06 chromosomes of 'Z1' compared to 'Chiifu.' Alternatively, using a copy number variation approach, we were able to quantify the presence of a higher number of rDNA and gypsy elements in 'Z1' genome compared to 'Chiifu' on different chromosomes including A06. Using flow cytometry, the total genome size of 12 Brassica accessions corresponding to a B. rapa available core collection was estimated and revealed a genome size variation of up to 16% between these accessions as well as some shared inversions. This study revealed the contribution of long-read sequencing of new accessions belonging to different cultigroups of B. rapa and highlighted the potential impact of differential insertion of repeat elements and inversions of large genomic regions in genome size intraspecific variability.

13.
Genome Biol Evol ; 8(9): 3030-3044, 2016 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-27614235

RESUMEN

In this study, we report the assembly and annotation of five reference transcriptomes for the European hexaploid Spartina species (S. maritima, S. alterniflora and their homoploid hybrids S. x townsendii and S. x neyrautii) and the allododecaploid invasive species S. anglica These transcriptomes were constructed from various leaf and root cDNA libraries that were sequenced using both Roche-454 and Illumina technologies. Considering the high ploidy levels of the Spartina genomes under study, and considering the absence of diploid reference genome and the need of an appropriate analytical strategy, we developed generic bioinformatics tools to (1) detect different haplotypes of each gene within each species and (2) assign a parental origin to haplotypes detected in the hexaploid hybrids and the neo-allopolyploid. The approach described here allows the detection of putative homeologs from sets of short reads. Synonymous substitution rate (KS) comparisons between haplotypes from the hexaploid species revealed the presence of one KS peak (likely resulting from the tetraploid duplication event). The procedure developed in this study can be applied for future differential gene expression or genomics experiments to study the fate of duplicated genes in the invasive allododecaploid S. anglica.


Asunto(s)
Duplicación de Gen , Técnicas de Genotipaje/normas , Poaceae/genética , Poliploidía , Transcriptoma , Biblioteca de Genes , Técnicas de Genotipaje/métodos , Haplotipos , Polimorfismo de Nucleótido Simple , Estándares de Referencia
14.
G3 (Bethesda) ; 6(1): 29-40, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26530424

RESUMEN

Gene and whole-genome duplications are widespread in plant nuclear genomes, resulting in sequence heterogeneity. Identification of duplicated genes may be particularly challenging in highly redundant genomes, especially when there are no diploid parents as a reference. Here, we developed a pipeline to detect the different copies in the ribosomal RNA gene family in the hexaploid grass Spartina maritima from next-generation sequencing (Roche-454) reads. The heterogeneity of the different domains of the highly repeated 45S unit was explored by identifying single nucleotide polymorphisms (SNPs) and assembling reads based on shared polymorphisms. SNPs were validated using comparisons with Illumina sequence data sets and by cloning and Sanger (re)sequencing. Using this approach, 29 validated polymorphisms and 11 validated haplotypes were reported (out of 34 and 20, respectively, that were initially predicted by our program). The rDNA domains of S. maritima have similar lengths as those found in other Poaceae, apart from the 5'-ETS, which is approximately two-times longer in S. maritima. Sequence homogeneity was encountered in coding regions and both internal transcribed spacers (ITS), whereas high intragenomic variability was detected in the intergenic spacer (IGS) and the external transcribed spacer (ETS). Molecular cytogenetic analysis by fluorescent in situ hybridization (FISH) revealed the presence of one pair of 45S rDNA signals on the chromosomes of S. maritima instead of three expected pairs for a hexaploid genome, indicating loss of duplicated homeologous loci through the diploidization process. The procedure developed here may be used at any ploidy level and using different sequencing technologies.


Asunto(s)
Haplotipos , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Poaceae/clasificación , Poaceae/genética , Poliploidía , Biología Computacional/métodos , ADN Ribosómico , Genes de Plantas , Genoma de Planta , Genómica/métodos , Hibridación Fluorescente in Situ , Anotación de Secuencia Molecular , Sistemas de Lectura Abierta , Polimorfismo de Nucleótido Simple , ARN Ribosómico/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA