Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 16(6): 3415-25, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27187840

RESUMEN

Vertically aligned hexagonal InN nanorods were grown mask-free by conventional metal-organic vapor phase epitaxy without any foreign catalyst. The In droplets on top of the nanorods indicate a self-catalytic vapor-liquid-solid growth mode. A systematic study on important growth parameters has been carried out for the optimization of nanorod morphology. The nanorod N-polarity, induced by high temperature nitridation of the sapphire substrate, is necessary to achieve vertical growth. Hydrogen, usually inapplicable during InN growth due to formation of metallic indium, and silane are needed to enhance the aspect ratio and to reduce parasitic deposition beside the nanorods on the sapphire surface. The results reveal many similarities between InN and GaN nanorod growth showing that the process despite the large difference in growth temperature is similar. Transmission electron microscopy, spatially resolved energy-dispersive X-ray spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and Raman spectroscopy have been performed to analyze the structural properties. Spatially resolved cathodoluminescence investigations are carried out to verify the optical activity of the InN nanorods. The InN nanorods are expected to be the material of choice for high-efficiency hot carrier solar cells.

2.
Nanotechnology ; 22(2): 025603, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21139192

RESUMEN

GaN nanorods were grown on r-plane sapphire substrates by a two-step approach. Nucleation sites for the nanorods were provided by the formation of AlN islands during nitridation in a metal organic vapor phase system. These islands are a-plane oriented as expected for nitride growth on r-plane sapphire. The nanorods themselves were grown by plasma assisted molecular beam epitaxy. The nanorods show an inclination towards the surface normal of 28.3° and are highly ordered. Studies with high resolution x-ray diffraction polar plots reveal the epitaxial relationship between the substrate and nanorods as a c-direction growth on inclined m-plane facets of the nitridated islands. The determined lattice constants show nanorods which are strain free. The growth direction of the nanorods has been confirmed in a transmission electron microscope by convergent beam electron diffraction patterns to be in the N-polar [Formula: see text] direction.

3.
Nanotechnology ; 22(26): 265202, 2011 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-21576780

RESUMEN

We report on the fabrication of a light-emitting diode based on GaN nanorods containing InGaN quantum wells. The unique system consists of tilted N-polar nanorods of high crystalline quality. Photoluminescence, electroluminescence, and spatially resolved cathodoluminescence investigations consistently show quantum well emission around 2.6 eV. Scanning transmission electron microscopy and energy-dispersive x-ray spectroscopy measurements reveal a truncated shape of the quantum wells with In contents of (15 ± 5)%.

4.
Nanotechnology ; 21(1): 015204, 2010 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-19946174

RESUMEN

We present electrically driven luminescence from single InGaN quantum dots embedded into a light emitting diode structure grown by metal-organic vapor-phase epitaxy. Single sharp emission lines in the green spectral region can be identified. Temperature dependent measurements demonstrate thermal stability of the emission of a single quantum dot up to 150 K. These results are an important step towards applications like electrically driven single-photon emitters, which are a basis for applications incorporating plastic optical fibers as well as for modern concepts of free space quantum cryptography.

5.
Nanotechnology ; 20(7): 075604, 2009 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-19417425

RESUMEN

Self-organized and highly ordered GaN nanorods were grown without catalyst on r-plane sapphire using a combination of molecular beam epitaxy and metal-organic vapor-phase epitaxy. AlN nucleation centers for the nanorods were prepared by nitridation of the sapphire in a metal-organic vapor-phase epitaxy reactor, while the nanorods were grown by molecular beam epitaxy. A coalesced two-dimensional GaN layer was observed between the nanorods. The nanorods are inclined by 62 degrees towards the [Formula: see text]-directions of the a-plane GaN layer. The high degree of ordering and the structural perfection were confirmed by micro-photoluminescence measurements.

6.
Phys Rev Lett ; 102(23): 235501, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19658946

RESUMEN

The optical signatures of Mg-related acceptors in GaN have been revisited in samples specifically grown on bulk GaN templates, to avoid strain broadening of the optical spectra. Bound-exciton spectra can be studied in these samples for Mg concentrations up to [Mg] approximately 2 x 10(19) cm(-3). Contrary to previous work it is found that instabilities in the photoluminescence spectra are not due to unstable shallow donors, but to unstable Mg-related acceptors. Our data show that there are two Mg-related acceptors simultaneously present: the regular (stable) substitutional Mg acceptor, and a complex acceptor which is unstable in p-GaN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA