Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nutr ; 153(1): 56-65, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913479

RESUMEN

BACKGROUND: Pregnancy and postpartum are periods of intense changes in women's metabolism. The knowledge of the metabolites and maternal factors underlying these changes is limited. OBJECTIVES: We aimed to investigate the maternal factors that could influence serum metabolome changes from late pregnancy to the first months of postpartum. METHODS: Sixty-eight healthy women from a Brazilian prospective cohort were included. Maternal blood and general characteristics were collected during pregnancy (28-35 wk) and postpartum (27-45 d). A targeted metabolomics approach was applied to quantify 132 serum metabolites, including amino acids, biogenic amines, acylcarnitines, lysophosphatidylcholines (LPC), diacyl phosphatidylcholines (PC), alkyl:acyl phosphatidylcholines (PC-O), sphingomyelins with (SM) and without hydroxylation [SM(OH)], and hexoses. Metabolome changes from pregnancy to postpartum were measured as log2 fold change (log2FC), and simple linear regressions were employed to evaluate associations between maternal variables and metabolite log2FC. Multiple comparison-adjusted P values of < 0.05 were considered significant. RESULTS: Of 132 metabolites quantified in serum, 90 changed from pregnancy to postpartum. Most metabolites belonging to PC and PC-O classes decreased, whereas most LPC, acylcarnitines, biogenic amines, and a few amino acids increased in postpartum. Maternal prepregnancy body mass index (ppBMI) showed positive associations with leucine and proline. A clear opposite change pattern was observed for most metabolites across ppBMI categories. Few phosphatidylcholines were decreased in women with normal ppBMI, while an increase was observed in women with obesity. Similarly, women with high postpartum levels of total cholesterol, LDL cholesterol, and non-HDL cholesterol showed increased sphingomyelins, whereas a decrease was observed for women with lower levels of those lipoproteins. CONCLUSIONS: The results revealed several maternal serum metabolomic changes from pregnancy to postpartum, and the maternal ppBMI and plasma lipoproteins were associated with these changes. We highlight the importance of the nutritional care of women prepregnancy to improve their metabolic risk profile.


Asunto(s)
Metaboloma , Esfingomielinas , Humanos , Embarazo , Femenino , Índice de Masa Corporal , Estudios Prospectivos , Metabolómica/métodos , Periodo Posparto , Lipoproteínas , Aminoácidos , Colesterol , Fosfatidilcolinas , Aminas Biogénicas
2.
Crit Rev Food Sci Nutr ; 63(10): 1352-1389, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34387521

RESUMEN

Monoterpenes, volatile metabolites produced by plants, are involved in the taste and aroma perception of fruits and vegetables and have been used for centuries in gastronomy, as food preservatives and for therapeutic purposes. Biological activities such as antimicrobial, analgesic and anti-inflammatory are well-established for some of these molecules. More recently, the ability of monoterpenes to regulate energy metabolism, and exert antidiabetic, anti-obesity and gut microbiota modulation activities have been described. Despite their promising health effects, the lack of reliable quantification of monoterpenes in food, hindered the investigation of their role as dietary bioactive compounds in epidemiological studies. Moreover, only few studies have documented the biotransformation of these compounds and identified the monoterpene metabolites with biological activity. This review presents up-to-date knowledge about the occurrence of monoterpenes in food, their bioavailability and potential role in the modulation of intermediate metabolism and inflammation, focusing on novel findings of molecular mechanisms, underlining research gaps and new avenues to be explored.


Asunto(s)
Monoterpenos , Plantas , Monoterpenos/farmacología , Monoterpenos/metabolismo , Plantas/metabolismo , Frutas/metabolismo , Antiinflamatorios/farmacología
3.
J Nutr ; 152(9): 2023-2030, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35641174

RESUMEN

BACKGROUND: Advances in technology have led to the identification of a greater number of metabolites related to diet. Although fruit intake biomarkers have been reported in some studies, these findings require further replication, considering the relevance of fruits for diet quality and health. OBJECTIVES: The aim of this study was to explore the associations of a set of potential urinary biomarkers of diet, assessed using a targeted metabolomics approach, with self-reported fruit intake data in participants of a computer-assisted 24-h dietary recall (GloboDiet software) validation study. METHODS: A total of 93 individuals aged 43-72 y, 54% female, participated in this study. The subjects were a subsample of the Longitudinal Study of Adult Health (ELSA-Brasil). A 24-h dietary recall was obtained with the aid of GloboDiet software matching a 24-h urine sample from each participant. Candidate biomarkers were selected in a literature search and identified in urine by LC coupled to high-resolution MS. Spearman correlation analyses were performed between fruit intake and each biomarker. RESULTS: Spearman correlation analysis showed that total fruits intake was significantly correlated with citric acid (ρ = 0.213, P = 0.041), ferulic acid sulfate I (ρ = 0.240, P = 0.020), hesperetin glucuronide/homoeriodictyol glucuronide (ρ = 0.303, P = 0.003), hydroxyhippuric acid (ρ = 0.239, P = 0.021), homovanillic alcohol sulfate (ρ = 0.339, P = 0.001), methylgallic acid sulfate (ρ = 0.268, P = 0.009), naringenin glucuronide (NG; ρ = 0.278, P = 0.007), proline betaine (PB; ρ = 0.305, P = 0.003), syringic acid sulfate (ρ = 0.210, P = 0.044), and sinapic acid sulfate (ρ = 0.412, P < 0.001). Among them, 3 have been described in literature as promising biomarkers for intake of total fruit, oranges, and citrus fruit: NG, hesperetin glucuronide, and PB. CONCLUSIONS: Associations of total fruits intake with urinary measurements indicate the potential usefulness of dietary biomarkers in the Brazilian population as a complement to self-reported dietary assessments.


Asunto(s)
Frutas , Glucurónidos , Biomarcadores/orina , Brasil , Estudios Transversales , Dieta , Femenino , Humanos , Estudios Longitudinales , Masculino , Metabolómica , Sulfatos
4.
Phytother Res ; 36(2): 951-962, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35018684

RESUMEN

We investigate the effect of the banana green peels extract (BPE) as a preventive treatment against NAFLD in high-fat diet fed mice. Mice received daily doses of 100 or 250 mg/kg of BPE for 12 weeks along with the high-fat diet. BPE reduced weight gain (p < .0001), adipose tissue hypertrophy (p < .0001), and improved glucose homeostasis (p < .0001). Plasma levels of glucose-dependent insulinotropic polypeptide, triglycerides, total cholesterol, LDL-cholesterol, non-esterified fatty acids, aspartate and alanine transaminase, leptin, and resistin were decreased in BPE treated mice (p < .05). BPE effects on lipid metabolism were associated with decreased gene expression of lipogenic enzymes and increased expression of enzymes related to fatty acid and cholesterol degradation (p < .05). Plasma and liver bile acid (BA) profiles were modulated by BPE, with positive correlations between specific BA and UCP-1, CPT-1 and PGC-1ß expression in brown adipose tissue (p < .05). BPE reduced hepatic steatosis and inflammation, possibly due to reduced p65 NF-κB nuclear translocation (p < .05) and modulation of oxidative stress (p < .05). These data indicate that BPE is a source of phytochemical compounds with promising effects toward the prevention of metabolic disorders associated with obesity.


Asunto(s)
Musa , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Metabolismo de los Lípidos , Hígado , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología
5.
Cell Physiol Biochem ; 53(1): 200-214, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31287628

RESUMEN

BACKGROUND/AIMS: Skeletal mass loss is reported in several catabolic conditions and it has been associated with a reduced intracellular L-glutamine content. We investigated the association of intracellular L-glutamine concentration with the protein content in skeletal muscle cells. METHODS: We cultivated C2C12 myotubes in the absence or presence of 2 (reference condition), 8 or 16 mM L-glutamine for 48 hours, and the variations in the contents of amino acids and proteins measured. We used an inhibitor of L-glutamine synthesis (L-methionine sulfoximine - MSO) to promote a further reduction in intracellular L-glutamine levels. Amino acids contents in cells and media were measured using LC-MS/MS. We measured changes in phosphorylated Akt, RP-S6, and 4E-BP1contents in the absence or presence of insulin by western blotting. RESULTS: Reduced intracellular L-glutamine concentration was associated with decreased protein content and increased protein breakdown. Low intracellular glutamine levels were also associated with decreased p-Akt contents in the presence of insulin. A further decrease in intracellular L-glutamine caused by glutamine synthetase inhibitor reduced protein content and levels of amino acids generated from glutamine metabolism and increased bAib still further. Cells exposed to high medium glutamine levels did not have any change in protein content but exhibited increased contents of the amino acids derived from L-glutamine metabolism. CONCLUSION: Intracellular L-glutamine levels per se play a role in the control of protein content in skeletal muscle myotubes.


Asunto(s)
Proteínas Portadoras/metabolismo , Glutamina/metabolismo , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína S6 Ribosómica/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Portadoras/análisis , Proteínas de Ciclo Celular , Línea Celular , Cromatografía Liquida , Factores Eucarióticos de Iniciación , Glutamina/análisis , Insulina/análisis , Ratones , Fibras Musculares Esqueléticas/química , Fosfoproteínas/análisis , Fosforilación , Proteínas Proto-Oncogénicas c-akt/análisis , Proteína S6 Ribosómica/análisis , Espectrometría de Masas en Tándem
6.
FASEB J ; 32(10): 5447-5458, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29718708

RESUMEN

Health has been defined as the capability of the organism to adapt to challenges. In this study, we tested to what extent comprehensively phenotyped individuals reveal differences in metabolic responses to a standardized mixed meal tolerance test (MMTT) and how these responses change when individuals experience moderate weight loss. Metabolome analysis was used in 70 healthy individuals. with profiling of ∼300 plasma metabolites during an MMTT over 8 h. Multivariate analysis of plasma markers of fatty acid catabolism identified 2 distinct metabotype clusters (A and B). Individuals from metabotype B showed slower glucose clearance, had increased intra-abdominal adipose tissue mass and higher hepatic lipid levels when compared with individuals from metabotype A. An NMR-based urine analysis revealed that these individuals also to have a less healthy dietary pattern. After a weight loss of ∼5.6 kg over 12 wk, only the subjects from metabotype B showed positive changes in the glycemic response during the MMTT and in markers of metabolic diseases. Our study in healthy individuals demonstrates that more comprehensive phenotyping can reveal discrete metabotypes with different outcomes in a dietary intervention and that markers of lipid catabolism in plasma could allow early detection of the metabolic syndrome.-Fiamoncini, J., Rundle, M., Gibbons, H., Thomas, E. L., Geillinger-Kästle, K., Bunzel, D., Trezzi, J.-P., Kiselova-Kaneva, Y., Wopereis, S., Wahrheit, J., Kulling, S. E., Hiller, K., Sonntag, D., Ivanova, D., van Ommen, B., Frost, G., Brennan, L., Bell, J. Daniel, H. Plasma metabolome analysis identifies distinct human metabotypes in the postprandial state with different susceptibility to weight loss-mediated metabolic improvements.


Asunto(s)
Metaboloma , Periodo Posprandial , Pérdida de Peso , Femenino , Humanos , Masculino , Síndrome Metabólico/sangre , Síndrome Metabólico/diagnóstico , Persona de Mediana Edad
7.
Am J Physiol Gastrointest Liver Physiol ; 313(4): G300-G312, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-28663304

RESUMEN

Bile acids (BA) are signaling molecules with a wide range of biological effects, also identified among the most responsive plasma metabolites in the postprandial state. We here describe this response to different dietary challenges and report on key determinants linked to its interindividual variability. Healthy men and women (n = 72, 62 ± 8 yr, mean ± SE) were enrolled into a 12-wk weight loss intervention. All subjects underwent an oral glucose tolerance test and a mixed-meal tolerance test before and after the intervention. BA were quantified in plasma by liquid chromatography-tandem mass spectrometry combined with whole genome exome sequencing and fecal microbiota profiling. Considering the average response of all 72 subjects, no effect of the successful weight loss intervention was found on plasma BA profiles. Fasting and postprandial BA profiles revealed high interindividual variability, and three main patterns in postprandial BA response were identified using multivariate analysis. Although the women enrolled were postmenopausal, effects of sex difference in BA response were evident. Exome data revealed the contribution of preselected genes to the observed interindividual variability. In particular, a variant in the SLCO1A2 gene, encoding the small intestinal BA transporter organic anion-transporting polypeptide-1A2 (OATP1A2), was associated with delayed postprandial BA increases. Fecal microbiota analysis did not reveal evidence for a significant influence of bacterial diversity and/or composition on plasma BA profiles. The analysis of plasma BA profiles in response to two different dietary challenges revealed a high interindividual variability, which was mainly determined by genetics and sex difference of host with minimal effects of the microbiota.NEW & NOTEWORTHY Considering the average response of all 72 subjects, no effect of the successful weight loss intervention was found on plasma bile acid (BA) profiles. Despite high interindividual variability, three main patterns in postprandial BA response were identified using multivariate analysis. A variant in the SLCO1A2 gene, encoding the small intestinal BA transporter organic anion-transporting polypeptide-1A2 (OATP1A2), was associated with delayed postprandial BA increases in response to both the oral glucose tolerance test and the mixed-meal tolerance test.


Asunto(s)
Ácidos y Sales Biliares/sangre , Ayuno/sangre , Periodo Posprandial/fisiología , Pérdida de Peso/fisiología , Femenino , Humanos , Masculino , Tasa de Depuración Metabólica , Persona de Mediana Edad
8.
Biochim Biophys Acta ; 1851(10): 1353-9, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26172853

RESUMEN

The rise in the prevalence of obesity and metabolic syndrome turned NAFLD as the most common cause of chronic liver diseases worldwide. Although the role of toll like receptors, especially TLR4, as activators of inflammatory pathways in liver diseases is well established, our goal was to investigate if TLR4 activation could modulate metabolic lipid pathways and alter the onset of NAFLD. We used LDL receptor-deficient mice (LDLrKO) fed with an atherogenic diet as a model. The role of TLR4 activation was evaluated by crossing LDLrKO mice with the TLR4 knockout mice. Animals were fed for 12weeks with high-fat high-cholesterol diet (HFD) containing 18% saturated fat and 1.25% cholesterol. TLR4/LDLr KO mice presented lower triacylglyceride (TAG) plasma levels when compared to LDLrKO, despite the type of diet ingested. HFD induced TAG and cholesterol accumulation in the liver of all mice genotypes studied, but TLR4/LDLr KO presented lower TAG accumulation than LDLrKO mice. Gene expression of TAG synthesis enzymes (ApoB100, MTTP, GPAT1 and GPAT4) was not differentially altered in TLR4/LDLr KO and LDLrKO mice. On the other hand, TLR4 deficiency enhanced the expression of several enzymes involved in the oxidation of fatty acids, as follows: ACOX, CPT-1, MTPa, MTBb, PBE and 3-ketoacyl-CoA thiolase. Acyl-carnitine plasma profile showed an increase in C0 and C2 concentration in TLR4/LDLr KO group, corroborating the hypothesis of increased fat oxidation. Our results indicate that TLR4 may have an important role in the onset of steatosis, once its depletion enhances fatty acid oxidation in the liver of mice, preventing triglyceride accumulation.


Asunto(s)
Dieta Aterogénica/efectos adversos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Colesterol/efectos adversos , Colesterol/farmacología , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Ácidos Grasos/efectos adversos , Ácidos Grasos/farmacología , Ratones , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , Receptor Toll-Like 4/genética , Triglicéridos/efectos adversos , Triglicéridos/farmacología
9.
Biochim Biophys Acta ; 1842(2): 186-91, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24211484

RESUMEN

The objective of this study was to investigate the impact of elevated tissue omega-3 (n-3) polyunsaturated fatty acids (PUFA) status on age-related glucose intolerance utilizing the fat-1 transgenic mouse model, which can endogenously synthesize n-3 PUFA from omega-6 (n-6) PUFA. Fat-1 and wild-type mice, maintained on the same dietary regime of a 10% corn oil diet, were tested at two different ages (2 months old and 8 months old) for various glucose homeostasis parameters and related gene expression. The older wild-type mice exhibited significantly increased levels of blood insulin, fasting blood glucose, liver triglycerides, and glucose intolerance, compared to the younger mice, indicating an age-related impairment of glucose homeostasis. In contrast, these age-related changes in glucose metabolism were largely prevented in the older fat-1 mice. Compared to the older wild-type mice, the older fat-1 mice also displayed a lower capacity for gluconeogenesis, as measured by pyruvate tolerance testing (PTT) and hepatic gene expression of phosphoenolpyruvate carboxykinase (PEPCK) and glucose 6 phosphatase (G6Pase). Furthermore, the older fat-1 mice showed a significant decrease in body weight, epididymal fat mass, inflammatory activity (NFκ-B and p-IκB expression), and hepatic lipogenesis (acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) expression), as well as increased peroxisomal activity (70-kDa peroxisomal membrane protein (PMP70) and acyl-CoA oxidase1 (ACOX1) expression). Altogether, the older fat-1 mice exhibit improved glucose homeostasis in comparison to the older wild-type mice. These findings support the beneficial effects of elevated tissue n-3 fatty acid status in the prevention and treatment of age-related chronic metabolic diseases.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Ácido Graso Desaturasas/metabolismo , Ácidos Grasos Omega-3/metabolismo , Intolerancia a la Glucosa/metabolismo , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Factores de Edad , Animales , Glucemia/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ácido Graso Desaturasas/genética , Ácido Graso Sintasas/genética , Ácido Graso Sintasas/metabolismo , Expresión Génica , Gluconeogénesis/genética , Glucosa/metabolismo , Intolerancia a la Glucosa/genética , Glucosa-6-Fosfatasa/genética , Glucosa-6-Fosfatasa/metabolismo , Homeostasis/genética , Immunoblotting , Insulina/sangre , Lipogénesis/genética , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
10.
Physiol Behav ; 276: 114453, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38159589

RESUMEN

BACKGROUNDS AND AIMS: Childhood obesity is increasing substantially across the world. The World Obesity Federation (WOF) and World Health Organization (WHO) predicted that in 2030 > 1 billion people will be obese, and by 2035 over 4 billion will reach obesity worldwide. According to WHO, the world soon cannot afford the economic cost of obesity, and we need to act to stop obesity acceleration now. Data in the literature supports that the first 1000 days of life are essential in preventing obesity and related adversities. Therefore, using basic research, the present a study that focuses on the immediate effect of overnutrition and serotonin modulation during the lactation period. METHODS: Using a neonatal overfeeding model, male Wistar rats were divided into four groups based on nutrition or serotonin modulation by pharmacological treatment up to 22 days of life. Cellular and mitochondrial function markers, oxidative stress biomarkers and mRNA levels of hedonic and homeostatic genes were evaluated. RESULTS: Our data showed that overfeeding during lactation decrease NAD/NADH ratio, citrate synthase activity, and increase ROS production. Lipid and protein oxidation were increased in overfed animals, with a decrease in antioxidant defenses, we also observe a differential expression of mRNA levels of homeostatic and hedonic genes. On the contrary, serotonin modulation with selective serotonin reuptake inhibitors treatment reduces harmful effects caused by overnutrition. CONCLUSION: Early effects of overnutrition significantly affect the prefrontal cortex at molecular and cellular level, which could mediate obesity-related neurodegenerative dysfunction.


Asunto(s)
Hipernutrición , Obesidad Infantil , Niño , Humanos , Ratas , Animales , Femenino , Masculino , Sobrepeso , Ratas Wistar , Serotonina , Hipernutrición/complicaciones , Hipernutrición/metabolismo , Ingestión de Alimentos , Corteza Prefrontal/metabolismo , ARN Mensajero
11.
Cell Biochem Funct ; 31(1): 65-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22915345

RESUMEN

Retinopathy, a common complication of diabetes, is characterized by an unbalanced production of nitric oxide (NO), a process regulated by nitric oxide synthase (NOS). We hypothesized that retinopathy might stem from changes in the insulin receptor substrate (IRS)/PI3K/AKT pathway and/or expression of NOS isoforms. Thus, we analysed the morphology and apoptosis index in retinas of obese rats in whom insulin resistance had been induced by a high-fat diet (HFD). Immunoblotting analysis revealed that the retinal tissue of HFD rats had lower levels of AKT(1) , eNOS and nNOS protein than those of samples taken from control animals. Furthermore, immunohistochemical analyses indicated higher levels of iNOS and 4-hydroxynonenal and a larger number of apoptotic nuclei in HFD rats. Finally, both the inner and outer retinal layers of HFD rats were thinner than those in their control counterparts. When considered alongside previous results, these patterns suggest two major ways in which HFD might impact animals: direct activity of ingested fatty acids and/or via insulin-resistance-induced changes in intracellular pathways. We discuss these possibilities in further detail and advocate the use of this animal model for further understanding relationships between retinopathy, metabolic syndrome and type 2 diabetes.


Asunto(s)
Grasas de la Dieta/toxicidad , Proteínas del Ojo/fisiología , Obesidad/fisiopatología , Proteínas Proto-Oncogénicas c-akt/fisiología , Degeneración Retiniana/etiología , Animales , Apoptosis , Astrocitos/patología , Glucemia/análisis , Retinopatía Diabética , Modelos Animales de Enfermedad , Ácidos Grasos/sangre , Proteínas Sustrato del Receptor de Insulina/fisiología , Resistencia a la Insulina , Peroxidación de Lípido , Lípidos/sangre , Hígado/patología , Masculino , Óxido Nítrico Sintasa de Tipo I/fisiología , Óxido Nítrico Sintasa de Tipo III/fisiología , Obesidad/sangre , Obesidad/complicaciones , Fosfatidilinositol 3-Quinasas/fisiología , Ratas , Ratas Wistar , Retina/metabolismo , Retina/patología , Degeneración Retiniana/sangre , Degeneración Retiniana/fisiopatología , Transducción de Señal
12.
J Nutr Biochem ; 120: 109411, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37423321

RESUMEN

Metabolic-associated fatty liver disease (MAFLD) is a condition characterized by excessive accumulation of triglycerides in hepatocytes, currently considered the number one cause of chronic liver disease. MAFLD is strongly associated with obesity, type 2 diabetes, hyperlipidaemia, and hypertension. Emphasis has been placed on the use of green tea (GT), produced from the Camellia sinensis plant, rich in antioxidants as polyphenols and catechins, on obesity and MAFLD treatment/prevention. Studies carried out in rodent models housed at a standard temperature (ST, 22°C) are being questioned as ST is a determining factor on generating changes in the physiology of immune response, and energy metabolism. On the other hand, it seems that thermoneutrality (TN, 28°C) represents a closer parallel to human physiology. In this perspective, we investigated the effects of GT (500 mg/kg of body weight, over 12 weeks, 5 days/week) by comparing mice housed at ST or TN in a model of MAFLD of diet-induced obese males C57Bl/6 mice. We show that the liver phenotype at TN exhibits a more severe MAFLD while GT ameliorates this condition. In parallel, GT restores the expression of genes involved in the lipogenic pathway, regardless of temperature, with slight modifications in lipolysis/fatty acid oxidation. We observed an increase promoted by GT in PPARα and PPARγ proteins independently of housing temperature and a dual pattern of bile acid synthesis. Thus, animals' conditioning temperature is a key factor that can interfere in the results involving obesity and MAFLD, although GT has beneficial effects against MAFLD independently of the housing temperature of mice.


Asunto(s)
Diabetes Mellitus Tipo 2 , , Masculino , Ratones , Humanos , Animales , Ratones Obesos , Temperatura , Vivienda , Diabetes Mellitus Tipo 2/complicaciones , Obesidad/metabolismo
13.
Am J Clin Nutr ; 118(3): 591-604, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37661105

RESUMEN

BACKGROUND: The capacity of an individual to respond to changes in food intake so that postprandial metabolic perturbations are resolved, and metabolism returns to its pre-prandial state, is called phenotypic flexibility. This ability may be a more important indicator of current health status than metabolic markers in a fasting state. AIM: In this parallel randomized controlled trial study, an energy-restricted healthy diet and 2 dietary challenges were used to assess the effect of weight loss on phenotypic flexibility. METHODS: Seventy-two volunteers with overweight and obesity underwent a 12-wk dietary intervention. The participants were randomized to a weight loss group (WLG) with 20% less energy intake or a weight-maintenance group (WMG). At weeks 1 and 12, participants were assessed for body composition by MRI. Concurrently, markers of metabolism and insulin sensitivity were obtained from the analysis of plasma metabolome during 2 different dietary challenges-an oral glucose tolerance test (OGTT) and a mixed-meal tolerance test. RESULTS: Intended weight loss was achieved in the WLG (-5.6 kg, P < 0.0001) and induced a significant reduction in total and regional adipose tissue as well as ectopic fat in the liver. Amino acid-based markers of insulin action and resistance such as leucine and glutamate were reduced in the postprandial phase of the OGTT in the WLG by 11.5% and 28%, respectively, after body weight reduction. Weight loss correlated with the magnitude of changes in metabolic responses to dietary challenges. Large interindividual variation in metabolic responses to weight loss was observed. CONCLUSION: Application of dietary challenges increased sensitivity to detect metabolic response to weight loss intervention. Large interindividual variation was observed across a wide range of measurements allowing the identification of distinct responses to the weight loss intervention and mechanistic insight into the metabolic response to weight loss.


Asunto(s)
Dieta , Sobrepeso , Pérdida de Peso , Sobrepeso/dietoterapia , Sobrepeso/metabolismo , Humanos , Masculino , Femenino , Adulto , Composición Corporal , Tejido Adiposo , Insulina/metabolismo , Biomarcadores
14.
Am J Physiol Endocrinol Metab ; 303(2): E272-82, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22621868

RESUMEN

The aim of this study was to investigate whether treatment with tributyrin (Tb; a butyrate prodrug) results in protection against diet-induced obesity and associated insulin resistance. C57BL/6 male mice fed a standard chow or high-fat diet were treated with Tb (2 g/kg body wt, 10 wk) and evaluated for glucose homeostasis, plasma lipid profile, and inflammatory status. Tb protected mice against obesity and obesity-associated insulin resistance and dyslipidemia without food consumption being affected. Tb attenuated the production of TNFα and IL-1ß by peritoneal macrophages and their expression in adipose tissue. Furthermore, in the adipose tissue, Tb reduced the expression of MCP-1 and infiltration by leukocytes and restored the production of adiponectin. These effects were associated with a partial reversion of hepatic steatosis, reduction in liver and skeletal muscle content of phosphorylated JNK, and an improvement in muscle insulin-stimulated glucose uptake and Akt signaling. Although part of the beneficial effects of Tb are likely to be secondary to the reduction in body weight, we also found direct protective actions of butyrate reducing TNFα production after LPS injection and in vitro by LPS- or palmitic acid-stimulated macrophages and attenuating lipolysis in vitro and in vivo. The results, reported herein, suggest that Tb may be useful for the treatment and prevention of obesity-related metabolic disorders.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Resistencia a la Insulina , Obesidad/prevención & control , Triglicéridos/uso terapéutico , Adiponectina/biosíntesis , Tejido Adiposo/efectos de los fármacos , Tejido Adiposo/metabolismo , Animales , Glucemia/efectos de los fármacos , Quimiocina CCL2/biosíntesis , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Inflamación/complicaciones , Inflamación/tratamiento farmacológico , Interleucina-1beta/biosíntesis , Lípidos/sangre , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Obesidad/etiología , Factor de Necrosis Tumoral alfa/biosíntesis
15.
J Strength Cond Res ; 26(9): 2507-14, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22067240

RESUMEN

Inflammatory response and neutrophil functions in players after a futsal match. J Strength Cond Res 26(9): 2507-2514, 2012-Futsal players suffer injuries resulting from muscle fatigue and contact or collision among players. Muscle lesions can be detected by measuring muscle lesion markers such as creatine kinase (CK) and lactate dehydrogenase (LDH) in plasma. After an initial lesion, there is an increase in the plasma levels of C-reactive protein (CRP) and proinflammatory cytokines. These mediators may activate neutrophils and contribute to tissue damage and increase susceptibility to invasive microorganisms. In this study, we investigated the effect of a futsal match on muscle lesion markers, cytokines, and CRP in elite players. The basal and stimulated neutrophil responsiveness after a match was also evaluated based on measurements of neutrophil necrosis, apoptosis, phagocytic capacity, reactive oxygen species (ROS) production, and cytokines (tumor necrosis factor-alpha [TNF-α], interleukin [IL]-8, IL-1ß, IL-10, and IL-1ra) production. Blood samples were taken from 16 players (26.4 ± 3.2 years, 70.2 ± 6.9 kg, 59.7 ± 5.1 ml·kg·min, sports experience of 4.4 ± 0.9 years) before and immediately after a match. Exercise increased the serum activities of CK (2.5-fold) and LDH (1.3-fold). Playing futsal also increased the serum concentrations of IL-6 (1.6-fold) and CRP (1.6-fold). The TNF-α, IL-1ß, IL-8, IL-1ra, and IL-10 serum levels were not modified in the conditions studied. The futsal match induced neutrophil apoptosis, as indicated by phosphatidylserine externalization (6.0-fold). The exercise induced priming of neutrophils by increasing ROS (1.3-fold), TNF-α (5.8-fold), and IL-1ß (4.8-fold) released in nonstimulated cells. However, in the stimulated condition, the exercise decreased neutrophil function, diminishing the release of ROS by phorbol myristate acetate-stimulated neutrophils (1.5-fold), and the phagocytic capacity (1.6-fold). We concluded that playing futsal induces inflammation, primes and activates neutrophils, and reduces the efficiency of neutrophil phagocytosis immediately after a match.


Asunto(s)
Mediadores de Inflamación/metabolismo , Músculo Esquelético/fisiología , Neutrófilos/fisiología , Fútbol/fisiología , Adulto , Apoptosis , Proteína C-Reactiva/análisis , Creatina Quinasa/sangre , Citocinas/sangre , Humanos , Interleucina-6/sangre , L-Lactato Deshidrogenasa/sangre , Masculino , Músculo Esquelético/lesiones , Neutrófilos/inmunología , Fagocitosis , Especies Reactivas de Oxígeno/metabolismo , Fútbol/lesiones
16.
Front Nutr ; 9: 933526, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36211489

RESUMEN

Food intake triggers extensive changes in the blood metabolome. The kinetics of these changes depend on meal composition and on intrinsic, health-related characteristics of each individual, making the assessment of changes in the postprandial metabolome an opportunity to assess someone's metabolic status. To enable the usage of dietary challenges as diagnostic tools, profound knowledge about changes that occur in the postprandial period in healthy individuals is needed. In this study, we characterize the time-resolved changes in plasma levels of 634 metabolites in response to an oral glucose tolerance test (OGTT), an oral lipid tolerance test (OLTT), and a mixed meal (SLD) in healthy young males (n = 15). Metabolite levels for samples taken at different time points (20 per individual) during the challenges were available from targeted (132 metabolites) and non-targeted (502 metabolites) metabolomics. Almost half of the profiled metabolites (n = 308) showed a significant change in at least one challenge, thereof 111 metabolites responded exclusively to one particular challenge. Examples include azelate, which is linked to ω-oxidation and increased only in OLTT, and a fibrinogen cleavage peptide that has been linked to a higher risk of cardiovascular events in diabetes patients and increased only in OGTT, making its postprandial dynamics a potential target for risk management. A pool of 89 metabolites changed their plasma levels during all three challenges and represents the core postprandial response to food intake regardless of macronutrient composition. We used fuzzy c-means clustering to group these metabolites into eight clusters based on commonalities of their dynamic response patterns, with each cluster following one of four primary response patterns: (i) "decrease-increase" (valley-like) with fatty acids and acylcarnitines indicating the suppression of lipolysis, (ii) "increase-decrease" (mountain-like) including a cluster of conjugated bile acids and the glucose/insulin cluster, (iii) "steady decrease" with metabolites reflecting a carryover from meals prior to the study, and (iv) "mixed" decreasing after the glucose challenge and increasing otherwise. Despite the small number of subjects, the diversity of the challenges and the wealth of metabolomic data make this study an important step toward the characterization of postprandial responses and the identification of markers of metabolic processes regulated by food intake.

17.
Front Nutr ; 9: 932937, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35967802

RESUMEN

In recent years, bile acids (BA) have received great interest due to their pleiotropic biological activity and the presence of plasma membrane-bound and nuclear receptors. Moreover, BA in blood have been identified by metabolite screening approaches as biomarkers that are associated with various diseases and even with a human longevity phenotype. With the growing interest in the microbiota contribution to the health-disease trajectory, BA that undergo deconjugation and other modifications by bacteria in the large intestine have become a prime target as a microbiome diversity modifier. We here profiled BA by a quantitative and a semiquantitative approach in 15 healthy and phenotypically very similar young individuals for over a 36-h fasting period, an oral glucose tolerance test (OGTT), and an oral lipid tolerance test (OLTT). We demonstrate a remarkable heterogeneity of the responses and describe the different dynamics of the plasma changes that likely originate from different routes by which BA enters the peripheral blood, and that may represent a direct secretion from the liver into the blood and a route that reaches the blood as a spill-over after passing from the gallbladder through the intestine and the portal system. We discuss the finding that an individual transport process involved in the passage of BA could be a critical determinant in the kinetics of plasma appearance and the overall phenotypic variability found.

18.
Metabolites ; 12(12)2022 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-36557284

RESUMEN

Metabolic switching has been raised as an important phenomenon to be studied in relation to xenobiotic metabolites, since the dose of the exposure determines the formation of metabolites and their bioactivity. Limonene is a monoterpene mostly found in citrus fruits with health activity, and its phase II metabolites and activity are still not clear. The aim of this work was to evaluate the effects of D-limonene in the development of diet-induced obesity in mice and to investigate metabolites that could be generated in a study assessing different doses of supplementation. Animals were induced to obesity and supplemented with 0.1% or 0.8% D-limonene added to the feed. Limonene phase I and II metabolites were identified in liver and urine by LC-ESI-qToF-MS/MS. To the best of our knowledge, in this study three new phase I metabolites and ten different phase II metabolites were first attributed to D-limonene. Supplementation with 0.1% D-limonene was associated with lower weight gain and a trend to lower accumulation of adipose tissue deposits. The metabolites limonene-8,9-diol, perillic acid and perillic acid-8,9-diol should be explored in future research as anti-obesogenic agents as they were the metabolites most abundant in the urine of mice that received 0.1% D-limonene in their feed.

19.
Front Nutr ; 9: 898782, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35774538

RESUMEN

Insulin secretion following ingestion of a carbohydrate load affects a multitude of metabolic pathways that simultaneously change direction and quantity of interorgan fluxes of sugars, lipids and amino acids. In the present study, we aimed at identifying markers associated with differential responses to an OGTT a population of healthy adults. By use of three metabolite profiling platforms, we assessed these postprandial responses of a total of 202 metabolites in plasma of 72 healthy volunteers undergoing comprehensive phenotyping and of which half enrolled into a weight-loss program over a three-month period. A standard oral glucose tolerance test (OGTT) served as dietary challenge test to identify changes in postprandial metabolite profiles. Despite classified as healthy according to WHO criteria, two discrete clusters (A and B) were identified based on the postprandial glucose profiles with a balanced distribution of volunteers based on gender and other measures. Cluster A individuals displayed 26% higher postprandial glucose levels, delayed glucose clearance and increased fasting plasma concentrations of more than 20 known biomarkers of insulin resistance and diabetes previously identified in large cohort studies. The volunteers identified by canonical postprandial responses that form cluster A may be called pre-pre-diabetics and defined as "at risk" for development of insulin resistance. Moreover, postprandial changes in selected fatty acids and complex lipids, bile acids, amino acids, acylcarnitines and sugars like mannose revealed marked differences in the responses seen in cluster A and cluster B individuals that sustained over the entire challenge test period of 240 min. Almost all metabolites, including glucose and insulin, returned to baseline values at the end of the test (at 240 min), except a variety of amino acids and here those that have been linked to diabetes development. Analysis of the corresponding metabolite profile in a fasting blood sample may therefore allow for early identification of these subjects at risk for insulin resistance without the need to undergo an OGTT.

20.
Sci Rep ; 11(1): 16400, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34385538

RESUMEN

We propose herein a mathematical model to predict the COVID-19 evolution and evaluate the impact of governmental decisions on this evolution, attempting to explain the long duration of the pandemic in the 26 Brazilian states and their capitals well as in the Federative Unit. The prediction was performed based on the growth rate of new cases in a stable period, and the graphics plotted with the significant governmental decisions to evaluate the impact on the epidemic curve in each Brazilian state and city. Analysis of the predicted new cases was correlated with the total number of hospitalizations and deaths related to COVID-19. Because Brazil is a vast country, with high heterogeneity and complexity of the regional/local characteristics and governmental authorities among Brazilian states and cities, we individually predicted the epidemic curve based on a specific stable period with reduced or minimal interference on the growth rate of new cases. We found good accuracy, mainly in a short period (weeks). The most critical governmental decisions had a significant temporal impact on pandemic curve growth. A good relationship was found between the predicted number of new cases and the total number of inpatients and deaths related to COVID-19. In summary, we demonstrated that interventional and preventive measures directly and significantly impact the COVID-19 pandemic using a simple mathematical model. This model can easily be applied, helping, and directing health and governmental authorities to make further decisions to combat the pandemic.


Asunto(s)
COVID-19/epidemiología , Brasil/epidemiología , COVID-19/transmisión , Ciudades/epidemiología , Humanos , Modelos Estadísticos , Pandemias , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA