Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Neurosci ; 37(24): 5885-5899, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28522736

RESUMEN

Remyelination of CNS axons by Schwann cells (SCs) is not efficient, in part due to the poor migration of SCs into the adult CNS. Although it is known that migrating SCs avoid white matter tracts, the molecular mechanisms underlying this exclusion have never been elucidated. We now demonstrate that myelin-associated glycoprotein (MAG), a well known inhibitor of neurite outgrowth, inhibits rat SC migration and induces their death via γ-secretase-dependent regulated intramembrane proteolysis of the p75 neurotrophin receptor (also known as p75 cleavage). Blocking p75 cleavage using inhibitor X (Inh X), a compound that inhibits γ-secretase activity before exposing to MAG or CNS myelin improves SC migration and survival in vitro Furthermore, mouse SCs pretreated with Inh X migrate extensively in the demyelinated mouse spinal cord and remyelinate axons. These results suggest a novel role for MAG/myelin in poor SC-myelin interaction and identify p75 cleavage as a mechanism that can be therapeutically targeted to enhance SC-mediated axon remyelination in the adult CNS.SIGNIFICANCE STATEMENT Numerous studies have used Schwann cells, the myelin-making cells of the peripheral nervous system to remyelinate adult CNS axons. Indeed, these transplanted cells successfully remyelinate axons, but unfortunately they do not migrate far and so remyelinate only a few axons in the vicinity of the transplant site. It is believed that if Schwann cells could be induced to migrate further and survive better, they may represent a valid therapy for remyelination. We show that myelin-associated glycoprotein or CNS myelin, in general, inhibit rodent Schwann cell migration and induce their death via cleavage of the neurotrophin receptor p75. Blockade of p75 cleavage using a specific inhibitor significantly improves migration and survival of the transplanted Schwann cells in vivo.


Asunto(s)
Apoptosis/fisiología , Movimiento Celular/fisiología , Glicoproteína Asociada a Mielina/metabolismo , Proyección Neuronal/fisiología , Células de Schwann/citología , Células de Schwann/fisiología , Animales , Células Cultivadas , Femenino , Ratones , Ratones Desnudos , Vaina de Mielina/metabolismo
2.
J Neurosci ; 36(10): 3079-91, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961960

RESUMEN

Inhibitory molecules associated with CNS myelin, such as myelin-associated glycoprotein (MAG), represent major obstacles to axonal regeneration following CNS injury. Our laboratory has shown that elevating levels of intracellular cAMP, via application of the nonhydrolyzable analog dibutyryl cAMP (dbcAMP), can block the inhibitory effects of MAG and myelin. We have also shown that elevation of cAMP results in upregulation of arginase I and increased polyamine synthesis. Treatment with putrescine or spermidine blocks myelin-mediated inhibition of neurite outgrowth, but the mechanism underlying this effect has not yet been elucidated. Here we show that cyclin-dependent kinase 5 (Cdk5) is required for dbcAMP and putrescine to overcome MAG-mediated inhibition. The ability of dbcAMP and putrescine to overcome inhibition by MAG is abolished in the presence of roscovitine, a Cdk inhibitor that has greater selectivity for Cdk5, and expression of dominant negative Cdk5 abolishes the ability of dbcAMP or putrescine to enhance neurite outgrowth in the presence of MAG. Importantly, dbcAMP and putrescine increase expression of p35, the neuron-specific activator of Cdk5, and rat DRG neurons transduced with HSV overexpressing p35 can overcome inhibition by MAG. The upregulation of p35 by putrescine is also reflected in increased localization of p35 to neurites and growth cones. Last, we show that putrescine upregulates p35 expression by serving as a substrate for hypusine modification of eIF5A, and that this hypusination is necessary for putrescine's ability to overcome inhibition by MAG. Our findings reveal a previously unknown mechanism by which polyamines may encourage regeneration after CNS injury.


Asunto(s)
AMP Cíclico/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas de Unión al ADN/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Poliaminas/metabolismo , Factores de Transcripción/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Animales , Animales Recién Nacidos , Encéfalo/citología , Bucladesina/farmacología , Células CHO , Células Cultivadas , Cricetulus , Activadores de Enzimas/farmacología , Inhibidores Enzimáticos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas del Tejido Nervioso/genética , Neuritas/efectos de los fármacos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Poliaminas/farmacología , Ratas , Ratas Long-Evans , Regulación hacia Arriba/genética
3.
J Biol Chem ; 290(26): 16343-56, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-25947372

RESUMEN

The adult CNS does not spontaneously regenerate after injury, due in large part to myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo-A, and oligodendrocyte-myelin glycoprotein. All three inhibitors can interact with either the Nogo receptor complex or paired immunoglobulin-like receptor B. A conditioning lesion of the sciatic nerve allows the central processes of dorsal root ganglion (DRG) neurons to spontaneously regenerate in vivo after a dorsal column lesion. After a conditioning lesion, DRG neurons are no longer inhibited by myelin, and this effect is cyclic AMP (cAMP)- and transcription-dependent. Using a microarray analysis, we identified several genes that are up-regulated both in adult DRGs after a conditioning lesion and in DRG neurons treated with cAMP analogues. One gene that was up-regulated under both conditions is metallothionein (MT)-I. We show here that treatment with two closely related isoforms of MT (MT-I/II) can overcome the inhibitory effects of both myelin and MAG for cortical, hippocampal, and DRG neurons. Intrathecal delivery of MT-I/II to adult DRGs also promotes neurite outgrowth in the presence of MAG. Adult DRGs from MT-I/II-deficient mice extend significantly shorter processes on MAG compared with wild-type DRG neurons, and regeneration of dorsal column axons does not occur after a conditioning lesion in MT-I/II-deficient mice. Furthermore, a single intravitreal injection of MT-I/II after optic nerve crush promotes axonal regeneration. Mechanistically, MT-I/II ability to overcome MAG-mediated inhibition is transcription-dependent, and MT-I/II can block the proteolytic activity of α-secretase and the activation of PKC and Rho in response to soluble MAG.


Asunto(s)
Axones/metabolismo , Sistema Nervioso Central/metabolismo , Metalotioneína/metabolismo , Regeneración Nerviosa , Animales , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/fisiopatología , Femenino , Masculino , Metalotioneína/genética , Ratones Noqueados , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Ratas , Ratas Long-Evans
4.
J Neurosci ; 34(28): 9281-9, 2014 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-25009261

RESUMEN

Neurons in the CNS do not regenerate following injury; regeneration is blocked by inhibitory proteins in myelin, such as myelin-associated glycoprotein (MAG). Elevating neuronal levels of the second messenger cAMP overcomes this blocked axonal outgrowth. One way to elevate cAMP is pretreating neurons with neurotrophins, such as brain-derived neurotrophic factor (BDNF). However, pleiotropic effects and poor bioavailability make exogenous administration of neurotrophins in vivo problematic; therefore, alternative targets must be considered. In neurons, two families of adenylyl cyclases synthesize cAMP, transmembrane adenylyl cyclases (tmACs), and soluble adenylyl cyclase (sAC). Here, we demonstrate that sAC is the essential source of cAMP for BDNF to overcome MAG-dependent inhibition of neurite outgrowth. Elevating sAC in rat and mouse neurons is sufficient to induce neurite outgrowth on myelin in vitro and promotes regeneration in vivo. These results suggest that stimulators of sAC might represent a novel therapeutic strategy to promote axonal growth and regeneration.


Asunto(s)
Adenilil Ciclasas/química , Adenilil Ciclasas/metabolismo , Axones/fisiología , Axones/ultraestructura , Cerebelo/metabolismo , Proteínas de la Mielina/metabolismo , Regeneración Nerviosa/fisiología , Animales , Células CHO , Aumento de la Célula , Células Cultivadas , Cerebelo/ultraestructura , Cricetulus , Activación Enzimática , Ratones , Ratones Noqueados , Glicoproteína Asociada a Mielina , Neurogénesis/fisiología , Ratas , Ratas Long-Evans , Solubilidad
5.
J Neurosci ; 33(12): 5138-51, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23516280

RESUMEN

After CNS injury, axonal regeneration is limited by myelin-associated inhibitors; however, this can be overcome through elevation of intracellular cyclic AMP (cAMP), as occurs with conditioning lesions of the sciatic nerve. This study reports that expression of secretory leukocyte protease inhibitor (SLPI) is strongly upregulated in response to elevation of cAMP. We also show that SLPI can overcome inhibition by CNS myelin and significantly enhance regeneration of transected retinal ganglion cell axons in rats. Furthermore, regeneration of dorsal column axons does not occur after a conditioning lesion in SLPI null mutant mice, indicating that expression of SLPI is required for the conditioning lesion effect. Mechanistically, we demonstrate that SLPI localizes to the nuclei of neurons, binds to the Smad2 promoter, and reduces levels of Smad2 protein. Adenoviral overexpression of Smad2 also blocked SLPI-induced axonal regeneration. SLPI and Smad2 may therefore represent new targets for therapeutic intervention in CNS injury.


Asunto(s)
Vaina de Mielina/fisiología , Regeneración Nerviosa/fisiología , Traumatismos del Nervio Óptico/metabolismo , Inhibidor Secretorio de Peptidasas Leucocitarias/metabolismo , Proteína Smad2/metabolismo , Factores de Edad , Animales , Animales Recién Nacidos , AMP Cíclico/metabolismo , Femenino , Expresión Génica/fisiología , Inyecciones Espinales , Masculino , Proteínas de la Mielina/metabolismo , Vaina de Mielina/efectos de los fármacos , Compresión Nerviosa , Regeneración Nerviosa/efectos de los fármacos , Traumatismos del Nervio Óptico/tratamiento farmacológico , Traumatismos del Nervio Óptico/fisiopatología , ARN Interferente Pequeño/genética , Ratas , Ratas Endogámicas F344 , Ratas Long-Evans , Células Ganglionares de la Retina/fisiología , Inhibidor Secretorio de Peptidasas Leucocitarias/genética , Inhibidor Secretorio de Peptidasas Leucocitarias/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteína Smad2/genética , Factor de Crecimiento Transformador beta/metabolismo
6.
Front Pharmacol ; 14: 1225759, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799971

RESUMEN

There are no known drugs or drug combinations that promote substantial central nervous system axonal regeneration after injury. We used systems pharmacology approaches to model pathways underlying axonal growth and identify a four-drug combination that regulates multiple subcellular processes in the cell body and axons using the optic nerve crush model in rats. We intravitreally injected agonists HU-210 (cannabinoid receptor-1) and IL-6 (interleukin 6 receptor) to stimulate retinal ganglion cells for axonal growth. We applied, in gel foam at the site of nerve injury, Taxol to stabilize growing microtubules, and activated protein C to clear the debris field since computational models predicted that this drug combination regulating two subcellular processes at the growth cone produces synergistic growth. Physiologically, drug treatment restored or preserved pattern electroretinograms and some of the animals had detectable visual evoked potentials in the brain and behavioral optokinetic responses. Morphology experiments show that the four-drug combination protects axons or promotes axonal regrowth to the optic chiasm and beyond. We conclude that spatially targeted drug treatment is therapeutically relevant and can restore limited functional recovery.

7.
Mol Cell Neurosci ; 46(1): 235-44, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20869442

RESUMEN

Axonal regeneration in the central nervous system is prevented, in part, by inhibitory proteins expressed by myelin, including myelin-associated glycoprotein (MAG). Although injury to the corticospinal tract can result in permanent disability, little is known regarding the mechanisms by which MAG affects cortical neurons. Here, we demonstrate that cortical neurons plated on MAG expressing CHO cells, exhibit a striking reduction in process outgrowth. Interestingly, none of the receptors previously implicated in MAG signaling, including the p75 neurotrophin receptor or gangliosides, contributed significantly to MAG-mediated inhibition. However, blocking the small GTPase Rho or its downstream effector kinase, ROCK, partially reversed the effects of MAG on the neurons. In addition, we identified the lipid phosphatase PTEN as a mediator of MAG's inhibitory effects on neurite outgrowth. Knockdown or gene deletion of PTEN or overexpression of activated AKT in cortical neurons resulted in significant, although partial, rescue of neurite outgrowth on MAG-CHO cells. Moreover, MAG decreased the levels of phospho-Akt, suggesting that it activates PTEN in the neurons. Taken together, these results suggest a novel pathway activated by MAG in cortical neurons involving the PTEN/PI3K/AKT axis.


Asunto(s)
Corteza Cerebral/citología , Glicoproteína Asociada a Mielina/metabolismo , Neuritas/fisiología , Neuronas/citología , Fosfohidrolasa PTEN/metabolismo , Animales , Células CHO , Células Cultivadas , Técnicas de Cocultivo , Cricetinae , Cricetulus , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glicoproteína Asociada a Mielina/genética , Neuritas/ultraestructura , Neuronas/fisiología , Fosfohidrolasa PTEN/genética , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Factor de Crecimiento Nervioso/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho
8.
J Neurosci ; 30(2): 739-48, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20071539

RESUMEN

An ideal therapeutic for stroke or spinal cord injury should promote survival and regeneration in the CNS. Arginase 1 (Arg1) has been shown to protect motor neurons from trophic factor deprivation and allow sensory neurons to overcome neurite outgrowth inhibition by myelin proteins. To identify small molecules that capture Arg1's protective and regenerative properties, we screened a hippocampal cell line stably expressing the proximal promoter region of the arginase 1 gene fused to a reporter gene against a library of compounds containing clinically approved drugs. This screen identified daidzein as a transcriptional inducer of Arg1. Both CNS and PNS neurons primed in vitro with daidzein overcame neurite outgrowth inhibition from myelin-associated glycoprotein, which was mirrored by acutely dissociated and cultured sensory neurons primed in vivo by intrathecal or subcutaneous daidzein infusion. Further, daidzein was effective in promoting axonal regeneration in vivo in an optic nerve crush model when given intraocularly without lens damage, or most importantly, when given subcutaneously after injury. Mechanistically, daidzein requires transcription and induction of Arg1 activity for its ability to overcome myelin inhibition. In contrast to canonical Arg1 activators, daidzein increases Arg1 without increasing CREB phosphorylation, suggesting its effects are cAMP-independent. Accordingly, it may circumvent known CNS side effects of some cAMP modulators. Indeed, daidzein appears to be safe as it has been widely consumed in soy products, crosses the blood-brain barrier, and is effective without pretreatment, making it an ideal candidate for development as a therapeutic for spinal cord injury or stroke.


Asunto(s)
Arginasa/genética , AMP Cíclico/metabolismo , Isoflavonas/farmacología , Regeneración Nerviosa/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Regiones Promotoras Genéticas/fisiología , Análisis de Varianza , Animales , Animales Recién Nacidos , Arginasa/metabolismo , Células CHO , Células Cultivadas , Cerebelo/citología , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Proteína GAP-43/metabolismo , Ganglios Espinales/citología , Ensayos Analíticos de Alto Rendimiento/métodos , Hipocampo/citología , Masculino , Glicoproteína Asociada a Mielina/farmacología , Regeneración Nerviosa/fisiología , Neuronas/citología , Enfermedades del Nervio Óptico/tratamiento farmacológico , Enfermedades del Nervio Óptico/patología , Estrés Oxidativo/efectos de los fármacos , Regiones Promotoras Genéticas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Estrógenos/metabolismo , Bibliotecas de Moléculas Pequeñas
9.
Nat Med ; 10(6): 610-6, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15156204

RESUMEN

Central neurons regenerate axons if a permissive environment is provided; after spinal cord injury, however, inhibitory molecules are present that make the local environment nonpermissive. A promising new strategy for inducing neurons to overcome inhibitory signals is to activate cAMP signaling. Here we show that cAMP levels fall in the rostral spinal cord, sensorimotor cortex and brainstem after spinal cord contusion. Inhibition of cAMP hydrolysis by the phosphodiesterase IV inhibitor rolipram prevents this decrease and when combined with Schwann cell grafts promotes significant supraspinal and proprioceptive axon sparing and myelination. Furthermore, combining rolipram with an injection of db-cAMP near the graft not only prevents the drop in cAMP levels but increases them above those in uninjured controls. This further enhances axonal sparing and myelination, promotes growth of serotonergic fibers into and beyond grafts, and significantly improves locomotion. These findings show that cAMP levels are key for protection, growth and myelination of injured CNS axons in vivo and recovery of function.


Asunto(s)
Axones/fisiología , AMP Cíclico/metabolismo , Regeneración Nerviosa/fisiología , Recuperación de la Función , Células de Schwann/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Animales , Tronco Encefálico/citología , Bucladesina/metabolismo , Trasplante de Células , Femenino , Interleucina-1/metabolismo , Actividad Motora/fisiología , Ratas , Ratas Endogámicas F344 , Rolipram/metabolismo , Células de Schwann/trasplante , Sistemas de Mensajero Secundario/fisiología , Serotonina/metabolismo , Traumatismos de la Médula Espinal/patología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Brain Commun ; 3(4): fcab271, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34993473

RESUMEN

Axonal regeneration in the mature CNS is limited by extracellular inhibitory factors. Triple knockout mice lacking the major myelin-associated inhibitors do not display spontaneous regeneration after injury, indicating the presence of other inhibitors. Searching for such inhibitors, we have detected elevated levels of histone H3 in human CSF 24 h after spinal cord injury. Following dorsal column lesions in mice and optic nerve crushes in rats, elevated levels of extracellular histone H3 were detected at the injury site. Similar to myelin-associated inhibitors, these extracellular histones induced growth cone collapse and inhibited neurite outgrowth. Histones mediate inhibition through the transcription factor Y-box-binding protein 1 and Toll-like receptor 2, and these effects are independent of the Nogo receptor. Histone-mediated inhibition can be reversed by the addition of activated protein C in vitro, and activated protein C treatment promotes axonal regeneration in the crushed optic nerve in vivo. These findings identify extracellular histones as a new class of nerve regeneration-inhibiting molecules within the injured CNS.

11.
J Neurosci ; 29(30): 9545-52, 2009 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-19641117

RESUMEN

Adult spinal axons do not spontaneously regenerate after injury. However, if the peripheral branch of dorsal root ganglion neurons is lesioned before lesioning the central branch of the same neurons in the dorsal column, these central axons will regenerate and, if cultured, are not inhibited from extending neurites by myelin-associated inhibitors of regeneration such as myelin-associated glycoprotein (MAG). This effect can be mimicked by elevating cAMP and is transcription dependent. The ability of cAMP to overcome inhibition by MAG in culture involves the upregulation of the enzyme arginase I (Arg I) and subsequent increase in synthesis of polyamines such as putrescine. Now we show that a peripheral lesion also induces an increase in Arg I expression and synthesis of polyamines. We also show that the conditioning lesion effect in overcoming inhibition by MAG is initially dependent on ongoing polyamine synthesis but, with time after lesion, becomes independent of ongoing synthesis. However, if synthesis of polyamines is blocked in vivo the early phase of good growth after a conditioning lesion is completely blocked and the later phase of growth, when ongoing polyamine synthesis is not required during culture, is attenuated. We also show that putrescine must be converted to spermidine both in culture and in vivo to overcome inhibition by MAG and that spermidine can promote optic nerve regeneration in vivo. These results suggest that spermidine could be a useful tool in promoting CNS axon regeneration after injury.


Asunto(s)
Arginasa/metabolismo , Axones/fisiología , Regeneración Nerviosa/fisiología , Espermidina/metabolismo , Animales , Axones/enzimología , Células Cultivadas , Ganglios Espinales/enzimología , Ganglios Espinales/fisiología , Masculino , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Compresión Nerviosa , Neuronas/enzimología , Neuronas/fisiología , Nervio Óptico/enzimología , Nervio Óptico/fisiología , Traumatismos del Nervio Óptico/enzimología , Traumatismos del Nervio Óptico/fisiopatología , Poliaminas/metabolismo , Putrescina/metabolismo , Ratas , Ratas Endogámicas F344 , Nervio Ciático/enzimología , Nervio Ciático/lesiones , Nervio Ciático/fisiología , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba
12.
FEBS Lett ; 594(9): 1389-1402, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31985825

RESUMEN

Rap1 is a small GTPase that has been implicated in dendritic development and plasticity. In this study, we investigated the role of Rap1 in axonal growth and its activation in response to neurotrophins and myelin-associated inhibitors. We report that Rap1 is activated by brain-derived neurotrophic factor and that this activation can be blocked by myelin-associated glycoprotein (MAG) or central nervous system myelin, which also induced increases in Rap1GAP1 levels. In addition, we demonstrate that adenoviral overexpression of Rap1 enhances neurite outgrowth in the presence of MAG and myelin, while inhibition of Rap1 activity through overexpression of Rap1GAP1 blocks neurite outgrowth. These findings suggest that Rap1GAP1 negatively regulates neurite outgrowth, making it a potential therapeutic target to promote axonal regeneration.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Proyección Neuronal/fisiología , Animales , Factor Neurotrófico Derivado del Encéfalo/farmacología , Bucladesina/farmacología , AMP Cíclico/análogos & derivados , AMP Cíclico/farmacología , GTP Fosfohidrolasas/genética , Proteínas Activadoras de GTPasa/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Vaina de Mielina/metabolismo , Proteínas del Tejido Nervioso , Proyección Neuronal/efectos de los fármacos , Ratas Long-Evans , Tionucleótidos/farmacología , Proteínas de Unión al GTP rap/genética , Proteínas de Unión al GTP rap/metabolismo
13.
Neuron ; 46(6): 849-55, 2005 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-15953414

RESUMEN

The three known inhibitors of axonal regeneration present in myelin--MAG, Nogo, and OMgp--all interact with the same receptor complex to effect inhibition via protein kinase C (PKC)-dependent activation of the small GTPase Rho. The transducing component of this receptor complex is the p75 neurotrophin receptor. Here we show that MAG binding to cerebellar neurons induces alpha- and then gamma-secretase proteolytic cleavage of p75, in a protein kinase C-dependent manner, and that this cleavage is necessary for both activation of Rho and inhibition of neurite outgrowth.


Asunto(s)
Glicoproteína Asociada a Mielina/farmacología , Inhibición Neural/efectos de los fármacos , Neuritas/efectos de los fármacos , Neuronas/efectos de los fármacos , Receptores de Factor de Crecimiento Nervioso/metabolismo , Secretasas de la Proteína Precursora del Amiloide , Animales , Animales Recién Nacidos , Ácido Aspártico Endopeptidasas/farmacología , Western Blotting/métodos , Células Cultivadas , Cerebelo/citología , Cricetinae , Cricetulus , Interacciones Farmacológicas , Endopeptidasas , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Proteínas de la Membrana/metabolismo , Neuritas/fisiología , Neuroblastoma , Neuronas/fisiología , Oligopéptidos/farmacología , Estructura Terciaria de Proteína/fisiología , Ratas , Receptor de Factor de Crecimiento Nervioso , Receptores de Factor de Crecimiento Nervioso/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/farmacología , Acetato de Tetradecanoilforbol/farmacología , Transfección/métodos , Proteínas de Unión al GTP rho/metabolismo
14.
Mol Cell Neurosci ; 38(1): 110-6, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18381242

RESUMEN

The environment of the adult CNS prevents axonal regeneration after injury. This inhibition of axonal regeneration can be blocked by elevating cAMP. Previously, we showed that the cAMP pathway can be activated via pre-treatment with neurotrophins and requires activation of several signaling pathways which converge at activation of the transcription factor, CREB. Here, we show that calcium/calmodulin-dependent kinase IV (CaMKIV) is necessary for the neurotrophin-induced phosphorylation of CREB and the block of myelin-mediated inhibition of axonal growth. Pharmacological inhibition of CaMKIV or over-expression of a dominant-negative mutant form of CaMKIV blocks the neurotrophin effect. Interestingly, CaMKIV activation is not necessary if cAMP levels is already elevated. Finally, calcium flux from intracellular stores is necessary for this CaMKIV signaling. These results demonstrate that CaMKIV is another player in the neurotrophin-induced signaling which leads to axonal regeneration and therefore, is a potential target for therapeutic intervention following injury to the adult CNS.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/fisiología , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Glicoproteína Asociada a Mielina/antagonistas & inhibidores , Glicoproteína Asociada a Mielina/fisiología , Inhibición Neural/fisiología , Neuritas/fisiología , Animales , Células CHO , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/fisiología , Células Cultivadas , Técnicas de Cocultivo , Cricetinae , Cricetulus , Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Activación Enzimática/fisiología , Inhibidores de Crecimiento/metabolismo , Inhibidores de Crecimiento/fisiología , Ratones , Vías Nerviosas/fisiología , Fosforilación , Ratas
15.
Neuron ; 35(4): 711-9, 2002 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-12194870

RESUMEN

Elevation of cAMP can overcome myelin inhibitors to encourage regeneration of the CNS. We show that a consequence of elevated cAMP is the synthesis of polyamines, resulting from an up-regulation of Arginase I, a key enzyme in their synthesis. Inhibiting polyamine synthesis blocks the cAMP effect on regeneration. Either over-expression of Arginase I or exogenous polyamines can overcome inhibition by MAG and by myelin in general. While MAG/myelin support the growth of young DRG neurons, they become inhibitory as DRGs mature. Endogenous Arginase I levels are high in young DRGs but drop spontaneously at an age that coincides with the switch from promotion to inhibition by MAG/myelin. Over-expressing Arginase I in maturing DRGs blocks that switch. Arginase I and polyamines are more specific targets than cAMP for intervention to encourage regeneration after CNS injury.


Asunto(s)
Arginasa/biosíntesis , Sistema Nervioso Central/crecimiento & desarrollo , AMP Cíclico/metabolismo , Conos de Crecimiento/metabolismo , Vaina de Mielina/metabolismo , Glicoproteína Asociada a Mielina/biosíntesis , Poliaminas/metabolismo , Animales , Arginasa/genética , Factor Neurotrófico Derivado del Encéfalo/farmacología , Bucladesina/farmacología , Células CHO , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Cricetinae , ADN Complementario/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Inhibidores Enzimáticos/farmacología , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/crecimiento & desarrollo , Ganglios Espinales/metabolismo , Conos de Crecimiento/efectos de los fármacos , Conos de Crecimiento/ultraestructura , Datos de Secuencia Molecular , Factores de Crecimiento Nervioso/farmacología , Regeneración Nerviosa/fisiología , Poliaminas/antagonistas & inhibidores , Putrescina/farmacología , Ratas , Transcripción Genética/efectos de los fármacos , Transcripción Genética/fisiología , Transfección , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
16.
Neuron ; 34(6): 895-903, 2002 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-12086638

RESUMEN

Myelin inhibitors, including MAG, are major impediments to CNS regeneration. However, CNS axons of DRGs regenerate if the peripheral branch of these neurons is lesioned first. We show that 1 day post-peripheral-lesion, DRG-cAMP levels triple and MAG/myelin no longer inhibit growth, an effect that is PKA dependent. By 1 week post-lesion, DRG-cAMP returns to control, but growth on MAG/myelin improves and is now PKA independent. Inhibiting PKA in vivo blocks the post-lesion growth on MAG/myelin at 1 day and attenuates it at 1 week. Alone, injection of db-cAMP into the DRG mimics completely a conditioning lesion as DRGs grow on MAG/myelin, initially, in a PKA-dependent manner that becomes PKA independent. Importantly, DRG injection of db-cAMP results in extensive regeneration of dorsal column axons lesioned 1 week later. These results may be relevant to developing therapies for spinal cord injury.


Asunto(s)
Axones/fisiología , AMP Cíclico/biosíntesis , Ganglios Espinales/fisiología , Regeneración Nerviosa/fisiología , Animales , Axones/efectos de los fármacos , Axones/enzimología , Bucladesina/farmacología , AMP Cíclico/antagonistas & inhibidores , AMP Cíclico/fisiología , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Ganglios Espinales/efectos de los fármacos , Regeneración Nerviosa/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
17.
Neuron ; 44(4): 609-21, 2004 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-15541310

RESUMEN

Inhibitors in myelin play a major role in preventing spontaneous axonal regeneration after CNS injury. Elevation of cAMP overcomes this inhibition, in a transcription-dependent manner, through the upregulation of Arginase I (Arg I) and increased synthesis of polyamines. Here, we show that the cAMP effect requires activation of the transcription factor cAMP response element binding protein (CREB) to overcome myelin inhibitors; a dominant-negative CREB abolishes the effect, and neurons expressing a constitutively active form of CREB are not inhibited. Activation of CREB is also required for cAMP to upregulate Arg I, and the ability of constitutively active CREB to overcome inhibition is blocked by an inhibitor of polyamine synthesis. Finally, expression of constitutively active CREB in DRG neurons is sufficient to promote regeneration of subsequently lesioned dorsal column axons. These results indicate that CREB plays a central role in overcoming myelin inhibitors and so encourages regeneration in vivo.


Asunto(s)
Axones/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Vaina de Mielina/metabolismo , Regeneración Nerviosa/fisiología , Animales , Arginasa/metabolismo , Axones/patología , Western Blotting , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , AMP Cíclico/metabolismo , Ganglios Espinales/metabolismo , Inmunohistoquímica , Masculino , Ratones , Ratones Transgénicos , Glicoproteína Asociada a Mielina/metabolismo , Ratas , Ratas Long-Evans
18.
J Neurosci ; 27(34): 9146-54, 2007 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-17715351

RESUMEN

Myelin-associated glycoprotein (MAG) is a potent inhibitor of axonal regeneration. It contains five Ig-like domains and is a sialic binding protein. Previously, we showed that the sialic acid binding site on MAG maps to arginine 118 in Ig domain 1 (Kelm et al., 1994). However, sialic acid binding was neither necessary nor sufficient for MAG to bring about inhibition of neurite outgrowth. Consistent with this, we now map a distinct inhibition site on MAG to Ig domain 5 (Ig-5). We show that when a truncated form of MAG missing Ig domains 1 and 2 is expressed by Chinese hamster ovary (CHO) cells, it does not bind sialic acid, but still inhibits neurite outgrowth almost as effectively as full-length MAG. To determine whether the inhibition site mapped to Ig-3, Ig-4, or Ig-5, we made chimeric molecules of various combinations of these three MAG Ig domains fused to Ig domains from another Ig family member, sialoadhesin (Sn), which also binds to sialic acid in the same linkage as MAG. The MAG-Sn molecules were expressed in CHO cells and all contained five Ig domains and were able to bind sialic acid. However, only the chimeric molecules containing MAG Ig-5 inhibited neurite outgrowth. Furthermore, peptides corresponding to sequences in MAG Ig-5, but not Ig-4 or Sn Ig-5, are able to block inhibition of neurite outgrowth by both wild-type MAG and CNS myelin. We conclude that the inhibition site on MAG is carried by Ig domain 5 and that this site is distinct from the sialic-acid binding site.


Asunto(s)
Eritrocitos/metabolismo , Glicoproteína Asociada a Mielina/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/fisiología , Células CHO/citología , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Cricetinae , Cricetulus , Humanos , Mutagénesis/fisiología , Vaina de Mielina/metabolismo , Vaina de Mielina/fisiología , Glicoproteína Asociada a Mielina/química , Glicoproteína Asociada a Mielina/genética , Ácido N-Acetilneuramínico/química , Neuritis/metabolismo , Estructura Terciaria de Proteína , Ratas , Transfección
19.
J Neurosci ; 26(20): 5565-73, 2006 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-16707807

RESUMEN

Lesioning the peripheral branch of a dorsal root ganglion (DRG) neuron before injury of the central branch of the same neuron enables spontaneous regeneration of these spinal axons. This effect is cAMP and transcription dependent. Here, we show that the cytokine interleukin-6 (IL-6) is upregulated in DRG neurons after either a conditioning lesion or treatment with dibutyryl-cAMP. In culture, IL-6 allows neurons to grow in the presence of inhibitors of regeneration present in myelin. Importantly, intrathecal delivery of IL-6 to DRG neurons blocks inhibition by myelin both in vitro and in vivo, effectively mimicking the conditioning lesion. Blocking IL-6 signaling has no effect on the ability of cAMP to overcome myelin inhibitors. Consistent with this, IL-6-deficient mice respond to a conditioning lesion as effectively as wild-type mice. We conclude that IL-6 can mimic both the cAMP effect and the conditioning lesion effect but is not an essential component of either response.


Asunto(s)
Ganglios Espinales/metabolismo , Conos de Crecimiento/metabolismo , Interleucina-6/metabolismo , Regeneración Nerviosa/fisiología , Neuronas Aferentes/metabolismo , Traumatismos de los Nervios Periféricos , Nervios Periféricos/metabolismo , Animales , Animales Recién Nacidos , Bucladesina/farmacología , Células CHO , Células Cultivadas , Cricetinae , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/citología , Ganglios Espinales/efectos de los fármacos , Conos de Crecimiento/efectos de los fármacos , Inhibidores de Crecimiento/antagonistas & inhibidores , Inhibidores de Crecimiento/metabolismo , Interleucina-6/farmacología , Masculino , Ratones , Ratones Noqueados , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/metabolismo , Regeneración Nerviosa/efectos de los fármacos , Neuronas Aferentes/citología , Neuronas Aferentes/efectos de los fármacos , Nervios Periféricos/citología , Ratas , Ratas Long-Evans , Neuropatía Ciática/tratamiento farmacológico , Neuropatía Ciática/metabolismo , Neuropatía Ciática/fisiopatología , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/fisiología
20.
J Cereb Blood Flow Metab ; 27(6): 1096-107, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17033690

RESUMEN

Numerous studies in the last two decades have resulted in significant progress in our understanding of the role of inhibitors on axonal regeneration and conditions that influence mature neurons to regrow in an inhibitory environment. These studies have revealed putative therapeutic targets and strategies to interfere in the inhibitory signaling cascade and promote axonal regeneration. Some agents that were successful in animal models are now being tested in human patients. All of these advances have raised hope of a cure for an injury that was once thought to be 'an ailment for which nothing is done' (Quote from Edwin Smith surgical papyrus, 1600BC).


Asunto(s)
Vaina de Mielina/fisiología , Regeneración Nerviosa/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Axones , Quimioterapia , Humanos , Vaina de Mielina/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA