Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(8): 236, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524863

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an adult devastating neurodegenerative disease characterized by the loss of upper and lower motor neurons (MNs), resulting in progressive paralysis and death. Genetic animal models of ALS have highlighted dysregulation of synaptic structure and function as a pathogenic feature of ALS-onset and progression. Alternative pre-mRNA splicing (AS), which allows expansion of the coding power of genomes by generating multiple transcript isoforms from each gene, is widely associated with synapse formation and functional specification. Deciphering the link between aberrant splicing regulation and pathogenic features of ALS could pave the ground for novel therapeutic opportunities. Herein, we found that neural progenitor cells (NPCs) derived from the hSOD1G93A mouse model of ALS displayed increased proliferation and propensity to differentiate into neurons. In parallel, hSOD1G93A NPCs showed impaired splicing patterns in synaptic genes, which could contribute to the observed phenotype. Remarkably, master splicing regulators of the switch from stemness to neural differentiation are de-regulated in hSOD1G93A NPCs, thus impacting the differentiation program. Our data indicate that hSOD1G93A mutation impacts on neurogenesis by increasing the NPC pool in the developing mouse cortex and affecting their intrinsic properties, through the establishment of a specific splicing program.

2.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38542223

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is considered the prototype of motor neuron disease, characterized by motor neuron loss and muscle waste. A well-established pathogenic hallmark of ALS is mitochondrial failure, leading to bioenergetic deficits. So far, pharmacological interventions for the disease have proven ineffective. Trimetazidine (TMZ) is described as a metabolic modulator acting on different cellular pathways. Its efficacy in enhancing muscular and cardiovascular performance has been widely described, although its molecular target remains elusive. We addressed the molecular mechanisms underlying TMZ action on neuronal experimental paradigms. To this aim, we treated murine SOD1G93A-model-derived primary cultures of cortical and spinal enriched motor neurons, as well as a murine motor-neuron-like cell line overexpressing SOD1G93A, with TMZ. We first characterized the bioenergetic profile of the cell cultures, demonstrating significant mitochondrial dysfunction that is reversed by acute TMZ treatments. We then investigated the effect of TMZ in promoting autophagy processes and its impact on mitochondrial morphology. Finally, we demonstrated the effectiveness of TMZ in terms of the mitochondrial functionality of ALS-rpatient-derived peripheral blood mononuclear cells (PBMCs). In summary, our results emphasize the concept that targeting mitochondrial dysfunction may represent an effective therapeutic strategy for ALS. The findings demonstrate that TMZ enhances mitochondrial performance in motor neuron cells by activating autophagy processes, particularly mitophagy. Although further investigations are needed to elucidate the precise molecular pathways involved, these results hold critical implications for the development of more effective and specific derivatives of TMZ for ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Mitocondriales , Trimetazidina , Ratones , Animales , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/metabolismo , Trimetazidina/farmacología , Trimetazidina/uso terapéutico , Ratones Transgénicos , Leucocitos Mononucleares/metabolismo , Superóxido Dismutasa/metabolismo , Autofagia , Modelos Animales de Enfermedad
3.
J Integr Neurosci ; 21(6): 165, 2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36424753

RESUMEN

BACKGROUND: Monoamine oxidase type B inhibitors (iMAO-Bs) are a class of largely-used antiparkinsonian agents that, based on experimental evidence, are supposed to exert different degrees of neuroprotection in Parkinson's disease (PD). However, clinical proofs on this regard are very scarce. Since cerebrospinal fluid (CSF) reflects pathological changes occurring at brain level, we examined the neurodegeneration-related CSF biomarkers profile of PD patients under chronic treatment with different iMAO-Bs to identify biochemical signatures suggestive for differential neurobiological effects. METHODS: Thirty-five PD patients under chronic treatment with different iMAO-Bs in add-on to levodopa were enrolled and grouped in rasagiline (n = 13), selegiline (n = 9), safinamide (n = 13). Respective standard clinical scores for motor and non-motor disturbances, together with CSF biomarkers of neurodegeneration levels (amyloid- ß -42, amyloid- ß -40, total and 181-phosphorylated tau, and lactate) were collected and compared among the three iMAO-B groups. RESULTS: No significant clinical differences emerged among the iMAO-B groups. CSF levels of tau proteins and lactate were instead different, resulting higher in patients under selegiline than in those under rasagiline and safinamide. CONCLUSIONS: Although preliminary and limited, this study indicates that patients under different iMAO-Bs may present distinct profiles of CSF neurodegeneration-related biomarkers, probably because of the differential neurobiological effects of the drugs. Larger studies are now needed to confirm and extend these initial observations.


Asunto(s)
Inhibidores de la Monoaminooxidasa , Enfermedad de Parkinson , Humanos , Biomarcadores , Lactatos , Enfermedad de Parkinson/tratamiento farmacológico , Selegilina/uso terapéutico , Inhibidores de la Monoaminooxidasa/uso terapéutico
4.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-36142777

RESUMEN

Mitochondria are central in the pathogenesis of Parkinson's disease (PD), as they are involved in oxidative stress, synaptopathy, and other immunometabolic pathways. Accordingly, they are emerging as a potential neuroprotection target, although further human-based evidence is needed for therapeutic advancements. This study aims to shape the pattern of mitochondrial respiration in the blood leukocytes of PD patients in relation to both clinical features and the profile of cerebrospinal fluid (CSF) biomarkers of neurodegeneration. Mitochondrial respirometry on the peripheral blood mononucleate cells (PBMCs) of 16 PD patients and 14 controls was conducted using Seahorse Bioscience technology. Bioenergetic parameters were correlated either with standard clinical scores for motor and non-motor disturbances or with CSF levels of α-synuclein, amyloid-ß peptides, and tau proteins. In PD, PBMC mitochondrial basal respiration was normal; maximal and spare respiratory capacities were both increased; and ATP production was higher, although not significantly. Maximal and spare respiratory capacity was directly correlated with disease duration, MDS-UPDRS part III and Hoehn and Yahr motor scores; spare respiratory capacity was correlated with the CSF amyloid-ß-42 to amyloid-ß-42/40 ratio. We provided preliminary evidence showing that mitochondrial respiratory activity increases in the PBMCs of PD patients, probably following the compensatory adaptations to disease progression, in contrast to the bases of the neuropathological substrate.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Adenosina Trifosfato , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores , Humanos , Leucocitos Mononucleares/patología , Mitocondrias/patología , Enfermedad de Parkinson/patología , Fragmentos de Péptidos/líquido cefalorraquídeo , Respiración , alfa-Sinucleína/líquido cefalorraquídeo , Proteínas tau/líquido cefalorraquídeo
5.
Int J Mol Sci ; 22(11)2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34199513

RESUMEN

Intrinsic disorder is a natural feature of polypeptide chains, resulting in the lack of a defined three-dimensional structure. Conformational changes in intrinsically disordered regions of a protein lead to unstable ß-sheet enriched intermediates, which are stabilized by intermolecular interactions with other ß-sheet enriched molecules, producing stable proteinaceous aggregates. Upon misfolding, several pathways may be undertaken depending on the composition of the amino acidic string and the surrounding environment, leading to different structures. Accumulating evidence is suggesting that the conformational state of a protein may initiate signalling pathways involved both in pathology and physiology. In this review, we will summarize the heterogeneity of structures that are produced from intrinsically disordered protein domains and highlight the routes that lead to the formation of physiological liquid droplets as well as pathogenic aggregates. The most common proteins found in aggregates in neurodegenerative diseases and their structural variability will be addressed. We will further evaluate the clinical relevance and future applications of the study of the structural heterogeneity of protein aggregates, which may aid the understanding of the phenotypic diversity observed in neurodegenerative disorders.


Asunto(s)
Enfermedades Neurodegenerativas/genética , Agregado de Proteínas/genética , Agregación Patológica de Proteínas/genética , Conformación Proteica en Lámina beta , Amiloide/genética , Amiloide/ultraestructura , Humanos , Proteínas Intrínsecamente Desordenadas , Enfermedades Neurodegenerativas/patología , alfa-Sinucleína/genética , alfa-Sinucleína/ultraestructura , Proteínas tau/genética , Proteínas tau/ultraestructura
6.
J Neurochem ; 152(4): 468-481, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31602645

RESUMEN

Prion protein (PrPC ) localizes stably in lipid rafts microdomains and is able to recruit downstream signal transduction pathways by the interaction with promiscuous partners. Other proteins have the ability to occasionally be recruited to these specialized membrane areas, within multimolecular complexes. Among these, we highlight the presence of the low-density lipoprotein receptor-related protein 1 (LRP1), which was found localized transiently in lipid rafts, suggesting a different function of this receptor that through lipid raft becomes able to activate a signal transduction pathway triggered by specific ligands, including Tissue plasminogen activator (tPA). Since it has been reported that PrPC participates in the tPA-mediated plasminogen activation, in this study, we describe the role of lipid rafts in the recruitment and activation of downstream signal transduction pathways mediated by the interaction among tPA, PrPC and LRP1 in human neuroblastoma SK-N-BE2 cell line. Co-immunoprecipitation analysis reveals a consistent association between PrPC and GM1, as well as between LRP1 and GM1, indicating the existence of a glycosphingolipid-enriched multimolecular complex. In our cell model, knocking-down PrPC by siRNA impairs ERK phosphorylation induced by tPA. Moreover the alteration of the lipidic milieu of lipid rafts, perturbing the physical/functional interaction between PrPC and LRP1, inhibits this response. We show that LRP1 and PrPC , following tPA stimulation, may function as a system associated with lipid rafts, involved in receptor-mediated neuritogenic pathway. We suggest this as a multimolecular signaling complex, whose activity depends strictly on the integrity of lipid raft and is involved in the neuritogenic signaling.


Asunto(s)
Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Microdominios de Membrana/metabolismo , Neuronas/metabolismo , Proteínas PrPC/metabolismo , Transducción de Señal/fisiología , Activador de Tejido Plasminógeno/metabolismo , Línea Celular Tumoral , Humanos
7.
Mol Cell Neurosci ; 88: 167-176, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29378245

RESUMEN

Since stressing conditions induce a relocalization of endogenous human neuroglobin (NGB) to mitochondria, this research is aimed to evaluate the protective role of NGB overexpression against neurotoxic stimuli, through mitochondrial lipid raft-associated complexes. To this purpose, we built a neuronal model of oxidative stress by the use of human dopaminergic neuroblastoma cells, SK-N-BE2, stably overexpressing NGB by transfection and treated with 1-methyl-4-phenylpyridinium ion (MPP+). We preliminary observed the redistribution of NGB to mitochondria following MPP+ treatment. The analysis of mitochondrial raft-like microdomains revealed that, following MPP+ treatment, NGB translocated to raft fractions (Triton X-100-insoluble), where it interacts with ganglioside GD3. Interestingly, the administration of agents capable of perturbating microdomain before MPP+ treatment, significantly affected viability in SK-N-BE2-NGB cells. The overexpression of NGB was able to abrogate the mitochondrial injuries on complex IV activity or mitochondrial morphology induced by MPP+ administration. The protective action of NGB on mitochondria only takes place if the mitochondrial lipid(s) rafts-like microdomains are intact, indeed NGB fails to protect complex IV activity when purified mitochondria were treated with the lipid rafts disruptor methyl-ß-cyclodextrin. Thus, our unique in vitro model of stably transfected cells overexpressing endogenous NGB allowed us to suggest that the role in neuroprotection played by NGB is reliable only through interaction with mitochondrial lipid raft-associated complexes.


Asunto(s)
Mitocondrias/metabolismo , Neuroblastoma/metabolismo , Neuroglobina/metabolismo , Neuroprotección/fisiología , Apoptosis/fisiología , Subgrupos de Linfocitos B/metabolismo , Línea Celular Tumoral , Humanos , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/fisiología
8.
J Neurochem ; 146(5): 585-597, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29779213

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is an RNA-binding protein and a major component of protein aggregates found in amyotrophic lateral sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full-length protein and as two shorter forms of 25 and 35 kDa. Full-length mutant TDP-43s found in amyotrophic lateral sclerosis patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space, while the full-length forms also localize in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full-length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full-length and short isoforms to generate toxic aggregates, we propose that the presence of full-length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Neuronas , Oligonucleótidos/toxicidad , Isoformas de Proteínas/metabolismo , Línea Celular Transformada , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Chaperonina 60/genética , Chaperonina 60/metabolismo , Citosol/efectos de los fármacos , Citosol/metabolismo , Citosol/ultraestructura , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/ultraestructura , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Inmunoprecipitación , Microscopía Electrónica , Mitocondrias/efectos de los fármacos , Mutación/efectos de los fármacos , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Consumo de Oxígeno/efectos de los fármacos , Isoformas de Proteínas/genética , Isoformas de Proteínas/ultraestructura , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/metabolismo , Transfección
9.
Mediators Inflamm ; 2017: 7821672, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29081604

RESUMEN

The progressive and fatal loss of upper (brain) and lower (spinal cord) motor neurons and muscle denervation concisely condenses the clinical picture of amyotrophic lateral sclerosis (ALS). Despite the multiple mechanisms believed to underlie the selective loss of motor neurons, ALS aetiology remains elusive and obscure. Likewise, there is also a cluster of alterations in ALS patients in which muscle wasting, body weight loss, eating dysfunction, and abnormal energy dissipation coexist. Defective energy metabolism characterizes the ALS progression, and such paradox of energy balance stands as a challenge for the understanding of ALS pathogenesis. The hypermetabolism in ALS will be examined from tissue-specific energy imbalance (e.g., skeletal muscle) to major energetic pathways (e.g., AMP-activated protein kinase) and whole-body energy alterations including glucose and lipid metabolism, nutrition, and potential involvement of interorgan communication. From the point of view here expressed, the hypermetabolism in ALS should be evaluated as a magnifying glass through which looking at the ALS pathogenesis is from a different perspective in which defective metabolism can disclose novel mechanistic interpretations and lines of intervention.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Animales , Modelos Animales de Enfermedad , Metabolismo Energético/fisiología , Humanos
10.
Biochim Biophys Acta ; 1840(1): 255-61, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24041990

RESUMEN

BACKGROUND: Glutaredoxin 1 (Grx1), a small protein belonging to the thioredoxin family, is involved in redox-regulation since it catalyzes the reduction of protein disulfides and that of mixed disulfides. It was reported to modulate active copper extrusion from cells, by affecting the function of the pumps ATP7A and B. These are components of the network of protein chaperones involved in the control of the homeostasis of copper, an essential, though harmful, metal. However, the effect of Grx1 on copper levels, copper chaperones and copper-elicited cell toxicity was never investigated. METHODS: In order to investigate the effect of Grx1 on copper metabolism, we constitutively overexpressed Grx1 in human neuroblastoma SH-SY5Y cells (SH-Grx1 cells) and assessed a number of copper-related parameters. RESULTS: SH-Grx1 cells show a basal intracellular copper level higher than control cells, accumulate more copper upon CuSO4 treatment, but are more resistant to copper-induced toxicity. Grx1 shows copper-binding properties and copper overload produces a decrease of Grx1 enzyme activity in SH-Grx1 cells. Finally, Grx1 overexpression decreases copper accumulation in mitochondria upon copper overload and modulates the expression of copper transporter 1 (Ctr1). CONCLUSION: Altogether, these data demonstrate that Grx1 is a major player in copper metabolism in neuronal cells.


Asunto(s)
Apoptosis , Proteínas de Transporte de Catión/metabolismo , Cobre/metabolismo , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Mitocondrias/metabolismo , Neuroblastoma/patología , Western Blotting , Proteínas de Transporte de Catión/genética , Proliferación Celular , Cromatografía de Afinidad , Transportador de Cobre 1 , Glutarredoxinas/genética , Humanos , Mitocondrias/patología , Neuroblastoma/genética , Neuroblastoma/metabolismo , Oxidación-Reducción , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Células Tumorales Cultivadas
11.
Apoptosis ; 20(5): 621-34, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25652700

RESUMEN

Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies.


Asunto(s)
Apoptosis , Mitocondrias/fisiología , Membranas Mitocondriales/fisiología , Animales , Transporte Biológico , Gangliósidos/metabolismo , Humanos , Enfermedades Neurodegenerativas/patología
12.
Mol Cell Neurosci ; 55: 44-9, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22705710

RESUMEN

Evidence from patients with sporadic and familiar amyotrophic lateral sclerosis (ALS) and from models based on the overexpression of mutant SOD1 found in a small subset of patients, clearly point to mitochondrial damage as a relevant facet of this neurodegenerative condition. In this mini-review we provide a brief update on the subject in the light of newly discovered genes (such as TDP-43 and FUS/TLS) associated to familial ALS and of a deeper knowledge of the mechanisms of derangement of mitochondria. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Genes Mitocondriales , Mitocondrias/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Mitocondrias/genética , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
13.
Front Pharmacol ; 15: 1360099, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590640

RESUMEN

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neuromuscular disease characterized by the degeneration of motor neurons that leads to muscle wasting and atrophy. Epidemiological and experimental evidence suggests a causal relationship between ALS and physical activity (PA). However, the impact of PA on motor neuron loss and sarcopenia is still debated, probably because of the heterogeneity and intensities of the proposed exercises. With this study, we aimed to clarify the effect of intense endurance exercise on the onset and progression of ALS in the SOD1-G93A mouse model. Methods: We randomly selected four groups of twelve 35-day-old female mice. SOD1-G93A and WT mice underwent intense endurance training on a motorized treadmill for 8 weeks, 5 days a week. During the training, we measured muscle strength, weight, and motor skills and compared them with the corresponding sedentary groups to define the disease onset. At the end of the eighth week, we analyzed the skeletal muscle-motor neuron axis by histological and molecular techniques. Results: Intense endurance exercise anticipates the onset of the disease by 1 week (age of the onset: trained SOD1-G93A = 63.17 ± 2.25 days old; sedentary SOD1-G93A = 70.75 ± 2.45 days old). In SOD1-G93A mice, intense endurance exercise hastens the muscular switch to a more oxidative phenotype and worsens the denervation process by dismantling neuromuscular junctions in the tibialis anterior, enhancing the Wallerian degeneration in the sciatic nerve, and promoting motor neuron loss in the spinal cord. The training exacerbates neuroinflammation, causing immune cell infiltration in the sciatic nerve and a faster activation of astrocytes and microglia in the spinal cord. Conclusion: Intense endurance exercise, acting on skeletal muscles, worsens the pathological hallmarks of ALS, such as denervation and neuroinflammation, brings the onset forward, and accelerates the progression of the disease. Our findings show the potentiality of skeletal muscle as a target for both prognostic and therapeutic strategies; the preservation of skeletal muscle health by specific intervention could counteract the dying-back process and protect motor neurons from death. The physiological characteristics and accessibility of skeletal muscle further enhance its appeal as a therapeutic target.

14.
Hum Mol Genet ; 20(21): 4196-208, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21828072

RESUMEN

Increased oxidative stress and mitochondrial damage are among the mechanisms whereby mutant SOD1 (mutSOD1) associated with familial forms of amyotrophic lateral sclerosis (ALS) induces motoneuronal death. The 66 kDa isoform of the growth factor adapter Shc (p66Shc) is known to be central in the control of mitochondria-dependent oxidative balance. Here we report that expression of mutSOD1s induces the activation of p66Shc in neuronal cells and that the overexpression of inactive p66Shc mutants protects cells from mutSOD1-induced mitochondrial damage. Most importantly, deletion of p66Shc ameliorates mitochondrial function, delays onset, improves motor performance and prolongs survival in transgenic mice modelling ALS. We also show that p66Shc activation by mutSOD1 causes a strong decrease in the activity of the small GTPase Rac1 through a redox-sensitive regulation. Our results provide new insight into the potential mechanisms of mutSOD1-mediated mitochondrial dysfunction.


Asunto(s)
Esclerosis Amiotrófica Lateral/enzimología , Esclerosis Amiotrófica Lateral/patología , Mitocondrias/metabolismo , Proteínas Adaptadoras de la Señalización Shc/metabolismo , Transducción de Señal , Proteína de Unión al GTP rac1/metabolismo , Animales , Apoptosis/efectos de los fármacos , Citoprotección/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Eliminación de Gen , Genes Dominantes/genética , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteínas Mutantes/toxicidad , Mutación/genética , Oxidación-Reducción/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Fosfoserina/metabolismo , Proteínas Adaptadoras de la Señalización Shc/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Superóxido Dismutasa/metabolismo
15.
Prog Neurobiol ; 231: 102529, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37739207

RESUMEN

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by the degeneration of upper and lower motor neurons, progressive wasting and paralysis of voluntary muscles. A hallmark of ALS is the frequent nuclear loss and cytoplasmic accumulation of RNA binding proteins (RBPs) in motor neurons (MN), which leads to aberrant alternative splicing regulation. However, whether altered splicing patterns are also present in familial models of ALS without mutations in RBP-encoding genes has not been investigated yet. Herein, we found that altered splicing of synaptic genes is a common trait of familial ALS MNs. Similar deregulation was also observed in hSOD1G93A MN-like cells. In silico analysis identified the potential regulators of these pre-mRNAs, including the RBP Sam68. Immunofluorescence analysis and biochemical fractionation experiments revealed that Sam68 accumulates in the cytoplasmic insoluble ribonucleoprotein fraction of MN. Remarkably, the synaptic splicing events deregulated in ALS MNs were also affected in Sam68-/- spinal cords. Recombinant expression of Sam68 protein was sufficient to rescue these splicing changes in ALS hSOD1G93A MN-like cells. Hence, our study highlights an aberrant function of Sam68, which leads to splicing changes in synaptic genes and may contribute to the MN phenotype that characterizes ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Animales , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Empalme Alternativo/genética , Enfermedades Neurodegenerativas/metabolismo , Neuronas Motoras/metabolismo , Superóxido Dismutasa-1/genética , Modelos Animales de Enfermedad
16.
Mol Neurobiol ; 60(11): 6346-6361, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37450246

RESUMEN

The TAR-DNA binding protein (TDP43) is a nuclear protein whose cytoplasmic inclusions are hallmarks of Amyotrophic Lateral Sclerosis (ALS). Acute stress in cells causes TDP43 mobilization to the cytoplasm and its aggregation through different routes. Although acute stress elicits a strong phenotype, is far from recapitulating the years-long aggregation process. We applied different chronic stress protocols and described TDP43 aggregation in a human neuroblastoma cell line by combining solubility assays, thioflavin-based microscopy and flow cytometry. This approach allowed us to detect, for the first time to our knowledge in vitro, the formation of 25 kDa C-terminal fragment of TDP43, a pathogenic hallmark of ALS. Our results indicate that chronic stress, compared to the more common acute stress paradigm, better recapitulates the cell biology of TDP43 proteinopathies. Moreover, we optimized a protocol for the detection of bona fide prions in living cells, suggesting that TDP43 may form amyloids as a stress response.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Humanos , Esclerosis Amiotrófica Lateral/genética , Línea Celular , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuroblastoma/metabolismo , Proteinopatías TDP-43/metabolismo
17.
Inflamm Regen ; 43(1): 19, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36895050

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a heterogeneous disease in terms of onset and progression rate. This may account for therapeutic clinical trial failure. Transgenic SOD1G93A mice on C57 or 129Sv background have a slow and fast disease progression rate, mimicking the variability observed in patients. Based on evidence inferring the active influence of skeletal muscle on ALS pathogenesis, we explored whether dysregulation in hindlimb skeletal muscle reflects the phenotypic difference between the two mouse models. METHODS: Ex vivo immunohistochemical, biochemical, and biomolecular methodologies, together with in vivo electrophysiology and in vitro approaches on primary cells, were used to afford a comparative and longitudinal analysis of gastrocnemius medialis between fast- and slow-progressing ALS mice. RESULTS: We reported that slow-progressing mice counteracted muscle denervation atrophy by increasing acetylcholine receptor clustering, enhancing evoked currents, and preserving compound muscle action potential. This matched with prompt and sustained myogenesis, likely triggered by an early inflammatory response switching the infiltrated macrophages towards a M2 pro-regenerative phenotype. Conversely, upon denervation, fast-progressing mice failed to promptly activate a compensatory muscle response, exhibiting a rapidly progressive deterioration of muscle force. CONCLUSIONS: Our findings further pinpoint the pivotal role of skeletal muscle in ALS, providing new insights into underestimated disease mechanisms occurring at the periphery and providing useful (diagnostic, prognostic, and mechanistic) information to facilitate the translation of cost-effective therapeutic strategies from the laboratory to the clinic.

18.
iScience ; 26(10): 107713, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37701569

RESUMEN

Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNA-seq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes-like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management.

19.
Hum Mol Genet ; 19(22): 4529-42, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20829229

RESUMEN

Vulnerability of motoneurons in amyotrophic lateral sclerosis (ALS) arises from a combination of several mechanisms, including protein misfolding and aggregation, mitochondrial dysfunction and oxidative damage. Protein aggregates are found in motoneurons in models for ALS linked to a mutation in the gene coding for Cu,Zn superoxide dismutase (SOD1) and in ALS patients as well. Aggregation of mutant SOD1 in the cytoplasm and/or into mitochondria has been repeatedly proposed as a main culprit for the degeneration of motoneurons. It is, however, still debated whether SOD1 aggregates represent a cause, a correlate or a consequence of processes leading to cell death. We have exploited the ability of glutaredoxins (Grxs) to reduce mixed disulfides to protein thiols either in the cytoplasm and in the IMS (Grx1) or in the mitochondrial matrix (Grx2) as a tool for restoring a correct redox environment and preventing the aggregation of mutant SOD1. Here we show that the overexpression of Grx1 increases the solubility of mutant SOD1 in the cytosol but does not inhibit mitochondrial damage and apoptosis induced by mutant SOD1 in neuronal cells (SH-SY5Y) or in immortalized motoneurons (NSC-34). Conversely, the overexpression of Grx2 increases the solubility of mutant SOD1 in mitochondria, interferes with mitochondrial fragmentation by modifying the expression pattern of proteins involved in mitochondrial dynamics, preserves mitochondrial function and strongly protects neuronal cells from apoptosis. The toxicity of mutant SOD1, therefore, mostly arises from mitochondrial dysfunction and rescue of mitochondrial damage may represent a promising therapeutic strategy.


Asunto(s)
Glutarredoxinas/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Apoptosis/genética , Muerte Celular/genética , Línea Celular Transformada , Línea Celular Tumoral , Humanos , Ratones , Mitocondrias/genética , Mitocondrias/ultraestructura , Neuronas Motoras/citología , Neuronas Motoras/metabolismo , Mutación , Neuroblastoma/patología , Neuronas/metabolismo , Oxidación-Reducción , Superóxido Dismutasa/biosíntesis , Superóxido Dismutasa/genética , Superóxido Dismutasa-1
20.
Data Brief ; 41: 107843, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35128003

RESUMEN

In this article, we present data on the proteome of human neuroblastoma cells stably overexpressing Neuroglobin (NGB). The neuroprotective role of NGB is clearly established, nevertheless the related mechanistic processes, which are dependent on NGB overexpression, are not known. To address this question, we performed shotgun label-free quantification (LFQ) proteomics using an SH-SY5Y cell model of neuroblastoma that overexpresses an NGB-FLAG construct, and wild type cells transfected with an empty vector as control (CTRL). The proteomes from six biological samples per condition were digested using the S-Trap sample preparation followed by LC-MS/MS analysis with a LTQ-Orbitrap XL mass spectrometer. The quantitative analysis was performed using the LFQ algorithm of MaxQuant, leading to 1654 correctly quantified proteins over 2580 identified proteins. Finally, the statistic comparison of the two analyzed groups within Perseus platform identified 178 differential proteins (107 up- and 71 down-regulated). In addition, multivariate statistical analysis was carried out using MetaboAnalyst 5.0 software. MS proteomics data are available via ProteomeXchange with the dataset identifier PXD029012.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA