Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
J Am Chem Soc ; 144(17): 7676-7685, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35451837

RESUMEN

Synthesis of azetidine-derived natural products by the opportunistic pathogen Pseudomonas aeruginosa is controlled by quorum sensing, a process involving the production and sensing of diffusible signal molecules that is decisive for virulence regulation. In this study, we engineered P. aeruginosa for the titratable expression of the biosynthetic aze gene cluster, which allowed the purification and identification of two new products, azetidomonamide C and diazetidomonapyridone. Diazetidomonapyridone was shown to have a highly unusual structure with two azetidine rings and an open-chain diimide moiety. Expression of aze genes strongly increased biofilm formation and production of phenazine and alkyl quinolone virulence factors. Further physiological studies revealed that all effects were mainly mediated by azetidomonamide A and diazetidomonapyridone, whereas azetidomonamides B and C had little or no phenotypic impact. The P450 monooxygenase AzeF which catalyzes a challenging, stereoselective hydroxylation of the azetidine ring converting azetidomonamide C into azetidomonamide A is therefore crucial for biological activity. Based on our findings, we propose this group of metabolites to constitute a new class of diffusible regulatory molecules with community-related effects in P. aeruginosa.


Asunto(s)
Azetidinas , Pseudomonas aeruginosa , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Pseudomonas aeruginosa/metabolismo , Percepción de Quorum/genética , Factores de Virulencia
2.
J Struct Biol ; 213(4): 107794, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506908

RESUMEN

The S-adenosyl-L-methionine-dependent methyltransferase Rv0560c of Mycobacterium tuberculosis belongs to an orthologous group of heterocyclic toxin methyltransferases (Htm) which likely contribute to resistance of mycobacteria towards antimicrobial natural compounds as well as drugs. HtmM.t. catalyzes the methylation of the Pseudomonas aeruginosa toxin 2-heptyl-1-hydroxyquinolin-4(1H)-one (also known as 2-heptyl-4-hydroxyquinoline N-oxide), a potent inhibitor of respiratory electron transfer, its 1-hydroxyquinolin-4(1H)-one core (QNO), structurally related (iso)quinolones, and some mycobactericidal compounds. In this study, crystal structures of HtmM.t. in complex with S-adenosyl-L-homocysteine (SAH) and the methyl-accepting substrates QNO or 4-hydroxyisoquinoline-1(2H)-one, or the methylated product 1-methoxyquinolin-4(1H)-one, were determined at < 1.9 Å resolution. The monomeric protein exhibits the typical Rossmann fold topology and conserved residues of class I methyltransferases. Its SAH binding pocket is connected via a short tunnel to a large solvent-accessible cavity, which accommodates the methyl-accepting substrate. Residues W44, F168, and F208 in connection with F212 form a hydrophobic clamp around the heteroaromatic ring of the methyl-accepting substrate and likely play a major role in substrate positioning. Structural and biochemical data suggest that H139 and T136 are key active site residues, with H139 acting as general base that activates the methyl-accepting hydroxy group. Our structural data may contribute to the design of Htm inhibitors or of antimycobacterial drugs unamenable for methylation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidroxiquinolinas/metabolismo , Metiltransferasas/metabolismo , Mycobacterium tuberculosis/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión/genética , Biocatálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Hidroxiquinolinas/química , Metilación , Metiltransferasas/química , Metiltransferasas/genética , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/genética , Conformación Proteica , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
Chembiochem ; 22(4): 733-742, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33058333

RESUMEN

The mycobacterial PQS dioxygenase AqdC, a cofactor-less protein with an α/ß-hydrolase fold, inactivates the virulence-associated quorum-sensing signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS) produced by the opportunistic pathogen Pseudomonas aeruginosa and is therefore a potential anti-virulence tool. We have used computational library design to predict stabilizing amino acid replacements in AqdC. While 57 out of 91 tested single substitutions throughout the protein led to stabilization, as judged by increases in Tappm of >2 °C, they all impaired catalytic activity. Combining substitutions, the proteins AqdC-G40K-A134L-G220D-Y238W and AqdC-G40K-G220D-Y238W showed extended half-lives and the best trade-off between stability and activity, with increases in Tappm of 11.8 and 6.1 °C and relative activities of 22 and 72 %, respectively, compared to AqdC. Molecular dynamics simulations and principal component analysis suggested that stabilized proteins are less flexible than AqdC, and the loss of catalytic activity likely correlates with an inability to effectively open the entrance to the active site.


Asunto(s)
Proteínas Bacterianas/metabolismo , Dioxigenasas/química , Dioxigenasas/metabolismo , Mycobacterium/enzimología , Ingeniería de Proteínas/métodos , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Regulación Bacteriana de la Expresión Génica , Pseudomonas aeruginosa/crecimiento & desarrollo , Percepción de Quorum , Transducción de Señal
4.
Appl Environ Microbiol ; 87(6)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33452035

RESUMEN

The multiple biological activities of 2-alkylquinolones (AQs) are crucial for virulence of Pseudomonas aeruginosa, conferring advantages during infection and in polymicrobial communities. Whereas 2-heptyl-3-hydroxyquinolin-4(1H)-one (the "Pseudomonas quinolone signal" [PQS]) is an important quorum sensing signal molecule, 2-alkyl-1-hydroxyquinolin-4(1H)-ones (also known as 2-alkyl-4-hydroxyquinoline N-oxides [AQNOs]) are antibiotics inhibiting respiration. Hydroxylation of the PQS precursor 2-heptylquinolin-4(1H)-one (HHQ) by the signal synthase PqsH boosts AQ quorum sensing. Remarkably, the same reaction, catalyzed by the ortholog AqdB, is used by Mycobacteroides abscessus to initiate degradation of AQs. The antibiotic 2-heptyl-1-hydroxyquinolin-4(1H)-one (HQNO) is hydroxylated by Staphylococcus aureus to the less toxic derivative PQS-N-oxide (PQS-NO), a reaction probably also catalyzed by a PqsH/AqdB ortholog. In this study, we provide a comparative analysis of four AQ 3-monooxygenases of different organisms. Due to the major impact of AQ/AQNO 3-hydroxylation on the biological activities of the compounds, we surmised adaptations on the enzymatic and/or physiological level to serve either the producer or target organisms. Our results indicate that all enzymes share similar features and are incapable of discriminating between AQs and AQNOs. PQS-NO, hence, occurs as a native metabolite of P. aeruginosa although the unfavorable AQNO 3-hydroxylation is minimized by export as shown for HQNO, involving at least one multidrug efflux pump. Moreover, M. abscessus is capable of degrading the AQNO heterocycle by concerted action of AqdB and dioxygenase AqdC. However, S. aureus and M. abscessus orthologs disfavor AQNOs despite their higher toxicity, suggesting that catalytic constraints restrict evolutionary adaptation and lead to the preference of non-N-oxide substrates by AQ 3-monooxygenases.IMPORTANCEPseudomonas aeruginosa, Staphylococcus aureus, and Mycobacteroides abscessus are major players in bacterial chronic infections and particularly common colonizers of cystic fibrosis (CF) lung tissue. Whereas S. aureus is an early onset pathogen in CF, P. aeruginosa establishes at later stages. M. abscessus occurs at all stages but has a lower epidemiological incidence. The dynamics of how these pathogens interact can affect survival and therapeutic success. 2-Alkylquinolone (AQ) and 2-alkylhydroxyquinoline N-oxide (AQNO) production is a major factor of P. aeruginosa virulence. The 3-position of the AQ scaffold is critical, both for attenuation of AQ toxicity or degradation by competitors, as well as for full unfolding of quorum sensing. Despite lacking signaling functionality, AQNOs have the strongest impact on suppression of Gram-positives. Because evidence for 3-hydroxylation of AQNOs has been reported, it is desirable to understand the extent by which AQ 3-monooxygenases contribute to manipulation of AQ/AQNO equilibrium, resistance, and degradation.


Asunto(s)
Oxigenasas de Función Mixta/metabolismo , Óxidos/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Antibacterianos/metabolismo , Hidroxilación , Mycobacterium abscessus/metabolismo , Staphylococcus aureus/metabolismo
5.
Appl Environ Microbiol ; 87(16): e0076221, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34085859

RESUMEN

The opportunistic pathogen Pseudomonas aeruginosa can utilize unusual carbon sources, like sodium dodecyl sulfate (SDS) and alkanes. Whereas the initiating enzymatic steps of the corresponding degradation pathways have been characterized in detail, the oxidation of the emerging long-chain alcohols has received little attention. Recently, the genes for the Lao (long-chain-alcohol/aldehyde oxidation) system were discovered to be involved in the oxidation of long-chain alcohols derived from SDS and alkane degradation. In the Lao system, LaoA is predicted to be an alcohol dehydrogenase/oxidase; however, according to genetic studies, efficient long-chain-alcohol oxidation additionally required the Tat-dependent protein LaoB. In the present study, the Lao system was further characterized. In vivo analysis revealed that the Lao system complements the substrate spectrum of the well-described Exa system, which is required for growth with ethanol and other short-chain alcohols. Mutational analysis revealed that the Tat site of LaoB was required for long-chain-alcohol oxidation activity, strongly suggesting a periplasmic localization of the complex. Purified LaoA was fully active only when copurified with LaoB. Interestingly, in vitro activity of the purified LaoAB complex also depended on the presence of the Tat site. The copurified LaoAB complex contained a flavin cofactor and preferentially oxidized a range of saturated, unbranched primary alcohols. Furthermore, the LaoAB complex could reduce cytochrome c550-type redox carriers like ExaB, a subunit of the Exa alcohol dehydrogenase system. LaoAB complex activity was stimulated by rhamnolipids in vitro. In summary, LaoAB constitutes an unprecedented protein complex with specific properties apparently required for oxidizing long-chain alcohols. IMPORTANCE Pseudomonas aeruginosa is a major threat to public health. Its ability to thrive in clinical settings, water distribution systems, or even jet fuel tanks is linked to detoxification and degradation of diverse hydrophobic substrates that are metabolized via alcohol intermediates. Our study illustrates a novel flavoprotein long-chain-alcohol dehydrogenase consisting of a facultative two-subunit complex, which is unique among related enzymes, while the homologs of the corresponding genes are found in numerous bacterial genomes. Understanding the catalytic and compartmentalization processes involved is of great interest for biotechnological and hygiene research, as it may be a potential starting point for rationally designing novel antibacterial substances with high specificity against this opportunistic pathogen.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/enzimología , Oxidorreductasas de Alcohol/química , Oxidorreductasas de Alcohol/genética , Alcoholes/química , Alcoholes/metabolismo , Aldehídos/química , Aldehídos/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Cinética , Oxidación-Reducción , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo
6.
Appl Environ Microbiol ; 86(9)2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32086305

RESUMEN

The quinolone ring is a common core structure of natural products exhibiting antimicrobial, cytotoxic, and signaling activities. A prominent example is the Pseudomonas quinolone signal (PQS), a quorum-sensing signal molecule involved in the regulation of virulence of Pseudomonas aeruginosa The key reaction to quinolone inactivation and biodegradation is the cleavage of the 3-hydroxy-4(1H)-quinolone ring, catalyzed by dioxygenases (HQDs), which are members of the α/ß-hydrolase fold superfamily. The α/ß-hydrolase fold core domain consists of a ß-sheet surrounded by α-helices, with an active site usually containing a catalytic triad comprising a nucleophilic residue, an acidic residue, and a histidine. The nucleophile is located at the tip of a sharp turn, called the "nucleophilic elbow." In this work, we developed a search workflow for the identification of HQD proteins from databases. Search and validation criteria include an [H-x(2)-W] motif at the nucleophilic elbow, an [HFP-x(4)-P] motif comprising the catalytic histidine, the presence of a helical cap domain, the positioning of the triad's acidic residue at the end of ß-strand 6, and a set of conserved hydrophobic residues contributing to the substrate cavity. The 161 candidate proteins identified from the UniProtKB database originate from environmental and plant-associated microorganisms from all domains of life. Verification and characterization of HQD activity of 9 new candidate proteins confirmed the reliability of the search strategy and suggested residues correlating with distinct substrate preferences. Among the new HQDs, PQS dioxygenases from Nocardia farcinica, N. cyriacigeorgica, and Streptomyces bingchenggensis likely are part of a catabolic pathway for alkylquinolone utilization.IMPORTANCE Functional annotation of protein sequences is a major requirement for the investigation of metabolic pathways and the identification of sought-after biocatalysts. To identify heterocyclic ring-cleaving dioxygenases within the huge superfamily of α/ß-hydrolase fold proteins, we defined search and validation criteria for the primarily motif-based identification of 3-hydroxy-4(1H)-quinolone 2,4-dioxygenases (HQD). HQDs are key enzymes for the inactivation of metabolites, which can have signaling, antimicrobial, or cytotoxic functions. The HQD candidates detected in this study occur particularly in environmental and plant-associated microorganisms. Because HQDs active toward the Pseudomonas quinolone signal (PQS) likely contribute to interactions within microbial communities and modulate the virulence of Pseudomonas aeruginosa, we analyzed the catalytic properties of a PQS-cleaving subset of HQDs and specified characteristics to identify PQS-cleaving dioxygenases within the HQD family.


Asunto(s)
Proteínas Bacterianas/genética , Hidrolasas/genética , Pseudomonas aeruginosa/genética , Quinolonas/metabolismo , Percepción de Quorum , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Hidrolasas/química , Hidrolasas/metabolismo , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/metabolismo , Alineación de Secuencia
7.
J Struct Biol ; 207(3): 287-294, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31228546

RESUMEN

The cofactor-less dioxygenase AqdC of Mycobacteroides abscessus catalyzes the cleavage and thus inactivation of the Pseudomonas quinolone signal (PQS, 2-heptyl-3-hydroxy-4(1H)-quinolone), which plays a central role in the regulation of virulence factor production by Pseudomonas aeruginosa. We present here the crystal structures of AqdC in its native state and in complex with the PQS cleavage product N-octanoylanthranilic acid, and of mutant AqdC proteins in complex with PQS. AqdC possesses an α/ß-hydrolase fold core domain with additional helices forming a cap domain. The protein is traversed by a bipartite tunnel, with a funnel-like entry section leading to an elliptical substrate cavity where PQS positioning is mediated by a combination of hydrophobic interactions and hydrogen bonds, with the substrate's C4 carbonyl and C3 hydroxyl groups tethered by His97 and the catalytic His246, respectively. The side chain of the AqdC-bound product extends deeper into the "alkyl tail section" of the tunnel than PQS, tentatively suggesting product exit via this part of the tunnel. AqdC prefers PQS over congeners with shorter alkyl substituents at C2. Kinetic data confirmed the strict requirement of the active-site base His246 for catalysis, and suggested that evolution of the canonical nucleophile/His/Asp catalytic triad of the hydrolases to an Ala/His/Asp triad is favorable for catalyzing dioxygenolytic PQS ring cleavage.


Asunto(s)
Dioxigenasas/química , Hidrolasas/química , Pseudomonas aeruginosa/metabolismo , Quinolonas/química , Cristalografía por Rayos X , Dioxigenasas/genética , Dioxigenasas/metabolismo , Regulación Bacteriana de la Expresión Génica , Enlace de Hidrógeno , Hidrolasas/genética , Hidrolasas/metabolismo , Cinética , Modelos Moleculares , Mutación , Mycobacterium/enzimología , Mycobacterium/genética , Filogenia , Unión Proteica , Conformación Proteica , Pseudomonas aeruginosa/genética , Quinolonas/metabolismo , Especificidad por Sustrato
8.
J Biol Chem ; 293(24): 9345-9357, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29669807

RESUMEN

Alkyl hydroxyquinoline N-oxides (AQNOs) are antibiotic compounds produced by the opportunistic bacterial pathogen Pseudomonas aeruginosa They are products of the alkyl quinolone (AQ) biosynthetic pathway, which also generates the quorum-sensing molecules 2-heptyl-4(1H)-quinolone (HHQ) and 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS). Although the enzymatic synthesis of HHQ and PQS had been elucidated, the route by which AQNOs are synthesized remained elusive. Here, we report on PqsL, the key enzyme for AQNO production, which structurally resembles class A flavoprotein monooxygenases such as p-hydroxybenzoate 3-hydroxylase (pHBH) and 3-hydroxybenzoate 6-hydroxylase. However, we found that unlike related enzymes, PqsL hydroxylates a primary aromatic amine group, and it does not use NAD(P)H as cosubstrate, but unexpectedly required reduced flavin as electron donor. We also observed that PqsL is active toward 2-aminobenzoylacetate (2-ABA), the central intermediate of the AQ pathway, and forms the unstable compound 2-hydroxylaminobenzoylacetate, which was preferred over 2-ABA as substrate of the downstream enzyme PqsBC. In vitro reconstitution of the PqsL/PqsBC reaction was feasible by using the FAD reductase HpaC, and we noted that the AQ:AQNO ratio is increased in an hpaC-deletion mutant of P. aeruginosa PAO1 compared with the ratio in the WT strain. A structural comparison with pHBH, the model enzyme of class A flavoprotein monooxygenases, revealed that structural features associated with NAD(P)H binding are missing in PqsL. Our study completes the AQNO biosynthetic pathway in P. aeruginosa, indicating that PqsL produces the unstable product 2-hydroxylaminobenzoylacetate from 2-ABA and depends on free reduced flavin as electron donor instead of NAD(P)H.


Asunto(s)
4-Hidroxibenzoato-3-Monooxigenasa/metabolismo , Aminobenzoatos/metabolismo , Antibacterianos/metabolismo , Pseudomonas aeruginosa/enzimología , Quinolonas/metabolismo , 4-Hidroxibenzoato-3-Monooxigenasa/química , Alquilación , Aminobenzoatos/química , Vías Biosintéticas , Flavinas/metabolismo , Humanos , Hidroxiquinolinas/metabolismo , Modelos Moleculares , Oxidación-Reducción , Óxidos/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Metabolismo Secundario
9.
Infect Immun ; 87(10)2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31308081

RESUMEN

The nosocomial pathogen Pseudomonas aeruginosa regulates its virulence via a complex quorum sensing network, which, besides N-acylhomoserine lactones, includes the alkylquinolone signal molecules 2-heptyl-3-hydroxy-4(1H)-quinolone (Pseudomonas quinolone signal [PQS]) and 2-heptyl-4(1H)-quinolone (HHQ). Mycobacteroides abscessus subsp. abscessus, an emerging pathogen, is capable of degrading the PQS and also HHQ. Here, we show that although M. abscessus subsp. abscessus reduced PQS levels in coculture with P. aeruginosa PAO1, this did not suffice for quenching the production of the virulence factors pyocyanin, pyoverdine, and rhamnolipids. However, the levels of these virulence factors were reduced in cocultures of P. aeruginosa PAO1 with recombinant M. abscessus subsp. massiliense overexpressing the PQS dioxygenase gene aqdC of M. abscessus subsp. abscessus, corroborating the potential of AqdC as a quorum quenching enzyme. When added extracellularly to P. aeruginosa cultures, AqdC quenched alkylquinolone and pyocyanin production but induced an increase in elastase levels. When supplementing P. aeruginosa cultures with QsdA, an enzyme from Rhodococcus erythropolis which inactivates N-acylhomoserine lactone signals, rhamnolipid and elastase levels were quenched, but HHQ and pyocyanin synthesis was promoted. Thus, single quorum quenching enzymes, targeting individual circuits within a complex quorum sensing network, may also elicit undesirable regulatory effects. Supernatants of P. aeruginosa cultures grown in the presence of AqdC, QsdA, or both enzymes were less cytotoxic to human epithelial lung cells than supernatants of untreated cultures. Furthermore, the combination of both aqdC and qsdA in P. aeruginosa resulted in a decline of Caenorhabditis elegans mortality under P. aeruginosa exposure.


Asunto(s)
Hidrolasas de Éster Carboxílico/genética , Dioxigenasas/genética , Regulación Bacteriana de la Expresión Génica , Mycobacterium abscessus/genética , Pseudomonas aeruginosa/patogenicidad , Percepción de Quorum/genética , Células A549 , Animales , Antibiosis/genética , Caenorhabditis elegans/microbiología , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/farmacología , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Dioxigenasas/metabolismo , Dioxigenasas/farmacología , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Mycobacterium abscessus/enzimología , Oligopéptidos/genética , Oligopéptidos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Piocianina/genética , Piocianina/metabolismo , Quinolonas/metabolismo , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
10.
Environ Microbiol ; 21(7): 2595-2609, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31087606

RESUMEN

Alkyl quinolones (AQs) are multifunctional bacterial secondary metabolites generally known for their antibacterial and algicidal properties. Certain representatives are also employed as signalling molecules of Burkholderia strains and Pseudomonas aeruginosa. The marine Gammaproteobacterium Microbulbifer sp. HZ11 harbours an AQ biosynthetic gene cluster with unusual topology but does not produce any AQ-type metabolites under laboratory conditions. In this study, we demonstrate the potential of strain HZ11 for AQ production by analysing intermediates and key enzymes of the pathway. Moreover, we demonstrate that exogenously added AQs such as 2-heptyl-1(H)-quinolin-4-one (referred to as HHQ) or 2-heptyl-1-hydroxyquinolin-4-one (referred to as HQNO) are brominated by a vanadium-dependent haloperoxidase (V-HPOHZ11 ), which preferably is active towards AQs with C5-C9 alkyl side chains. Bromination was specific for the third position and led to 3-bromo-2-heptyl-1(H)-quinolin-4-one (BrHHQ) and 3-bromo-2-heptyl-1-hydroxyquinolin-4-one (BrHQNO), both of which were less toxic for strain HZ11 than the respective parental compounds. In contrast, BrHQNO showed increased antibiotic activity against Staphylococcus aureus and marine isolates. Therefore, bromination of AQs by V-HPOHZ11 can have divergent consequences, eliciting a detoxifying effect for strain HZ11 while simultaneously enhancing antibiotic activity against other bacteria.


Asunto(s)
Alteromonadaceae/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacología , Quinolonas/metabolismo , Quinolonas/farmacología , Alteromonadaceae/genética , Alteromonadaceae/aislamiento & purificación , Antibacterianos/química , Halogenación , Quinolonas/química , Agua de Mar/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
11.
Beilstein J Org Chem ; 15: 187-193, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30745993

RESUMEN

Selectively methylated analogues of naturally occurring 2-heptyl-4(1H)-quinolones, which are alkaloids common within the Rutaceae family and moreover are associated with quorum sensing and virulence of the human pathogen Pseudomonas aeruginosa, have been prepared. While the synthesis by direct methylation was successful for 3-unsubstituted 2-heptyl-4(1H)-quinolones, methylated derivatives of the Pseudomonas quinolone signal (PQS) were synthesized from 3-iodinated quinolones by methylation and iodine-metal exchange/oxidation. The two N- and O-methylated derivatives of the PQS showed strong quorum sensing activity comparable to that of PQS itself. Staphylococcus aureus, another pathogenic bacterium often co-occurring with P. aeruginosa especially in the lung of cystic fibrosis patients, was inhibited in planktonic growth and cellular respiration by the 4-O-methylated derivatives of HQNO and HHQ, respectively.

12.
J Biol Chem ; 291(13): 6610-24, 2016 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-26811339

RESUMEN

Pseudomonas aeruginosaproduces a number of alkylquinolone-type secondary metabolites best known for their antimicrobial effects and involvement in cell-cell communication. In the alkylquinolone biosynthetic pathway, the ß-ketoacyl-(acyl carrier protein) synthase III (FabH)-like enzyme PqsBC catalyzes the condensation of octanoyl-coenzyme A and 2-aminobenzoylacetate (2-ABA) to form the signal molecule 2-heptyl-4(1H)-quinolone. PqsBC, a potential drug target, is unique for its heterodimeric arrangement and an active site different from that of canonical FabH-like enzymes. Considering the sequence dissimilarity between the subunits, a key question was how the two subunits are organized with respect to the active site. In this study, the PqsBC structure was determined to a 2 Å resolution, revealing that PqsB and PqsC have a pseudo-2-fold symmetry that unexpectedly mimics the FabH homodimer. PqsC has an active site composed of Cys-129 and His-269, and the surrounding active site cleft is hydrophobic in character and approximately twice the volume of related FabH enzymes that may be a requirement to accommodate the aromatic substrate 2-ABA. From physiological and kinetic studies, we identified 2-aminoacetophenone as a pathway-inherent competitive inhibitor of PqsBC, whose fluorescence properties could be used forin vitrobinding studies. In a time-resolved setup, we demonstrated that the catalytic histidine is not involved in acyl-enzyme formation, but contributes to an acylation-dependent increase in affinity for the second substrate 2-ABA. Introduction of Asn into the PqsC active site led to significant activity toward the desamino substrate analog benzoylacetate, suggesting that the substrate 2-ABA itself supplies the asparagine-equivalent amino function that assists in catalysis.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/química , 4-Quinolonas/química , Acilcoenzima A/química , Aminobenzoatos/química , Proteínas Bacterianas/química , Pseudomonas aeruginosa/química , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/antagonistas & inhibidores , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , 4-Quinolonas/metabolismo , Acetofenonas/química , Acilcoenzima A/metabolismo , Secuencia de Aminoácidos , Aminobenzoatos/metabolismo , Antibacterianos/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Sitios de Unión , Unión Competitiva , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Pseudomonas aeruginosa/enzimología , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alineación de Secuencia
14.
Angew Chem Int Ed Engl ; 55(10): 3281-4, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26846734

RESUMEN

Quercetin 2,4-dioxygenase (quercetinase) from Streptomyces uses nickel as the active-site cofactor to catalyze oxidative cleavage of the flavonol quercetin. How this unusual active-site metal supports catalysis and O2 activation is under debate. We present crystal structures of Ni-quercetinase in three different states, thus providing direct insight into how quercetin and O2 are activated at the Ni(2+) ion. The Ni(2+) ion is coordinated by three histidine residues and a glutamate residue (E(76)) in all three states. Upon binding, quercetin replaces one water ligand at Ni and is stabilized by a short hydrogen bond through E(76) , the carboxylate group of which rotates by 90°. This conformational change weakens the interaction between Ni and the remaining water ligand, thereby preparing a coordination site at Ni to bind O2. O2 binds side-on to the Ni(2+) ion and is perpendicular to the C2-C3 and C3-C4 bonds of quercetin, which are cleaved in the following reaction steps.


Asunto(s)
Proteínas Bacterianas/química , Dioxigenasas/química , Níquel/química , Oxígeno/química , Catálisis , Estructura Molecular , Oxidación-Reducción
15.
Environ Microbiol ; 17(11): 4352-65, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25809238

RESUMEN

In Pseudomonas aeruginosa, quorum sensing (QS) regulates the production of secondary metabolites, many of which are antimicrobials that impact on polymicrobial community composition. Consequently, quenching QS modulates the environmental impact of P. aeruginosa. To identify bacteria capable of inactivating the QS signal molecule 2-heptyl-3-hydroxy-4(1H)-quinolone (PQS), a minimal medium containing PQS as the sole carbon source was used to enrich a Malaysian rainforest soil sample. This yielded an Achromobacter xylosoxidans strain (Q19) that inactivated PQS, yielding a new fluorescent compound (I-PQS) confirmed as PQS-derived using deuterated PQS. The I-PQS structure was elucidated using mass spectrometry and nuclear magnetic resonance spectroscopy as 2-heptyl-2-hydroxy-1,2-dihydroquinoline-3,4-dione (HHQD). Achromobacter xylosoxidans Q19 oxidized PQS congeners with alkyl chains ranging from C1 to C5 and also N-methyl PQS, yielding the corresponding 2-hydroxy-1,2-dihydroquinoline-3,4-diones, but was unable to inactivate the PQS precursor HHQ. This indicates that the hydroxyl group at position 3 in PQS is essential and that A. xylosoxidans inactivates PQS via a pathway involving the incorporation of oxygen at C2 of the heterocyclic ring. The conversion of PQS to HHQD also occurred on incubation with 12/17 A. xylosoxidans strains recovered from cystic fibrosis patients, with P. aeruginosa and with Arthrobacter, suggesting that formation of hydroxylated PQS may be a common mechanism of inactivation.


Asunto(s)
Achromobacter denitrificans/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , Percepción de Quorum/fisiología , Metabolismo Secundario/fisiología , Datos de Secuencia Molecular , Oxidación-Reducción , Bosque Lluvioso , Transducción de Señal , Suelo/química , Microbiología del Suelo
16.
Appl Environ Microbiol ; 81(22): 7720-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26319870

RESUMEN

Rhodococcus erythropolis BG43 is able to degrade the Pseudomonas aeruginosa quorum sensing signal molecules PQS (Pseudomonas quinolone signal) [2-heptyl-3-hydroxy-4(1H)-quinolone] and HHQ [2-heptyl-4(1H)-quinolone] to anthranilic acid. Based on the hypothesis that degradation of HHQ might involve hydroxylation to PQS followed by dioxygenolytic cleavage of the heterocyclic ring and hydrolysis of the resulting N-octanoylanthranilate, the genome was searched for corresponding candidate genes. Two gene clusters, aqdA1B1C1 and aqdA2B2C2, each predicted to code for a hydrolase, a flavin monooxygenase, and a dioxygenase related to 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, were identified on circular plasmid pRLCBG43 of strain BG43. Transcription of all genes was upregulated by PQS, suggesting that both gene clusters code for alkylquinolone-specific catabolic enzymes. An aqdR gene encoding a putative transcriptional regulator, which was also inducible by PQS, is located adjacent to the aqdA2B2C2 cluster. Expression of aqdA2B2C2 in Escherichia coli conferred the ability to degrade HHQ and PQS to anthranilic acid; however, for E. coli transformed with aqdA1B1C1, only PQS degradation was observed. Purification of the recombinant AqdC1 protein verified that it catalyzes the cleavage of PQS to form N-octanoylanthranilic acid and carbon monoxide and revealed apparent Km and kcat values for PQS of ∼27 µM and 21 s(-1), respectively. Heterologous expression of the PQS dioxygenase gene aqdC1 or aqdC2 in P. aeruginosa PAO1 quenched the production of the virulence factors pyocyanin and rhamnolipid and reduced the synthesis of the siderophore pyoverdine. Thus, the toolbox of quorum-quenching enzymes is expanded by new PQS dioxygenases.


Asunto(s)
Pseudomonas aeruginosa/genética , Percepción de Quorum , Rhodococcus/genética , Factores de Virulencia/genética , Regulación Bacteriana de la Expresión Génica , Glucolípidos/genética , Glucolípidos/metabolismo , Oligopéptidos/genética , Oligopéptidos/metabolismo , Filogenia , Plásmidos , Pseudomonas aeruginosa/metabolismo , Piocianina/genética , Piocianina/metabolismo , Quinolonas/metabolismo , Rhodococcus/metabolismo , Análisis de Secuencia de ADN , Factores de Virulencia/metabolismo
17.
BMC Biochem ; 16: 10, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25903361

RESUMEN

BACKGROUND: Quercetinases are metal-dependent dioxygenases of the cupin superfamily. While fungal quercetinases are copper proteins, recombinant Streptomyces quercetinase (QueD) was previously described to be capable of incorporating Ni(2+) and some other divalent metal ions. This raises the questions of which factors determine metal selection, and which metal ion is physiologically relevant. RESULTS: Metal occupancies of heterologously produced QueD proteins followed the order Ni > Co > Fe > Mn. Iron, in contrast to the other metals, does not support catalytic activity. QueD isolated from the wild-type Streptomyces sp. strain FLA contained mainly nickel and zinc. In vitro synthesis of QueD in a cell-free transcription-translation system yielded catalytically active protein when Ni(2+) was present, and comparison of the circular dichroism spectra of in vitro produced proteins suggested that Ni(2+) ions support correct folding. Replacement of individual amino acids of the 3His/1Glu metal binding motif by alanine drastically reduced or abolished quercetinase activity and affected its structural integrity. Only substitution of the glutamate ligand (E76) by histidine resulted in Ni- and Co-QueD variants that retained the native fold and showed residual catalytic activity. CONCLUSIONS: Heterologous formation of catalytically active, native QueD holoenzyme requires Ni(2+), Co(2+) or Mn(2+), i.e., metal ions that prefer an octahedral coordination geometry, and an intact 3His/1Glu motif or a 4His environment of the metal. The observed metal occupancies suggest that metal incorporation into QueD is governed by the relative stability of the resulting metal complexes, rather than by metal abundance. Ni(2+) most likely is the physiologically relevant cofactor of QueD of Streptomyces sp. FLA.


Asunto(s)
Sustitución de Aminoácidos , Dioxigenasas/química , Dioxigenasas/metabolismo , Níquel/metabolismo , Secuencias de Aminoácidos , Biocatálisis , Dioxigenasas/genética , Ligandos , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces/enzimología , Especificidad por Sustrato
18.
Appl Environ Microbiol ; 80(23): 7266-74, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25239889

RESUMEN

A bacterial strain, which based on the sequences of its 16S rRNA, gyrB, catA, and qsdA genes, was identified as a Rhodococcus sp. closely related to Rhodococcus erythropolis, was isolated from soil by enrichment on the Pseudomonas quinolone signal [PQS; 2-heptyl-3-hydroxy-4(1H)-quinolone], a quorum sensing signal employed by the opportunistic pathogen Pseudomonas aeruginosa. The isolate, termed Rhodococcus sp. strain BG43, cometabolically degraded PQS and its biosynthetic precursor 2-heptyl-4(1H)-quinolone (HHQ) to anthranilic acid. HHQ degradation was accompanied by transient formation of PQS, and HHQ hydroxylation by cell extracts required NADH, indicating that strain BG43 has a HHQ monooxygenase isofunctional to the biosynthetic enzyme PqsH of P. aeruginosa. The enzymes catalyzing HHQ hydroxylation and PQS degradation were inducible by PQS, suggesting a specific pathway. Remarkably, Rhodococcus sp. BG43 is also capable of transforming 2-heptyl-4-hydroxyquinoline-N-oxide to PQS. It thus converts an antibacterial secondary metabolite of P. aeruginosa to a quorum sensing signal molecule.


Asunto(s)
Quinolonas/metabolismo , Rhodococcus/metabolismo , Microbiología del Suelo , Proteínas Bacterianas/genética , Biotransformación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Filogenia , ARN Ribosómico 16S/genética , Rhodococcus/clasificación , Rhodococcus/genética , Rhodococcus/aislamiento & purificación , Análisis de Secuencia de ADN
19.
J Bacteriol ; 195(5): 1068-80, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23275246

RESUMEN

The genes coding for quinaldine catabolism in Arthrobacter sp. strain Rue61a are clustered on the linear plasmid pAL1 in two upper pathway operons (meqABC and meqDEF) coding for quinaldine conversion to anthranilate and a lower pathway operon encoding anthranilate degradation via coenzyme A (CoA) thioester intermediates. The meqR2 gene, located immediately downstream of the catabolic genes, codes for a PaaX-type transcriptional repressor. MeqR2, purified as recombinant fusion protein, forms a dimer in solution and shows specific and cooperative binding to promoter DNA in vitro. DNA fragments recognized by MeqR2 contained a highly conserved palindromic motif, 5'-TGACGNNCGTcA-3', which is located at positions -35 to -24 of the two promoters that control the upper pathway operons, at positions +4 to +15 of the promoter of the lower pathway genes and at positions +53 to +64 of the meqR2 promoter. Disruption of the palindrome abolished MeqR2 binding. The dissociation constants (K(D)) of MeqR2-DNA complexes as deduced from electrophoretic mobility shift assays were very similar for the four promoters tested (23 nM to 28 nM). Anthraniloyl-CoA was identified as the specific effector of MeqR2, which impairs MeqR2-DNA complex formation in vitro. A binding stoichiometry of one effector molecule per MeqR2 monomer and a K(D) of 22 nM were determined for the effector-protein complex by isothermal titration calorimetry (ITC). Quantitative reverse transcriptase PCR analyses suggested that MeqR2 is a potent regulator of the meqDEF operon; however, additional regulatory systems have a major impact on transcriptional control of the catabolic operons and of meqR2.


Asunto(s)
Arthrobacter/genética , Arthrobacter/metabolismo , Proteínas Bacterianas/metabolismo , Coenzima A/metabolismo , Regiones Promotoras Genéticas , Quinaldinas/metabolismo , Proteínas Represoras/metabolismo , Proteínas Bacterianas/genética , Coenzima A/genética , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Regulación Bacteriana de la Expresión Génica , Unión Proteica , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/genética , Transcripción Genética , ortoaminobenzoatos/metabolismo
20.
Appl Microbiol Biotechnol ; 97(2): 751-60, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22740050

RESUMEN

The quorum sensing signalling molecules 2-heptyl-3-hydroxy-4(1H)-quinolone, termed the "Pseudomonas quinolone signal" (PQS), and 2-heptyl-4(1H)-quinolone (HHQ) play an important role in the control of virulence gene expression in Pseudomonas aeruginosa. To construct a bioreporter for the specific and sensitive detection of these compounds, a plasmid with the pqsR gene encoding the PQS- and HHQ-responsive transcriptional regulator PqsR, and with the PqsR-controlled pqsA promoter fused to the lacZ gene, was established in Pseudomonas putida KT2440. The bioreporter responds to HHQ and PQS at concentrations in the range of 0.1-10 and 0.01-5 µM, respectively, with EC(50) values of 1.50 ± 0.25 µM for HHQ and 0.15 ± 0.02 µM for PQS. 2,4-Dihydroxyquinoline, a metabolite produced abundantly by P. aeruginosa, did not elicit an increase in reporter enzyme activity. To test whether the bioreporter can be used for the detection of enzymes active on AQ signalling molecules, the hodC gene coding for 2-methyl-3-hydroxy-4(1H)-quinolone 2,4-dioxygenase was expressed in the reporter strain. This dioxygenase catalyses the cleavage of PQS, albeit with very low activity. The response of the bioreporter to PQS was significantly quenched by co-expression of the hodC gene, and HPLC analysis of culture extracts verified that the PQS levels decreased during cultivation. The bioreporter can be applied to screen for AQ-converting enzymes, which will be useful tools to interfere with quorum sensing and thus virulence in P. aeruginosa.


Asunto(s)
Reactores Biológicos/microbiología , Enzimas/metabolismo , Pseudomonas putida/crecimiento & desarrollo , Pseudomonas putida/metabolismo , Quinolonas/metabolismo , Cromatografía Líquida de Alta Presión , Percepción de Quorum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA