Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 63(2): 277-292, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27373334

RESUMEN

An abnormal differentiation state is common in BRCA1-deficient mammary epithelial cells, but the underlying mechanism is unclear. Here, we report a convergence between DNA repair and normal, cultured human mammary epithelial (HME) cell differentiation. Surprisingly, depleting BRCA1 or FANCD2 (Fanconi anemia [FA] proteins) or BRG1, a mSWI/SNF subunit, caused HME cells to undergo spontaneous epithelial-to-mesenchymal transition (EMT) and aberrant differentiation. This also occurred when wild-type HMEs were exposed to chemicals that generate DNA interstrand crosslinks (repaired by FA proteins), but not in response to double-strand breaks. Suppressed expression of ΔNP63 also occurred in each of these settings, an effect that links DNA damage to the aberrant differentiation outcome. Taken together with somatic breast cancer genome data, these results point to a breakdown in a BRCA/FA-mSWI/SNF-ΔNP63-mediated DNA repair and differentiation maintenance process in mammary epithelial cells that may contribute to sporadic breast cancer development.


Asunto(s)
Proteína BRCA1/metabolismo , Neoplasias de la Mama/prevención & control , Diferenciación Celular , Daño del ADN , ADN Helicasas/metabolismo , Reparación del ADN , Células Epiteliales/metabolismo , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/metabolismo , Glándulas Mamarias Humanas/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Acetaldehído/farmacología , Proteína BRCA1/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Cisplatino/farmacología , ADN Helicasas/genética , Células Epiteliales/efectos de los fármacos , Células Epiteliales/patología , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Femenino , Formaldehído/farmacología , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Glándulas Mamarias Humanas/patología , Mutación , Proteínas Nucleares/genética , Fenotipo , Interferencia de ARN , Transducción de Señal , Factores de Transcripción/genética , Transfección , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Mol Cell ; 44(2): 235-51, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21963239

RESUMEN

BRCA1 contributes to the response to UV irradiation. Utilizing its BRCT motifs, it is recruited during S/G2 to UV-damaged sites in a DNA replication-dependent but nucleotide excision repair (NER)-independent manner. More specifically, at UV-stalled replication forks, it promotes photoproduct excision, suppression of translesion synthesis, and the localization and activation of replication factor C complex (RFC) subunits. The last function, in turn, triggers post-UV checkpoint activation and postreplicative repair. These BRCA1 functions differ from those required for DSBR.


Asunto(s)
Proteína BRCA1/metabolismo , Daño del ADN , Rayos Ultravioleta , Proteína BRCA1/genética , Línea Celular , Roturas del ADN de Doble Cadena , Reparación del ADN/fisiología , Replicación del ADN , Humanos , Proteína de Replicación C/genética , Proteína de Replicación C/metabolismo
3.
PLoS Genet ; 12(3): e1005898, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26938916

RESUMEN

BAHD1 is a vertebrate protein that promotes heterochromatin formation and gene repression in association with several epigenetic regulators. However, its physiological roles remain unknown. Here, we demonstrate that ablation of the Bahd1 gene results in hypocholesterolemia, hypoglycemia and decreased body fat in mice. It also causes placental growth restriction with a drop of trophoblast glycogen cells, a reduction of fetal weight and a high neonatal mortality rate. By intersecting transcriptome data from murine Bahd1 knockout (KO) placentas at stages E16.5 and E18.5 of gestation, Bahd1-KO embryonic fibroblasts, and human cells stably expressing BAHD1, we also show that changes in BAHD1 levels alter expression of steroid/lipid metabolism genes. Biochemical analysis of the BAHD1-associated multiprotein complex identifies MIER proteins as novel partners of BAHD1 and suggests that BAHD1-MIER interaction forms a hub for histone deacetylases and methyltransferases, chromatin readers and transcription factors. We further show that overexpression of BAHD1 leads to an increase of MIER1 enrichment on the inactive X chromosome (Xi). In addition, BAHD1 and MIER1/3 repress expression of the steroid hormone receptor genes ESR1 and PGR, both playing important roles in placental development and energy metabolism. Moreover, modulation of BAHD1 expression in HEK293 cells triggers epigenetic changes at the ESR1 locus. Together, these results identify BAHD1 as a core component of a chromatin-repressive complex regulating placental morphogenesis and body fat storage and suggest that its dysfunction may contribute to several human diseases.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Nucleares/genética , Placentación/genética , Esteroides/metabolismo , Factores de Transcripción/genética , Animales , Cromatina/genética , Proteínas Cromosómicas no Histona/biosíntesis , Proteínas de Unión al ADN , Receptor alfa de Estrógeno/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteínas Nucleares/biosíntesis , Placenta/metabolismo , Embarazo , Factores de Transcripción/biosíntesis , Transcriptoma/genética
4.
Anal Bioanal Chem ; 410(1): 259-275, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29147745

RESUMEN

Body mass index is a known breast cancer risk factor due to, among other mechanisms, adipose-derived hormones. We developed a method for steroid hormone profiling in adipose tissue to evaluate healthy tissue around the tumor and define new biomarkers for cancer development. A semi-automated sample preparation method based on gel permeation chromatography and subsequent derivatization with trimethylsilyl (TMS) is presented. Progestagens and androgens were determined by GC-EI-MS/MS (LOQ 0.5 to 10 ng/g lipids). For estrogen measurement, a highly sensitive GC-APCI-MS/MS method was developed to reach the required lower limits of detection (0.05 to 0.1 ng/g lipids in matrix, 100-200 fg on column for pure standards). The combination of the two methods allows the screening of 27 androgens and progestagens and 4 estrogens from a single sample. Good accuracies and repeatabilities were achieved for each compound class at their respective limit of detection. The method was applied to determine steroid hormone profiles in adipose tissue of 51 patients, collected both at proximity and distant to the tumor. Out of the 31 tested steroid hormones, 14 compounds were detected in human samples. Pregnenolone, 17-hydroxypregnenolone, dehydroepiandrosterone (DHEA), and androstendione accounted together for 80% of the observed steroid hormone profiles, whereas the estrogens accounted for only 1%. These profiles did not differ based on sampling location, except for ß-estradiol; steroid hormone conversions from androgens to estrogens that potentially take place in adipose or tumoral tissue might not be detectable due a factor 100 difference in concentration of for example DHEA and ß-estradiol. Graphical Abstract Schematic overview of the determination of steroid hormones and metabolites in adipose tissue in proximity and distal to the tumor.


Asunto(s)
Tejido Adiposo/química , Neoplasias de la Mama/química , Mama/química , Estrógenos/análisis , Cromatografía de Gases y Espectrometría de Masas/métodos , Esteroides/análisis , Tejido Adiposo/patología , Andrógenos/análisis , Mama/patología , Neoplasias de la Mama/patología , Femenino , Humanos , Límite de Detección , Progestinas/análisis , Espectrometría de Masas en Tándem/métodos
5.
J Med Genet ; 54(9): 607-612, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28592523

RESUMEN

BACKGROUND: Sarcomas are rare mesenchymal malignancies whose pathogenesis is poorly understood; both environmental and genetic risk factors could contribute to their aetiology. METHODS AND RESULTS: We performed whole-exome sequencing (WES) in a familial aggregation of three individuals affected with soft-tissue sarcoma (STS) without TP53 mutation (Li-Fraumeni-like, LFL) and found a shared pathogenic mutation in CDKN2A tumour suppressor gene. We searched for individuals with sarcoma among 474 melanoma-prone families with a CDKN2A-/+ genotype and for CDKN2A mutations in 190 TP53-negative LFL families where the index case was a sarcoma. Including the initial family, eight independent sarcoma cases carried a germline mutation in the CDKN2A/p16INK4A gene. In five out of seven formalin-fixed paraffin-embedded sarcomas, heterozygosity was lost at germline CDKN2A mutations sites demonstrating complete loss of function. As sarcomas are rare in CDKN2A/p16INK4A carriers, we searched in constitutional WES of nine carriers for potential modifying rare variants and identified three in platelet-derived growth factor receptor (PDGFRA) gene. Molecular modelling showed that two never-described variants could impact the PDGFRA extracellular domain structure. CONCLUSION: Germline mutations in CDKN2A/P16INK4A, a gene known to predispose to hereditary melanoma, pancreatic cancer and tobacco-related cancers, account also for a subset of hereditary sarcoma. In addition, we identified PDGFRA as a candidate modifier gene.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p18 de las Quinasas Dependientes de la Ciclina/genética , Genes p16 , Mutación de Línea Germinal , Sarcoma/genética , Neoplasias de los Tejidos Blandos/genética , Femenino , Determinismo Genético , Predisposición Genética a la Enfermedad , Heterocigoto , Humanos , Masculino , Linaje , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Secuenciación del Exoma
6.
Biol Rev Camb Philos Soc ; 98(5): 1668-1686, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37157910

RESUMEN

Cancers rely on multiple, heterogeneous processes at different scales, pertaining to many biomedical fields. Therefore, understanding cancer is necessarily an interdisciplinary task that requires placing specialised experimental and clinical research into a broader conceptual, theoretical, and methodological framework. Without such a framework, oncology will collect piecemeal results, with scant dialogue between the different scientific communities studying cancer. We argue that one important way forward in service of a more successful dialogue is through greater integration of applied sciences (experimental and clinical) with conceptual and theoretical approaches, informed by philosophical methods. By way of illustration, we explore six central themes: (i) the role of mutations in cancer; (ii) the clonal evolution of cancer cells; (iii) the relationship between cancer and multicellularity; (iv) the tumour microenvironment; (v) the immune system; and (vi) stem cells. In each case, we examine open questions in the scientific literature through a philosophical methodology and show the benefit of such a synergy for the scientific and medical understanding of cancer.


Asunto(s)
Neoplasias , Filosofía , Investigación , Estudios Interdisciplinarios
7.
Haematologica ; 97(1): 9-14, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21933857

RESUMEN

BACKGROUND: Congenital secondary erythrocytoses are due to deregulation of hypoxia inducible factor resulting in overproduction of erythropoietin. The most common germline mutation identified in the hypoxia signaling pathway is the Arginine 200-Tryptophan mutant of the von Hippel-Lindau tumor suppressor gene, resulting in Chuvash polycythemia. This mutant displays a weak deficiency in hypoxia inducible factor α regulation and does not promote tumorigenesis. Other von Hippel-Lindau mutants with more deleterious effects are responsible for von Hippel-Lindau disease, which is characterized by the development of multiple tumors. Recently, a few mutations in gene for the prolyl hydroxylase domain 2 protein (PHD2) have been reported in cases of congenital erythrocytosis not associated with tumor formation with the exception of one patient with a recurrent extra-adrenal paraganglioma. DESIGN AND METHODS: Five PHD2 variants, four of which were novel, were identified in patients with erythrocytosis. These PHD2 variants were functionally analyzed and compared with the PHD2 mutant previously identified in a patient with polycythemia and paraganglioma. The capacity of PHD2 to regulate the activity, stability and hydroxylation of hypoxia inducible factor α was assessed using hypoxia-inducible reporter gene, one-hybrid and in vitro hydroxylation assays, respectively. RESULTS: This functional comparative study showed that two categories of PHD2 mutants could be distinguished: one category with a weak deficiency in hypoxia inducible factor α regulation and a second one with a deleterious effect; the mutant implicated in tumor occurrence belongs to the second category. CONCLUSIONS: As observed with germline von Hippel-Lindau mutations, there are functional differences between the PHD2 mutants with regards to hypoxia inducible factor regulation. PHD2 mutation carriers do, therefore, need careful medical follow-up, since some mutations must be considered as potential candidates for tumor predisposition.


Asunto(s)
Mutación de Línea Germinal , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Proteínas Mutantes/metabolismo , Policitemia/genética , Policitemia/metabolismo , Procolágeno-Prolina Dioxigenasa/metabolismo , Adolescente , Adulto , Secuencia de Bases , Células Cultivadas , Femenino , Células HEK293 , Humanos , Hidrólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Masculino , Persona de Mediana Edad , Procolágeno-Prolina Dioxigenasa/genética , Adulto Joven
8.
J Med Genet ; 48(4): 226-34, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21398687

RESUMEN

BACKGROUND: Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an autosomal dominant disorder predisposing humans to cutaneous and uterine leiomyomas; in 20% of affected families, type 2 papillary renal cell cancers (PRCCII) also occur with aggressive course and poor prognosis. HLRCC results from heterozygous germline mutations in the tumour suppressor fumarate hydratase (FH) gene. METHODS: As part of the French National Cancer Institute (INCa) 'Inherited predispositions to kidney cancer' network, sequence analysis and a functional study of FH were preformed in 56 families with clinically proven or suspected HLRCC and in 23 patients with isolated PRCCII (5 familial and 18 sporadic). RESULTS: The study identified 32 different germline FH mutations (15 missense, 6 frameshifts, 4 nonsense, 1 deletion/insertion, 5 splice site, and 1 complete deletion) in 40/56 (71.4%) families with proven or suspected HLRCC and in 4/23 (17.4%) probands with PRCCII alone, including 2 sporadic cases. 21 of these were novel and all were demonstrated as deleterious by significant reduction of FH enzymatic activity. In addition, 5 asymptomatic parents in 3 families were confirmed as carrying disease-causing mutations. CONCLUSIONS: This study identified and characterised 21 novel FH mutations and demonstrated that PRCCII can be the only one manifestation of HLRCC. Due to the incomplete penetrance of HLRCC, the authors propose to extend the FH mutation analysis to every patient with PRCCII occurring before 40 years of age or when renal tumour harbours characteristic histologic features, in order to discover previously ignored HLRCC affected families.


Asunto(s)
Carcinoma de Células Renales/genética , Fumarato Hidratasa/genética , Neoplasias Renales/genética , Mutación , Adulto , Anciano , Línea Celular Tumoral , Codón sin Sentido , Femenino , Mutación del Sistema de Lectura , Eliminación de Gen , Reordenamiento Génico , Genotipo , Mutación de Línea Germinal , Humanos , Mutación INDEL , Leiomiomatosis/congénito , Leiomiomatosis/genética , Masculino , Persona de Mediana Edad , Mutación Missense , Síndromes Neoplásicos Hereditarios , Linaje , Neoplasias Cutáneas , Neoplasias Uterinas
9.
Proc Natl Acad Sci U S A ; 106(33): 13826-31, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666599

RESUMEN

Gene silencing via heterochromatin formation plays a major role in cell differentiation and maintenance of homeostasis. Here we report the identification and characterization of a novel heterochromatinization factor in vertebrates, bromo adjacent homology domain-containing protein 1 (BAHD1). This nuclear protein interacts with HP1, MBD1, HDAC5, and several transcription factors. Through electron and immunofluorescence microscopy studies, we show that BAHD1 overexpression directs HP1 to specific nuclear sites and promotes the formation of large heterochromatic domains, which lack acetyl histone H4 and are enriched in H3 trimethylated at lysine 27 (H3K27me3). Furthermore, ectopically expressed BAHD1 colocalizes with the heterochromatic inactive X chromosome (Xi). The BAH domain is required for BAHD1 colocalization with H3K27me3, but not with the Xi chromosome. As highlighted by whole genome microarray analysis of BAHD1 knockdown cells, BAHD1 represses several proliferation and survival genes, in particular the insulin-like growth factor II gene (IGF2). When overexpressed, BAHD1 specifically binds the CpG-rich P3 promoter of IGF2, which increases MBD1 and HDAC5 targeting at this locus. This region contains DNA-binding sequences for the transcription factor SP1, with which BAHD1 coimmunoprecipitates. Collectively, these findings provide evidence that BAHD1 acts as a silencer by recruiting at specific promoters a set of proteins that coordinate heterochromatin assembly.


Asunto(s)
Proteínas Cromosómicas no Histona/fisiología , Silenciador del Gen , Heterocromatina/química , Proteínas Nucleares/genética , Proteínas Nucleares/fisiología , Cromatina/química , Mapeo Cromosómico , Islas de CpG , Heterocromatina/metabolismo , Histonas/química , Humanos , Factor II del Crecimiento Similar a la Insulina/metabolismo , Lisina/química , Microscopía Fluorescente/métodos , Modelos Genéticos , Unión Proteica , Estructura Terciaria de Proteína , Transcripción Genética
10.
iScience ; 25(5): 104217, 2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35494254

RESUMEN

Since the discovery of oncogenes and tumor suppressor genes in the late past century, cancer research has been overwhelmingly focused on the genetics and biology of tumor cells and hence has addressed mostly cell-autonomous processes with emphasis on traditional driver/passenger genetic models. Nevertheless, over that same period, multiple seminal observations have accumulated highlighting the role of non-cell autonomous effectors in tumor growth and metastasis. However, given that cell autonomous and non-autonomous events are observed together at the time of diagnosis, it is in fact impossible to know whether the malignant transformation is initiated by cell autonomous oncogenic events or by non-cell autonomous conditions generated by alterations of the tissue-body ecosystem. This review aims at addressing this issue by taking the option of defining malignancy as a complex genetic trait incorporating genetically determined reciprocal interactions between tumor cells and tissue-body ecosystem.

11.
N Engl J Med ; 359(25): 2685-92, 2008 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-19092153

RESUMEN

Prolyl hydroxylase domain (PHD) proteins play a major role in regulating the hypoxia-inducible factor (HIF) that induces expression of genes involved in angiogenesis, erythropoiesis, and cell metabolism, proliferation, and survival. Germ-line mutations in the prolyl hydroxylase domain 2 gene (PHD2) have been reported in patients with familial erythrocytosis but not in association with tumors. We describe a patient with erythrocytosis and recurrent paraganglioma who carries a newly discovered PHD2 mutation. This mutation affects PHD2 function and stabilizes HIF-alpha proteins. In addition, we demonstrate loss of heterozygosity of PHD2 in the tumor, suggesting that PHD2 could be a tumor-suppressor gene.


Asunto(s)
Mutación de Línea Germinal , Pérdida de Heterocigocidad , Neoplasias del Mediastino/genética , Paraganglioma/genética , Policitemia/genética , Procolágeno-Prolina Dioxigenasa/genética , Adulto , Femenino , Proteína de la Hemocromatosis , Antígenos de Histocompatibilidad Clase I/genética , Homocigoto , Humanos , Prolina Dioxigenasas del Factor Inducible por Hipoxia , Masculino , Proteínas de la Membrana/genética , Neoplasias Primarias Secundarias/genética , Linaje , Policitemia/congénito , Policitemia/diagnóstico , Procolágeno-Prolina Dioxigenasa/metabolismo , Análisis de Secuencia de ADN
13.
Front Oncol ; 10: 1506, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974182

RESUMEN

The tissue stroma plays a major role in tumors' natural history. Most programs for tumor progression are not activated as cell-autonomous processes but under the conditions of cross-talks between tumor and stroma. Adipose tissue is a major component of breast stroma. This study compares adipose tissues in tumor-bearing breasts to those in tumor-free breasts with the intention of defining a signature that could translate into markers of cancer risk. In tumor-bearing breasts, we sampled adipose tissues adjacent to, or distant from the tumor. Parameters studied included: adipocytes size and density, immune cell infiltration, vascularization, secretome and gene expression. Adipose tissues from tumor-bearing breasts, whether adjacent to or distant from the tumor, do not differ from each other by any of these parameters. By contrast, adipose tissues from tumor-bearing breasts have the capacity to secrete twice as much interleukin 8 (IL-8) than those from tumor-free breasts and differentially express a set of 137 genes of which a significant fraction belongs to inflammation, integrin and wnt signaling pathways. These observations show that adipose tissues from tumor-bearing breasts have a distinct physiological status from those from tumor-free breasts. We propose that this constitutive status contributes as a non-cell autonomous process to determine permissiveness for tumor growth.

14.
Mol Cancer Res ; 17(1): 54-69, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30257991

RESUMEN

BRCA1 mutations have been identified that increase the risk of developing hereditary breast and ovarian cancers. Genetic screening is now offered to patients with a family history of cancer, to adapt their treatment and the management of their relatives. However, a large number of BRCA1 variants of uncertain significance (VUS) are detected. To better understand the significance of these variants, a high-throughput structural and functional analysis was performed on a large set of BRCA1 VUS. Information on both cellular localization and homology-directed DNA repair (HR) capacity was obtained for 78 BRCT missense variants in the UMD-BRCA1 database and measurement of the structural stability and phosphopeptide-binding capacities was performed for 42 mutated BRCT domains. This extensive and systematic analysis revealed that most characterized causal variants affect BRCT-domain solubility in bacteria and all impair BRCA1 HR activity in cells. Furthermore, binding to a set of 5 different phosphopeptides was tested: all causal variants showed phosphopeptide-binding defects and no neutral variant showed such defects. A classification is presented on the basis of mutated BRCT domain solubility, phosphopeptide-binding properties, and VUS HR capacity. These data suggest that HR-defective variants, which present, in addition, BRCT domains either insoluble in bacteria or defective for phosphopeptide binding, lead to an increased cancer risk. Furthermore, the data suggest that variants with a WT HR activity and whose BRCT domains bind with a WT affinity to the 5 phosphopeptides are neutral. The case of variants with WT HR activity and defective phosphopeptide binding should be further characterized, as this last functional defect might be sufficient per se to lead to tumorigenesis. IMPLICATIONS: The analysis of the current study on BRCA1 structural and functional defects on cancer risk and classification presented may improve clinical interpretation and therapeutic selection.


Asunto(s)
Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Fosfopéptidos/genética , Fosfopéptidos/metabolismo , Animales , Neoplasias de la Mama/patología , Femenino , Predisposición Genética a la Enfermedad , Pruebas Genéticas , Recombinación Homóloga , Humanos , Ratones , Modelos Moleculares , Mutación Missense , Factores de Riesgo
16.
J Clin Invest ; 114(1): 77-84, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15232614

RESUMEN

Paris-Trousseau syndrome (PTS; also known as Jacobsen syndrome) is characterized by several congenital anomalies including a dysmegakaryopoiesis with two morphologically distinct populations of megakaryocytes (MKs). PTS patients harbor deletions on the long arm of chromosome 11, including the FLI1 gene, which encodes a transcription factor essential for megakaryopoiesis. We show here that lentivirus-mediated overexpression of FLI1 in patient CD34(+) cells restores the megakaryopoiesis in vitro, indicating that FLI1 hemizygous deletion contributes to the PTS hematopoietic defects. FISH analysis on pre-mRNA and single-cell RT-PCR revealed that FLI1 expression is mainly monoallelic in CD41(+)CD42(-) progenitors, while it is predominantly biallelic in the other stages of megakaryopoiesis. In PTS cells, the hemizygous deletion of FLI1 generates a subpopulation of CD41(+)CD42(-) cells completely lacking FLI1 transcription. We propose that the absence of FLI1 expression in these CD41(+)CD42(-) cells might prevent their differentiation, which could explain the segregation of the PTS MKs into two subpopulations: one normal and one composed of small immature MKs undergoing a massive lysis, presumably originating from either FLI1(+) or FLI1(-) CD41(+)CD42(-) cells, respectively. Thus, we point to the role of transient monoallelic expression of a gene essential for differentiation in the genesis of human haploinsufficiency-associated disease and suggest that such a mechanism may be involved in the pathogenesis of other congenital or acquired genetic diseases.


Asunto(s)
Proteínas de Unión al ADN/genética , Eliminación de Gen , Trombocitopenia/genética , Transactivadores/genética , Antígenos CD/genética , Secuencia de Bases , Línea Celular , Cartilla de ADN , Proteínas de Unión al ADN/metabolismo , Citometría de Flujo , Humanos , Discapacidad Intelectual/genética , Proteína Proto-Oncogénica c-fli-1 , Proteínas Recombinantes/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Síndrome , Trombocitopenia/sangre , Transactivadores/metabolismo , Transfección
17.
Fam Cancer ; 6(1): 153-7, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-16944269

RESUMEN

A high frequency of skewed X-chromosome inactivation has been reported in peripheral blood lymphocytes from early onset breast cancer or invasive ovarian cancer patients. Recent findings have shown that breast and ovarian carcinoma cells from BRCA1 mutation carrier women lack the hallmarks of inactive X chromatin structure. These observations suggested that loss of functional BRCA1 in female cells may perturb the process of X inactivation and have lead us to the hypothesis that analysis of skewing could be used as a predictive test for BRCA1 germline mutation in lymphocytes from breast cancer patients. In the present study, we have compared the X inactivation pattern in lymphoblastoid cell lines from 38 females carrying heterozygous BRCA1 mutation to 41 controls. X inactivation analysis was assessed on the polymorphic CAG repeat within the human androgen receptor gene. Our observations rule out an effect of a monoallelic BRCA1 germline mutation on the choice of inactivated chromosome X and therefore the possibility of using analysis of Xi skewing as a predictive test for BRCA1 germline mutation carrier status.


Asunto(s)
Cromosomas Humanos X/genética , Genes BRCA1 , Polimorfismo Genético , Inactivación del Cromosoma X/genética , Adulto , Anciano , Biomarcadores de Tumor , Neoplasias de la Mama/genética , Línea Celular Tumoral , Femenino , Mutación de Línea Germinal , Heterocigoto , Humanos , Persona de Mediana Edad , Neoplasias Ováricas/genética , Receptores Androgénicos/genética , Repeticiones de Trinucleótidos/genética
18.
Cancer Res ; 62(13): 3883-7, 2002 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-12097304

RESUMEN

The physiopathology of cancer cells is the result of very complex signaling networks that represent in many cases distortions of the orderly networks regulating the physiology of normal cells. These networks are the consequence of the expression of, or the lack of expression of, genes, mutated or not, which represent the genomic profile of different types of or of individual cancers. The complex signaling pathways, the cross-talks among them, and the redundancies existing for several of them mediate not only the transmission of signals from the cell environment to the nucleus but also that from the nucleus to the other cellular components whose function is involved in cell proliferation, apoptosis, or differentiation. Modern approaches to cancer therapy and also prevention are aimed at identifying new molecular targets, pivotal to the life of the cancer cell, which would provide for specific sites of intervention. In the face of the enormous complexity of the phenomena on which the life of cancer cells is based, it is both difficult to identify unique specific target for intervention and important to develop analytical tools and approaches capable to identify them for further exploitation. This was the main subject of the Symposium. Consideration was given to: (a) tumor genotypic analysis through expression array evaluation and definition of cancer transcriptomes in studies aimed at identifying determinants of specific characteristics of cancer cells; (b) approaches based on the knowledge gained in this analysis that would lead to the visualization of new targets exploitable for antitumor action; and (c) multifactorial analysis of the complex interactions regulating cancer cells and methods to comprehend the complexity of molecular models and validate their functional relevance.


Asunto(s)
Neoplasias/fisiopatología , Animales , Humanos , Neoplasias/genética , Neoplasias/terapia
19.
Cancer Res ; 62(3): 764-72, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11830531

RESUMEN

Treatment of malignant gliomas remains a major challenge in adults and children because of high treatment failure. The E1B 55 kDa-gene deleted adenovirus, ONYX-015 (ONYX Pharmaceuticals), was demonstrated to replicate selectively in and lyse tumor cells. Currently ongoing clinical trials of ONYX-015 in head and neck tumors are promising. Here, we demonstrate ONYX-015-mediated cell lysis and antitumor activity in three of four s.c. human malignant glioma xenografts deriving from primary tumors. Intratumoral injections of ONYX-015, 1 x 10(8) plaque-forming units daily for 5 consecutive days, yielded significant tumor growth delay in the p53 mutant xenografts IGRG88 and the p53 wild-type IGRG93 and IGRG121 treated at an advanced tumor stage. The p53 wild-type tumors IGRG93 and IGRG121 experienced 45% and 82% complete tumor regressions. Four and 8 of 11 animals, respectively, survived tumor free 4 months after treatment. Widespread intratumoral adenoviral replication was observed in tumor cells of these two xenografts compared with only scattered replication in the p53-mutant tumors. In addition to a fast tumor growth rate, wild-type p53 status was associated with increased antitumor activity of the E1B-attenuated virus, and induction of functional p53 may therefore determine adenoviral cytolysis in tumor cells. In conclusion, ONYX-015 displayed a major antitumor activity in human xenografts derived from primary malignant glioma supporting its development in the treatment of these highly malignant tumors.


Asunto(s)
Adenoviridae/fisiología , Proteínas E1B de Adenovirus/genética , Glioblastoma/terapia , Glioblastoma/virología , Proteína p53 Supresora de Tumor/fisiología , Adenoviridae/genética , Animales , Efecto Citopatogénico Viral , Femenino , Eliminación de Gen , Regulación Neoplásica de la Expresión Génica , Glioblastoma/metabolismo , Humanos , Ratones , Ratones Desnudos , Persona de Mediana Edad , Receptores Virales/biosíntesis , Activación Transcripcional , Proteína p53 Supresora de Tumor/biosíntesis , Proteína p53 Supresora de Tumor/genética , Replicación Viral , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Oncotarget ; 7(29): 45317-45330, 2016 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-27246982

RESUMEN

Women with inherited BRCA1 mutations have an elevated risk (40-80%) for developing breast and ovarian cancers. Reproductive history has been reported to alter this risk, suggesting a relationship between ovarian hormone signaling and BRCA1-related tumor development. BRCA1 interactions with estrogen receptor (ER) and progesterone receptor (PR) signaling were previously described in human breast cancer cell lines and mouse models. However, few studies have examined the effect of ovarian hormone regulation in normal human breast tissues bearing a heterozygous BRCA1 mutation. This study compares the proliferation level (Ki67) and the expression of ER, PR, and of the PR target gene, fatty acid synthase (FASN), in histologically normal breast tissues from women with BRCA1 mutations (BRCA1+/mut, n=23) or without BRCA1 mutations (BRCA1+/+, n=28). BRCA1+/mut tissues showed an increased proliferation and impaired hormone receptor expression with a marked loss of the PR isoform, PR-B. Responses to estradiol and progesterone treatments in BRCA1+/mut and BRCA1+/+ breast tissues were studied in a mouse xenograft model, and showed that PR and FASN expression were deregulated in BRCA1+/mut breast tissues. Progesterone added to estradiol treatment increased the proliferation in a subset of BRCA1+/mut breast tissues. The PR inhibitor, ulipristal acetate (UPA), was able to reverse this aberrant progesterone-induced proliferation. This study suggests that a subset of women with BRCA1 mutations could be candidates for a UPA treatment as a preventive breast cancer strategy.


Asunto(s)
Neoplasias de la Mama/prevención & control , Mama/patología , Genes BRCA1 , Mutación , Receptores de Progesterona/fisiología , Adulto , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Estradiol/farmacología , Femenino , Humanos , Ratones , Persona de Mediana Edad , Norpregnadienos/farmacología , Receptores de Estrógenos/análisis , Receptores de Progesterona/análisis , Receptores de Progesterona/antagonistas & inhibidores , Transducción de Señal/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA