Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Biochemistry ; 63(9): 1067-1074, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38619104

RESUMEN

NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.


Asunto(s)
Peptidilprolil Isomerasa de Interacción con NIMA , Proteína Homeótica Nanog , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA/química , Peptidilprolil Isomerasa de Interacción con NIMA/genética , Proteína Homeótica Nanog/metabolismo , Proteína Homeótica Nanog/genética , Fosforilación , Humanos , Estabilidad Proteica , Unión Proteica , Estereoisomerismo
2.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999934

RESUMEN

Biomolecular condensates (BMCs) exhibit physiological and pathological relevance in biological systems. Both liquid and solid condensates play significant roles in the spatiotemporal regulation and organization of macromolecules and their biological activities. Some pathological solid condensates, such as Lewy Bodies and other fibrillar aggregates, have been hypothesized to originate from liquid condensates. With the prevalence of BMCs having functional and dysfunctional roles, it is imperative to understand the mechanism of biomolecular condensate formation and initiation. Using the low-complexity domain (LCD) of heterogenous ribonuclear protein A1 (hnRNPA1) as our model, we monitored initial assembly events using dynamic light scattering (DLS) while modulating pH and salt conditions to perturb macromolecule and condensate properties. We observed the formation of nanometer-sized BMCs (nano-condensates) distinct from protein monomers and micron-sized condensates. We also observed that conditions that solubilize micron-sized protein condensates do not solubilize nano-condensates, indicating that the balance of forces that stabilize nano-condensates and micron-sized condensates are distinct. These findings provide insight into the forces that drive protein phase separation and potential nucleation structures of macromolecular condensation.


Asunto(s)
Dispersión Dinámica de Luz , Ribonucleoproteína Nuclear Heterogénea A1 , Humanos , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/química , Dominios Proteicos , Condensados Biomoleculares/química , Condensados Biomoleculares/metabolismo , Concentración de Iones de Hidrógeno
3.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36834792

RESUMEN

Cellular deposition of protein aggregates, one of the hallmarks of neurodegeneration, disrupts cellular functions and leads to neuronal death. Mutations, posttranslational modifications, and truncations are common molecular underpinnings in the formation of aberrant protein conformations that seed aggregation. The major proteins involved in neurodegeneration include amyloid beta (Aß) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, and TAR DNA-binding protein (TDP-43) in amyotrophic lateral sclerosis (ALS). These proteins are described as intrinsically disordered and possess enhanced ability to partition into biomolecular condensates. In this review, we discuss the role of protein misfolding and aggregation in neurodegenerative diseases, specifically highlighting implications of changes to the primary/secondary (mutations, posttranslational modifications, and truncations) and the quaternary/supramolecular (oligomerization and condensation) structural landscapes for the four aforementioned proteins. Understanding these aggregation mechanisms provides insights into neurodegenerative diseases and their common underlying molecular pathology.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Proteínas Intrínsecamente Desordenadas , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/química , Esclerosis Amiotrófica Lateral/metabolismo , Enfermedad de Parkinson/metabolismo , Proteínas tau
4.
Semin Cell Dev Biol ; 99: 78-85, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-29753880

RESUMEN

Intrinsically disordered proteins as computationally predicted account for ∼1/3 of eukaryotic proteomes, are involved in a plethora of biological functions, and have been linked to several human diseases as a result of their dysfunctions. Here, we present a picture wherein an energetic continuum describes protein structural and conformational propensities, ranging from the hyperstable folded proteins on one end to the hyperdestabilized and sometimes functionally disordered proteins on the other. We distinguish between proteins that are folding-competent but disordered because of marginal stability and those that are disordered due mainly to the absence of folding code-completing structure-determining interactions, and postulate that disordered proteins that are unstructured by way of partial population of protein denatured states represent a sizable proportion of the proteome.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/química , Ligandos , Conformación Proteica , Pliegue de Proteína , Proteoma/química , Proteoma/metabolismo
5.
Nucleic Acids Res ; 48(5): 2621-2642, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-31863590

RESUMEN

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely 'hijacked' by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA-protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteostasis/genética , ARN Largo no Codificante/genética , Elementos de Nucleótido Esparcido Corto/genética , Apoptosis , Línea Celular , Citoplasma/metabolismo , Daño del ADN , Estrés del Retículo Endoplásmico , Activación Enzimática , Dosificación de Gen , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Mitosis , Modelos Biológicos , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Eliminación de Secuencia/genética , eIF-2 Quinasa
6.
Nat Chem Biol ; 20(4): 399-400, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38326412
7.
Proc Natl Acad Sci U S A ; 115(23): 5962-5967, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29784777

RESUMEN

The phosphoenolpyruvate-dependent phosphotransferase system (PTS) transports sugar into bacteria and phosphorylates the sugar for metabolic consumption. The PTS is important for the survival of bacteria and thus a potential target for antibiotics, but its mechanism of sugar uptake and phosphorylation remains unclear. The PTS is composed of multiple proteins, and the membrane-embedded Enzyme IIC (EIIC) component transports sugars across the membrane. Crystal structures of two members of the glucose superfamily of EIICs, bcChbC and bcMalT, were solved in the inward-facing and outward-facing conformations, and the structures suggest that sugar translocation could be achieved by movement of a structured domain that contains the sugar-binding site. However, different conformations have not been captured on the same transporter to allow precise description of the conformational changes. Here we present a crystal structure of bcMalT trapped in an inward-facing conformation by a mercury ion that bridges two strategically placed cysteine residues. The structure allows direct comparison of the outward- and inward-facing conformations and reveals a large rigid-body motion of the sugar-binding domain and other conformational changes that accompany the rigid-body motion. All-atom molecular dynamics simulations show that the inward-facing structure is stable with or without the cross-linking. The conformational changes were further validated by single-molecule Föster resonance energy transfer (smFRET). Combined, these results establish the elevator-type mechanism of transport in the glucose superfamily of EIIC transporters.


Asunto(s)
Proteínas Bacterianas , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato , Bacillus cereus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Transporte Biológico , Cisteína/química , Cisteína/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Simulación de Dinámica Molecular , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/ultraestructura , Fosforilación , Conformación Proteica
8.
J Virol ; 93(21)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31375595

RESUMEN

Influenza A virus (IAV) nonstructural protein 1 (NS1), a potent antagonist of the host immune response, is capable of interacting with RNA and a wide range of cellular proteins. NS1 consists of an RNA-binding domain (RBD) and an effector domain (ED) separated by a flexible linker region (LR). H5N1-NS1 has a characteristic 5-residue deletion in the LR, with either G (minor group) or E (major group) at the 71st position, and non-H5N1-NS1 contains E71 with an intact linker. Based on the orientation of the ED with respect to the RBD, previous crystallographic studies have shown that minor group H5N1-NS1(G71), a non-H5N1-NS1 [H6N6-NS1(E71)], and the LR deletion mutant H6N6-NS1(Δ80-84/E71) mimicking the major group H5N1-NS1 exhibit "open," "semiopen," and "closed" conformations, respectively, suggesting that NS1 exhibits a strain-dependent conformational preference. Here we report the first crystal structure of a naturally occurring H5N1-NS1(E71) and show that it adopts an open conformation similar to that of the minor group of H5N1-NS1 [H5N1-NS1(G71)]. We also show that H6N6-NS1(Δ80-84/E71) under a different crystallization condition and H6N6-NS1(Δ80-84/G71) also exhibit open conformations, suggesting that NS1 can adopt an open conformation irrespective of E or G at the 71st position. Our single-molecule fluorescence resonance energy transfer (FRET) analysis to investigate the conformational preference of NS1 in solution showed that all NS1 constructs predominantly exist in an open conformation. Further, our coimmunoprecipitation and binding studies showed that they all bind to cellular factors with similar affinities. Taken together, our studies suggest that NS1 exhibits strain-independent structural plasticity that allows it to interact with a wide variety of cellular ligands during viral infection.IMPORTANCE IAV is responsible for several pandemics over the last century and continues to infect millions annually. The frequent rise in drug-resistant strains necessitates exploring novel targets for developing antiviral drugs that can reduce the global burden of influenza infection. Because of its critical role in the replication and pathogenesis of IAV, nonstructural protein 1 (NS1) is a potential target for developing antivirals. Previous studies suggested that NS1 adopts strain-dependent "open," "semiopen," and "closed" conformations. Here we show, based on three crystal structures, that NS1 irrespective of strain differences can adopt an open conformation. We further show that NS1 from different strains primarily exists in an open conformation in solution and binds to cellular proteins with a similar affinity. Together, our findings suggest that conformational polymorphism facilitated by a flexible linker is intrinsic to NS1, and this may be the underlying factor allowing NS1 to bind several cellular factors during IAV replication.


Asunto(s)
Virus de la Influenza A/química , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Transferencia Resonante de Energía de Fluorescencia , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Ligandos , Mutación , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
9.
Nature ; 498(7454): 390-4, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23783631

RESUMEN

Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.


Asunto(s)
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Animales , Anisotropía , Proteína de Unión a CREB/química , Proteína de Unión a CREB/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Ratones , Modelos Moleculares , Unión Proteica , Pliegue de Proteína , Estructura Terciaria de Proteína , Proteína de Retinoblastoma/química , Proteína de Retinoblastoma/metabolismo , Termodinámica , Factores de Transcripción p300-CBP/química
10.
Biochemistry ; 57(50): 6822-6826, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30520303

RESUMEN

Ribonucleoprotein (RNP) condensations through liquid-liquid phase separation play vital roles in the dynamic formation-dissolution of stress granules (SGs). These condensations are, however, usually assumed to be linked to pathologic fibrillation. Here, we show that physiologic condensation and pathologic fibrillation of RNPs are independent processes that can be unlinked with the chemical chaperone trimethylamine N-oxide (TMAO). Using the low-complexity disordered domain of the archetypical SG-protein TDP-43 as a model system, we show that TMAO enhances RNP liquid condensation yet inhibits protein fibrillation. Our results demonstrate effective decoupling of physiologic condensation from pathologic aggregation and suggest that selective targeting of protein fibrillation (without altering condensation) can be employed as a therapeutic strategy for RNP aggregation-associated degenerative disorders.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Extracción Líquido-Líquido , Metilaminas/química , Metilaminas/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Mutación , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo , Respuesta de Proteína Desplegada
11.
Eur Biophys J ; 47(1): 89-94, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29080139

RESUMEN

Protein thermodynamic stability is intricately linked to cellular function, and altered stability can lead to dysfunction and disease. The linear extrapolation model (LEM) is commonly used to obtain protein unfolding free energies ([Formula: see text]) by extrapolation of solvent denaturation data to zero denaturant concentration. However, for some proteins, different denaturants result in non-coincident LEM-derived [Formula: see text] values, raising questions about the inherent assumption that the obtained [Formula: see text] values are intrinsic to the protein. Here, we used single-molecule FRET measurements to better understand such discrepancies by directly probing changes in the dimensions of the protein G B1 domain (GB1), a well-studied protein folding model, upon urea and guanidine hydrochloride denaturation. A comparison of the results for the two denaturants suggests denaturant-specific structural energetics in the GB1 denatured ensemble, revealing a role of the denatured state in the variable thermodynamic behavior of proteins.


Asunto(s)
Proteínas Bacterianas/química , Desnaturalización Proteica/efectos de los fármacos , Transferencia Resonante de Energía de Fluorescencia , Guanidina/farmacología , Dominios Proteicos , Termodinámica , Urea/farmacología
12.
Int J Mol Sci ; 19(12)2018 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-30518054

RESUMEN

Sox2 is a pioneer transcription factor that initiates cell fate reprogramming through locus-specific differential regulation. Mechanistically, it was assumed that Sox2 achieves its regulatory diversity via heterodimerization with partner transcription factors. Here, utilizing single-molecule fluorescence spectroscopy, we show that Sox2 alone can modulate DNA structural landscape in a dosage-dependent manner. We propose that such stoichiometric tuning of regulatory DNAs is crucial to the diverse biological functions of Sox2, and represents a generic mechanism of conferring functional plasticity and multiplicity to transcription factors.


Asunto(s)
ADN/química , Dominios HMG-Box , Conformación de Ácido Nucleico , Factores de Transcripción SOXB1/química , Imagen Individual de Molécula , Transferencia Resonante de Energía de Fluorescencia , Modelos Moleculares , Regiones Promotoras Genéticas/genética , Unión Proteica
13.
Angew Chem Int Ed Engl ; 56(41): 12590-12593, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28833982

RESUMEN

Transactivation response element (TAR) DNA-binding protein 43 (TDP-43) misfolding is implicated in several neurodegenerative diseases characterized by aggregated protein inclusions. Misfolding is believed to be mediated by both the N- and C-terminus of TDP-43; however, the mechanistic basis of the contribution of individual domains in the process remained elusive. Here, using single-molecule fluorescence and ensemble biophysical techniques, and a wide range of pH and temperature conditions, we show that TDP-43NTD is thermodynamically stable, well-folded and undergoes reversible oligomerization. We propose that, in full-length TDP-43, association between folded N-terminal domains enhances the propensity of the intrinsically unfolded C-terminal domains to drive pathological aggregation.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Proteínas de Unión al ADN/química , Pliegue de Proteína , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Agregación Patológica de Proteínas/patología , Dominios Proteicos , Multimerización de Proteína , Termodinámica
14.
Chemphyschem ; 16(1): 90-4, 2015 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-25345588

RESUMEN

Intrinsically disordered proteins (IDPs) are involved in diverse cellular functions. Many IDPs can interact with multiple binding partners, resulting in their folding into alternative ligand-specific functional structures. For such multi-structural IDPs, a key question is whether these multiple structures are fully encoded in the protein sequence, as is the case in many globular proteins. To answer this question, here we employed a combination of single-molecule and ensemble techniques to compare ligand-induced and osmolyte-forced folding of α-synuclein. Our results reveal context-dependent modulation of the protein's folding landscape, suggesting that the codes for the protein's native folds are partially encoded in its primary sequence, and are completed only upon interaction with binding partners. Our findings suggest a critical role for cellular interactions in expanding the repertoire of folds and functions available to disordered proteins.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Pliegue de Proteína , alfa-Sinucleína/química , Ligandos
15.
Proc Natl Acad Sci U S A ; 109(44): 17826-31, 2012 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22826265

RESUMEN

Protein structure and function depend on a close interplay between intrinsic folding energy landscapes and the chemistry of the protein environment. Osmolytes are small-molecule compounds that can act as chemical chaperones by altering the environment in a cellular context. Despite their importance, detailed studies on the role of these chemical chaperones in modulating structure and dimensions of intrinsically disordered proteins have been limited. Here, we used single-molecule Förster resonance energy transfer to test the counteraction hypothesis of counterbalancing effects between the protecting osmolyte trimethylamine-N-oxide (TMAO) and denaturing osmolyte urea for the case of α-synuclein, a Parkinson's disease-linked protein whose monomer exhibits significant disorder. The single-molecule experiments, which avoid complications from protein aggregation, do not exhibit clear solvent-induced cooperative protein transitions for these osmolytes, unlike results from previous studies on globular proteins. Our data demonstrate the ability of TMAO and urea to shift α-synuclein structures towards either more compact or expanded average dimensions. Strikingly, the experiments directly reveal that a 21 [urea][TMAO] ratio has a net neutral effect on the protein's dimensions, a result that holds regardless of the absolute osmolyte concentrations. Our findings shed light on a surprisingly simple aspect of the interplay between urea and TMAO on α-synuclein in the context of intrinsically disordered proteins, with potential implications for the biological roles of such chemical chaperones. The results also highlight the strengths of single-molecule experiments in directly probing the chemical physics of protein structure and disorder in more chemically complex environments.


Asunto(s)
Chaperonas Moleculares/química , alfa-Sinucleína/química , Transferencia Resonante de Energía de Fluorescencia , Metilaminas/química , Conformación Proteica , Urea/química
16.
Nat Methods ; 8(3): 239-41, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21297620

RESUMEN

We combined rapid microfluidic mixing with single-molecule fluorescence resonance energy transfer to study the folding kinetics of the intrinsically disordered human protein α-synuclein. The time-resolution of 0.2 ms revealed initial collapse of the unfolded protein induced by binding with lipid mimics and subsequent rapid formation of transient structures in the encounter complex. The method also enabled analysis of rapid dissociation and unfolding of weakly bound complexes triggered by massive dilution.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Técnicas Analíticas Microfluídicas/métodos , alfa-Sinucleína/química , Humanos , Cinética , Unión Proteica , Pliegue de Proteína
17.
Proc Natl Acad Sci U S A ; 107(45): 19290-5, 2010 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-20962272

RESUMEN

The transcriptional activity of p53 is regulated by a cascade of posttranslational modifications. Although acetylation of p53 by CREB-binding protein (CBP)/p300 is known to be indispensable for p53 activation, the role of phosphorylation, and in particular multisite phosphorylation, in activation of CBP/p300-dependent p53 transcriptional pathways remains unclear. We investigated the role of single site and multiple site phosphorylation of the p53 transactivation domain in mediating its interaction with CBP and with the ubiquitin ligase HDM2. Phosphorylation at Thr18 functions as an on/off switch to regulate binding to the N-terminal domain of HDM2. In contrast, binding to CBP is modulated by the extent of p53 phosphorylation; addition of successive phosphoryl groups enhances the affinity for the TAZ1, TAZ2, and KIX domains of CBP in an additive manner. Activation of p53-dependent transcriptional pathways requires that p53 compete with numerous cellular transcription factors for binding to limiting amounts of CBP/p300. Multisite phosphorylation represents a mechanism for a graded p53 response, with each successive phosphorylation event resulting in increasingly efficient recruitment of CBP/p300 to p53-regulated transcriptional programs, in the face of competition from cellular transcription factors. Multisite phosphorylation thus acts as a rheostat to enhance binding to CBP/p300 and provides a plausible mechanistic explanation for the gradually increasing p53 response observed following prolonged or severe genotoxic stress.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Daño del ADN , Proteína p300 Asociada a E1A/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional
18.
Methods Mol Biol ; 2563: 135-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36227471

RESUMEN

Biomolecular condensates of ribonucleoproteins (RNPs) such as the transactivation response element (TAR) DNA-binding protein 43 (TDP-43) arise from liquid-liquid phase separation (LLPS) and play vital roles in various biological processes including the formation-dissolution of stress granules (SGs). These condensates are thought to be directly linked to neurodegenerative diseases, providing a depot of aggregation-prone proteins and serving as a cauldron of protein aggregation and fibrillation. Despite recent research efforts, biochemical processes and rearrangements within biomolecular condensates that trigger subsequent protein misfolding and aggregation remain to be elucidated. Fluorescence lifetime imaging microscopy (FLIM) provides a minimally intrusive high-sensitivity and high-resolution imaging method to monitor in-droplet spatiotemporal changes that initiate and lead to protein aggregation. In this chapter, we describe a FLIM application for characterizing chemical chaperone-assisted decoupling of TDP-43 liquid-liquid phase separation and aggregation/fibrillation, highlighting potential therapeutic strategies to combat pathological RNP-associated aggregates without compromising cellular stress responses.


Asunto(s)
Condensados Biomoleculares , Agregado de Proteínas , Proteínas de Unión al ADN/metabolismo , Microscopía Fluorescente , Ribonucleoproteínas/metabolismo
19.
Biochim Biophys Acta ; 1814(8): 1021-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21303706

RESUMEN

The protein folding reaction carries great significance for cellular function and hence continues to be the research focus of a large interdisciplinary protein science community. Single-molecule methods are providing new and powerful tools for dissecting the mechanisms of this complex process by virtue of their ability to provide views of protein structure and dynamics without associated ensemble averaging. This review briefly introduces common FRET and force methods, and then explores several areas of protein folding where single-molecule experiments have yielded insights. These include exciting new information about folding landscapes, dynamics, intermediates, unfolded ensembles, intrinsically disordered proteins, assisted folding and biomechanical unfolding. Emerging and future work is expected to include advances in single-molecule techniques aimed at such investigations, and increasing work on more complex systems from both the physics and biology standpoints, including folding and dynamics of systems of interacting proteins and of proteins in cells and organisms. This article is part of a Special Issue entitled: Protein Dynamics: Experimental and Computational Approaches.


Asunto(s)
Pliegue de Proteína , Proteínas/química , Transferencia Resonante de Energía de Fluorescencia , Ligandos , Microscopía de Fuerza Atómica , Chaperonas Moleculares/química , Unión Proteica
20.
Proc Natl Acad Sci U S A ; 106(14): 5645-50, 2009 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-19293380

RESUMEN

We studied the coupled binding and folding of alpha-synuclein, an intrinsically disordered protein linked with Parkinson's disease. Using single-molecule fluorescence resonance energy transfer and correlation methods, we directly probed protein membrane association, structural distributions, and dynamics. Results revealed an intricate energy landscape on which binding of alpha-synuclein to amphiphilic small molecules or membrane-like partners modulates conformational transitions between a natively unfolded state and multiple alpha-helical structures. Alpha-synuclein conformation is not continuously tunable, but instead partitions into 2 main classes of folding landscape structural minima. The switch between a broken and an extended helical structure can be triggered by changing the concentration of binding partners or by varying the curvature of the binding surfaces presented by micelles or bilayers composed of the lipid-mimetic SDS. Single-molecule experiments with lipid vesicles of various composition showed that a low fraction of negatively charged lipids, similar to that found in biological membranes, was sufficient to drive alpha-synuclein binding and folding, resulting here in the induction of an extended helical structure. Overall, our results imply that the 2 folded structures are preencoded by the alpha-synuclein amino acid sequence, and are tunable by small-molecule supramolecular states and differing membrane properties, suggesting novel control elements for biological and amyloid regulation of alpha-synuclein.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , alfa-Sinucleína/química , Membrana Dobles de Lípidos , Micelas , Unión Proteica , Conformación Proteica , Pliegue de Proteína , Dodecil Sulfato de Sodio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA