Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 18(4): 246-262, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28053347

RESUMEN

Bromodomains (BRDs) are evolutionarily conserved protein-protein interaction modules that are found in a wide range of proteins with diverse catalytic and scaffolding functions and are present in most tissues. BRDs selectively recognize and bind to acetylated Lys residues - particularly in histones - and thereby have important roles in the regulation of gene expression. BRD-containing proteins are frequently dysregulated in cancer, they participate in gene fusions that generate diverse, frequently oncogenic proteins, and many cancer-causing mutations have been mapped to the BRDs themselves. Importantly, BRDs can be targeted by small-molecule inhibitors, which has stimulated many translational research projects that seek to attenuate the aberrant functions of BRD-containing proteins in disease.


Asunto(s)
Regulación de la Expresión Génica , Neoplasias/metabolismo , Proteínas/química , Proteínas/metabolismo , Acilación , Animales , Ensamble y Desensamble de Cromatina , Histonas/metabolismo , Homeostasis , Humanos , Lisina/metabolismo , Mutación , Neoplasias/genética , Proteínas de Fusión Oncogénica/química , Proteínas de Fusión Oncogénica/metabolismo , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Proteínas/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
2.
Mol Cell ; 79(3): 472-487.e10, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32531202

RESUMEN

It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Genoma , Melanoma/genética , Factor de Transcripción Asociado a Microftalmía/genética , Procesamiento Proteico-Postraduccional , Neoplasias Cutáneas/genética , Acetilación , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Secuencia Conservada , Elementos de Facilitación Genéticos , Femenino , Xenoinjertos , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/metabolismo , Melanoma/patología , Ratones , Ratones Desnudos , Factor de Transcripción Asociado a Microftalmía/química , Factor de Transcripción Asociado a Microftalmía/metabolismo , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Pez Cebra
3.
Cell ; 150(4): 673-84, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22901802

RESUMEN

A pharmacologic approach to male contraception remains a longstanding challenge in medicine. Toward this objective, we explored the spermatogenic effects of a selective small-molecule inhibitor (JQ1) of the bromodomain and extraterminal (BET) subfamily of epigenetic reader proteins. Here, we report potent inhibition of the testis-specific member BRDT, which is essential for chromatin remodeling during spermatogenesis. Biochemical and crystallographic studies confirm that occupancy of the BRDT acetyl-lysine binding pocket by JQ1 prevents recognition of acetylated histone H4. Treatment of mice with JQ1 reduced seminiferous tubule area, testis size, and spermatozoa number and motility without affecting hormone levels. Although JQ1-treated males mate normally, inhibitory effects of JQ1 evident at the spermatocyte and round spermatid stages cause a complete and reversible contraceptive effect. These data establish a new contraceptive that can cross the blood:testis boundary and inhibit bromodomain activity during spermatogenesis, providing a lead compound targeting the male germ cell for contraception.


Asunto(s)
Azepinas/farmacología , Anticonceptivos Masculinos/farmacología , Proteínas Nucleares/antagonistas & inhibidores , Triazoles/farmacología , Animales , Azepinas/química , Barrera Hematotesticular , Anticonceptivos Masculinos/química , Femenino , Humanos , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Modelos Moleculares , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Recuento de Espermatozoides , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Testículo/citología , Testículo/efectos de los fármacos , Triazoles/química
4.
Cell ; 149(1): 214-31, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464331

RESUMEN

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.


Asunto(s)
Histonas/química , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Acetilación , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Genoma Humano , Histonas/metabolismo , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Dominios y Motivos de Interacción de Proteínas , Proteoma/análisis
5.
Mol Cell ; 73(3): 621-638.e17, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30554943

RESUMEN

Targeting bromodomains (BRDs) of the bromo-and-extra-terminal (BET) family offers opportunities for therapeutic intervention in cancer and other diseases. Here, we profile the interactomes of BRD2, BRD3, BRD4, and BRDT following treatment with the pan-BET BRD inhibitor JQ1, revealing broad rewiring of the interaction landscape, with three distinct classes of behavior for the 603 unique interactors identified. A group of proteins associate in a JQ1-sensitive manner with BET BRDs through canonical and new binding modes, while two classes of extra-terminal (ET)-domain binding motifs mediate acetylation-independent interactions. Last, we identify an unexpected increase in several interactions following JQ1 treatment that define negative functions for BRD3 in the regulation of rRNA synthesis and potentially RNAPII-dependent gene expression that result in decreased cell proliferation. Together, our data highlight the contributions of BET protein modules to their interactomes allowing for a better understanding of pharmacological rewiring in response to JQ1.


Asunto(s)
Antineoplásicos/farmacología , Azepinas/farmacología , Terapia Molecular Dirigida/métodos , Neoplasias/tratamiento farmacológico , Proteínas Nucleares/antagonistas & inhibidores , Mapas de Interacción de Proteínas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas de Unión al ARN/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Triazoles/farmacología , Antineoplásicos/química , Azepinas/química , Proteínas de Ciclo Celular , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Células K562 , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Triazoles/química
6.
Cell ; 136(2): 352-63, 2009 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-19167335

RESUMEN

Protein tyrosine phosphatases (PTPs) play a critical role in regulating cellular functions by selectively dephosphorylating their substrates. Here we present 22 human PTP crystal structures that, together with prior structural knowledge, enable a comprehensive analysis of the classical PTP family. Despite their largely conserved fold, surface properties of PTPs are strikingly diverse. A potential secondary substrate-binding pocket is frequently found in phosphatases, and this has implications for both substrate recognition and development of selective inhibitors. Structural comparison identified four diverse catalytic loop (WPD) conformations and suggested a mechanism for loop closure. Enzymatic assays revealed vast differences in PTP catalytic activity and identified PTPD1, PTPD2, and HDPTP as catalytically inert protein phosphatases. We propose a "head-to-toe" dimerization model for RPTPgamma/zeta that is distinct from the "inhibitory wedge" model and that provides a molecular basis for inhibitory regulation. This phosphatome resource gives an expanded insight into intrafamily PTP diversity, catalytic activity, substrate recognition, and autoregulatory self-association.


Asunto(s)
Proteínas Tirosina Fosfatasas/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Dimerización , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Alineación de Secuencia , Relación Estructura-Actividad
7.
Cell ; 134(5): 793-803, 2008 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-18775312

RESUMEN

The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.


Asunto(s)
Proteínas Proto-Oncogénicas c-abl/química , Proteínas Proto-Oncogénicas c-fes/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Activación Enzimática , Humanos , Ligandos , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-abl/metabolismo , Proteínas Proto-Oncogénicas c-fes/metabolismo
8.
EMBO J ; 37(17)2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30026309

RESUMEN

RIPK2 mediates inflammatory signaling by the bacteria-sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD-mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP-binding and XIAP-mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between ß2 and ß3 of the N-lobe of the kinase, which is in close proximity to the ATP-binding pocket. Through characterization of a new series of ATP pocket-binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2-XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP-binding pocket in RIPK2 can be exploited to interfere with the RIPK2-XIAP interaction for modulation of NOD signaling.


Asunto(s)
Proteína Adaptadora de Señalización NOD2/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Línea Celular Tumoral , Femenino , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Ratones , Proteína Adaptadora de Señalización NOD2/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/genética , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Transducción de Señal/genética , Proteína Inhibidora de la Apoptosis Ligada a X/genética , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
9.
Mol Cell ; 53(1): 140-7, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24374310

RESUMEN

Eukaryotic protein kinases are generally classified as being either tyrosine or serine-threonine specific. Though not evident from inspection of their primary sequences, many serine-threonine kinases display a significant preference for serine or threonine as the phosphoacceptor residue. Here we show that a residue located in the kinase activation segment, which we term the "DFG+1" residue, acts as a major determinant for serine-threonine phosphorylation site specificity. Mutation of this residue was sufficient to switch the phosphorylation site preference for multiple kinases, including the serine-specific kinase PAK4 and the threonine-specific kinase MST4. Kinetic analysis of peptide substrate phosphorylation and crystal structures of PAK4-peptide complexes suggested that phosphoacceptor residue preference is not mediated by stronger binding of the favored substrate. Rather, favored kinase-phosphoacceptor combinations likely promote a conformation optimal for catalysis. Understanding the rules governing kinase phosphoacceptor preference allows kinases to be classified as serine or threonine specific based on their sequence.


Asunto(s)
Péptidos/química , Proteínas Serina-Treonina Quinasas/química , Quinasas p21 Activadas/química , Sitios de Unión , Cristalografía por Rayos X , Células HEK293 , Humanos , Cinética , Péptidos/genética , Péptidos/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Especificidad por Sustrato/fisiología , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
10.
Methods ; 184: 40-52, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31726225

RESUMEN

Bromodomains (BRDs) are evolutionarily conserved protein domains that specifically recognize acetylated lysine, a common epigenetic mark on histone tails. They are found in 61 human proteins, including enzymes, scaffolding platforms, and transcriptional co-activators. BRD-containing proteins play important roles in chromatin remodeling and the regulation of gene expression. Importantly, disruptions of BRD functions have been reported in various diseases. The premise of BRD-containing proteins as therapeutic targets has led to the development of multiple BRD inhibitors, many of which are currently being investigated in clinical trials. Thus, in the last decade significant efforts have been devoted to elucidating BRD biology. Here, we review the emerging tools that contributed to these efforts, from the structural definition of BRDs to their functional characterization. We further highlight the methods that have allowed the systematic screening of BRD targets and the identification of their endogenous interactors. Interactome mapping tools, such as affinity purification and proximity-based biotinylation, have contributed to the elucidation of BRD functions and their involvement in signaling pathways. We also discuss how recent progress in proteomics may further enhance our understanding of the biology of BRDs.


Asunto(s)
Dominios y Motivos de Interacción de Proteínas/fisiología , Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Acetilación , Biotinilación/métodos , Epigénesis Genética , Histonas/genética , Histonas/metabolismo , Humanos , Lisina/metabolismo , Mapas de Interacción de Proteínas/fisiología , Procesamiento Proteico-Postraduccional , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Nucleic Acids Res ; 47(3): 1225-1238, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30462309

RESUMEN

Aberrant isoform expression of chromatin-associated proteins can induce epigenetic programs related to disease. The MDS1 and EVI1 complex locus (MECOM) encodes PRDM3, a protein with an N-terminal PR-SET domain, as well as a shorter isoform, EVI1, lacking the N-terminus containing the PR-SET domain (ΔPR). Imbalanced expression of MECOM isoforms is observed in multiple malignancies, implicating EVI1 as an oncogene, while PRDM3 has been suggested to function as a tumor suppressor through an unknown mechanism. To elucidate functional characteristics of these N-terminal residues, we compared the protein interactomes of the full-length and ΔPR isoforms of PRDM3 and its closely related paralog, PRDM16. Unlike the ΔPR isoforms, both full-length isoforms exhibited a significantly enriched association with components of the NuRD chromatin remodeling complex, especially RBBP4. Typically, RBBP4 facilitates chromatin association of the NuRD complex by binding to histone H3 tails. We show that RBBP4 binds to the N-terminal amino acid residues of PRDM3 and PRDM16, with a dissociation constant of 3.0 µM, as measured by isothermal titration calorimetry. Furthermore, high-resolution X-ray crystal structures of PRDM3 and PRDM16 N-terminal peptides in complex with RBBP4 revealed binding to RBBP4 within the conserved histone H3-binding groove. These data support a mechanism of isoform-specific interaction of PRDM3 and PRDM16 with the NuRD chromatin remodeling complex.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteína del Locus del Complejo MDS1 y EV11/química , Proteína del Locus del Complejo MDS1 y EV11/metabolismo , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Animales , Línea Celular , Cristalografía por Rayos X , Humanos , Proteína del Locus del Complejo MDS1 y EV11/genética , Ratones , Modelos Moleculares , Neoplasias/genética , Neoplasias/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteína 4 de Unión a Retinoblastoma/química , Proteína 4 de Unión a Retinoblastoma/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
12.
Proc Natl Acad Sci U S A ; 115(20): 5083-5088, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29712860

RESUMEN

HLA-I molecules play a central role in antigen presentation. They typically bind 9- to 12-mer peptides, and their canonical binding mode involves anchor residues at the second and last positions of their ligands. To investigate potential noncanonical binding modes, we collected in-depth and accurate HLA peptidomics datasets covering 54 HLA-I alleles and developed algorithms to analyze these data. Our results reveal frequent (442 unique peptides) and statistically significant C-terminal extensions for at least eight alleles, including the common HLA-A03:01, HLA-A31:01, and HLA-A68:01. High resolution crystal structure of HLA-A68:01 with such a ligand uncovers structural changes taking place to accommodate C-terminal extensions and helps unraveling sequence and structural properties predictive of the presence of these extensions. Scanning viral proteomes with the C-terminal extension motifs identifies many putative epitopes and we demonstrate direct recognition by human CD8+ T cells of a 10-mer epitope from cytomegalovirus predicted to follow the C-terminal extension binding mode.


Asunto(s)
Presentación de Antígeno/inmunología , Epítopos de Linfocito T/inmunología , Antígenos HLA/inmunología , Fragmentos de Péptidos/inmunología , Linfocitos T/inmunología , Algoritmos , Secuencia de Aminoácidos , Cristalografía por Rayos X , Humanos , Ligandos , Unión Proteica
13.
Proc Natl Acad Sci U S A ; 115(37): E8668-E8677, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150413

RESUMEN

The close integration of the MAPK, PI3K, and WNT signaling pathways underpins much of development and is deregulated in cancer. In principle, combinatorial posttranslational modification of key lineage-specific transcription factors would be an effective means to integrate critical signaling events. Understanding how this might be achieved is central to deciphering the impact of microenvironmental cues in development and disease. The microphthalmia-associated transcription factor MITF plays a crucial role in the development of melanocytes, the retinal pigment epithelium, osteoclasts, and mast cells and acts as a lineage survival oncogene in melanoma. MITF coordinates survival, differentiation, cell-cycle progression, cell migration, metabolism, and lysosome biogenesis. However, how the activity of this key transcription factor is controlled remains poorly understood. Here, we show that GSK3, downstream from both the PI3K and Wnt pathways, and BRAF/MAPK signaling converges to control MITF nuclear export. Phosphorylation of the melanocyte MITF-M isoform in response to BRAF/MAPK signaling primes for phosphorylation by GSK3, a kinase inhibited by both PI3K and Wnt signaling. Dual phosphorylation, but not monophosphorylation, then promotes MITF nuclear export by activating a previously unrecognized hydrophobic export signal. Nonmelanocyte MITF isoforms exhibit poor regulation by MAPK signaling, but instead their export is controlled by mTOR. We uncover here an unanticipated mode of MITF regulation that integrates the output of key developmental and cancer-associated signaling pathways to gate MITF flux through the import-export cycle. The results have significant implications for our understanding of melanoma progression and stem cell renewal.


Asunto(s)
Núcleo Celular/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción Asociado a Microftalmía/metabolismo , Proteínas Proto-Oncogénicas B-raf/metabolismo , Transporte Activo de Núcleo Celular , Animales , Línea Celular Tumoral , Células Cultivadas , Células HeLa , Humanos , Melanoma/genética , Melanoma/metabolismo , Melanoma/patología , Factor de Transcripción Asociado a Microftalmía/genética , Mutación , Fosforilación , Unión Proteica
14.
Int J Mol Sci ; 21(21)2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33114754

RESUMEN

Extracellular signal-regulated kinase 3 (ERK3), known also as mitogen-activated protein kinase 6 (MAPK6), is an atypical member of MAPK kinase family, which has been poorly studied. Little is known regarding its function in biological processes, yet this atypical kinase has been suggested to play important roles in the migration and invasiveness of certain cancers. The lack of tools, such as a selective inhibitor, hampers the study of ERK3 biology. Here, we report the crystal structure of the kinase domain of this atypical MAPK kinase, providing molecular insights into its distinct ATP binding pocket compared to the classical MAPK ERK2, explaining differences in their inhibitor binding properties. Medium-scale small molecule screening identified a number of inhibitors, several of which unexpectedly exhibited remarkably high inhibitory potencies. The crystal structure of CLK1 in complex with CAF052, one of the most potent inhibitors identified for ERK3, revealed typical type-I binding mode of the inhibitor, which by structural comparison could likely be maintained in ERK3. Together with the presented structural insights, these diverse chemical scaffolds displaying both reversible and irreversible modes of action, will serve as a starting point for the development of selective inhibitors for ERK3, which will be beneficial for elucidating the important functions of this understudied kinase.


Asunto(s)
Adenosina Trifosfato/metabolismo , Proteína Quinasa 6 Activada por Mitógenos/química , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Sitios de Unión , Cristalografía por Rayos X , Humanos , Proteína Quinasa 6 Activada por Mitógenos/antagonistas & inhibidores , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , Bibliotecas de Moléculas Pequeñas/química
15.
Trends Biochem Sci ; 40(8): 468-79, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26145250

RESUMEN

Bromodomains (BRDs) are evolutionarily conserved protein interaction modules that specifically recognise acetyl-lysine on histones and other proteins, facilitating roles in regulating gene transcription. BRD-containing proteins bound to chromatin loci such as enhancers are often deregulated in disease leading to aberrant expression of proinflammatory cytokines and growth-promoting genes. Recent developments targeting the bromo and extraterminal (BET) subset of BRD proteins demonstrated remarkable efficacy in murine models providing a compelling rationale for drug development and translation to the clinic. Here we summarise recent advances in our understanding of the roles of BETs in regulating gene transcription in normal and diseased tissue as well as the current status of their clinical translation.


Asunto(s)
Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Enfermedad , Estructura Terciaria de Proteína , Transcripción Genética , Animales , Proteínas Cromosómicas no Histona/antagonistas & inhibidores , Humanos , Modelos Moleculares , Transcripción Genética/genética
16.
Mol Cell Proteomics ; 16(6): 1098-1110, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28373298

RESUMEN

The Hippo tumor suppressor pathway regulates organ size and tissue homoeostasis in response to diverse signaling inputs. The core of the pathway consists of a short kinase cascade: MST1 and MST2 phosphorylate and activate LATS1 and LATS2, which in turn phosphorylate and inactivate key transcriptional coactivators, YAP1 and TAZ (gene WWTR1). The MOB1 adapter protein regulates both phosphorylation reactions firstly by concurrently binding to the upstream MST and downstream LATS kinases to enable the trans phosphorylation reaction, and secondly by allosterically activating the catalytic function of LATS1 and LATS2 to directly stimulate phosphorylation of YAP and TAZ. Studies of yeast Mob1 and human MOB1 revealed that the ability to recognize phosphopeptide sequences in their interactors, Nud1 and MST2 respectively, was critical to their roles in regulating the Mitotic Exit Network in yeast and the Hippo pathway in metazoans. However, the underlying rules of phosphopeptide recognition by human MOB1, the implications of binding specificity for Hippo pathway signaling, and the generality of phosphopeptide binding function to other human MOB family members remained elusive.Employing proteomics, peptide arrays and biochemical analyses, we systematically examine the phosphopeptide binding specificity of MOB1 and find it to be highly complementary to the substrate phosphorylation specificity of MST1 and MST2. We demonstrate that autophosphorylation of MST1 and MST2 on several threonine residues provides multiple MOB1 binding sites with varying binding affinities which in turn contribute to a redundancy of MST1-MOB1 protein interactions in cells. The crystal structures of MOB1A in complex with two favored phosphopeptide sites in MST1 allow for a full description of the MOB1A phosphopeptide-binding consensus. Lastly, we show that the phosphopeptide binding properties of MOB1A are conserved in all but one of the seven MOB family members in humans, thus providing a starting point for uncovering their elusive cellular functions.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Fosfopéptidos/metabolismo , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Recombinantes/metabolismo , Serina-Treonina Quinasa 3 , Transducción de Señal
17.
Bioorg Med Chem ; 26(11): 2937-2957, 2018 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-29776834

RESUMEN

Ligands for the bromodomain and extra-terminal domain (BET) family of bromodomains have shown promise as useful therapeutic agents for treating a range of cancers and inflammation. Here we report that our previously developed 3,5-dimethylisoxazole-based BET bromodomain ligand (OXFBD02) inhibits interactions of BRD4(1) with the RelA subunit of NF-κB, in addition to histone H4. This ligand shows a promising profile in a screen of the NCI-60 panel but was rapidly metabolised (t½â€¯= 39.8 min). Structure-guided optimisation of compound properties led to the development of the 3-pyridyl-derived OXFBD04. Molecular dynamics simulations assisted our understanding of the role played by an internal hydrogen bond in altering the affinity of this series of molecules for BRD4(1). OXFBD04 shows improved BRD4(1) affinity (IC50 = 166 nM), optimised physicochemical properties (LE = 0.43; LLE = 5.74; SFI = 5.96), and greater metabolic stability (t½â€¯= 388 min).


Asunto(s)
Proteínas Nucleares/química , Factores de Transcripción/química , Bioensayo , Western Blotting , Proteínas de Ciclo Celular , Cristalografía por Rayos X , Estabilidad de Medicamentos , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Concentración 50 Inhibidora , Ligandos , Luciferasas/química , Células MCF-7 , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad
18.
Nat Chem Biol ; 10(4): 305-12, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24584101

RESUMEN

Concomitant inhibition of multiple cancer-driving kinases is an established strategy to improve the durability of clinical responses to targeted therapies. The difficulty of discovering kinase inhibitors with an appropriate multitarget profile has, however, necessitated the application of combination therapies, which can pose major clinical development challenges. Epigenetic reader domains of the bromodomain family have recently emerged as new targets for cancer therapy. Here we report that several clinical kinase inhibitors also inhibit bromodomains with therapeutically relevant potencies and are best classified as dual kinase-bromodomain inhibitors. Nanomolar activity on BRD4 by BI-2536 and TG-101348, which are clinical PLK1 and JAK2-FLT3 kinase inhibitors, respectively, is particularly noteworthy as these combinations of activities on independent oncogenic pathways exemplify a new strategy for rational single-agent polypharmacological targeting. Furthermore, structure-activity relationships and co-crystal structures identify design features that enable a general platform for the rational design of dual kinase-bromodomain inhibitors.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/síntesis química , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Diseño de Fármacos , Polifarmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Western Blotting , Calorimetría , Línea Celular Tumoral , Cristalización , Interacciones Farmacológicas , Ensayos de Selección de Medicamentos Antitumorales , Epigénesis Genética , Ensayos Analíticos de Alto Rendimiento , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Pteridinas/farmacología , Pirrolidinas/farmacología , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Sulfonamidas/farmacología
19.
Nature ; 468(7327): 1067-73, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20871596

RESUMEN

Epigenetic proteins are intently pursued targets in ligand discovery. So far, successful efforts have been limited to chromatin modifying enzymes, or so-called epigenetic 'writers' and 'erasers'. Potent inhibitors of histone binding modules have not yet been described. Here we report a cell-permeable small molecule (JQ1) that binds competitively to acetyl-lysine recognition motifs, or bromodomains. High potency and specificity towards a subset of human bromodomains is explained by co-crystal structures with bromodomain and extra-terminal (BET) family member BRD4, revealing excellent shape complementarity with the acetyl-lysine binding cavity. Recurrent translocation of BRD4 is observed in a genetically-defined, incurable subtype of human squamous carcinoma. Competitive binding by JQ1 displaces the BRD4 fusion oncoprotein from chromatin, prompting squamous differentiation and specific antiproliferative effects in BRD4-dependent cell lines and patient-derived xenograft models. These data establish proof-of-concept for targeting protein-protein interactions of epigenetic 'readers', and provide a versatile chemical scaffold for the development of chemical probes more broadly throughout the bromodomain family.


Asunto(s)
Azirinas/farmacología , Dihidropiridinas/farmacología , Modelos Moleculares , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Azirinas/síntesis química , Azirinas/química , Sitios de Unión , Carcinoma de Células Escamosas/fisiopatología , Proteínas de Ciclo Celular , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatina/metabolismo , Dihidropiridinas/síntesis química , Dihidropiridinas/química , Femenino , Humanos , Ratones , Ratones Desnudos , Datos de Secuencia Molecular , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Neoplasias Cutáneas/fisiopatología , Estereoisomerismo
20.
Proc Natl Acad Sci U S A ; 110(49): 19754-9, 2013 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-24248379

RESUMEN

Bromodomains have emerged as attractive candidates for the development of inhibitors targeting gene transcription. Inhibitors of the bromo and extraterminal (BET) family recently showed promising activity in diverse disease models. However, the pleiotropic nature of BET proteins regulating tissue-specific transcription has raised safety concerns and suggested that attempts should be made for domain-specific targeting. Here, we report that RVX-208, a compound currently in phase II clinical trials, is a BET bromodomain inhibitor specific for second bromodomains (BD2s). Cocrystal structures revealed binding modes of RVX-208 and its synthetic precursor, and fluorescent recovery after photobleaching demonstrated that RVX-208 displaces BET proteins from chromatin. However, gene-expression data showed that BD2 inhibition only modestly affects BET-dependent gene transcription. Our data demonstrate the feasibility of specific targeting within the BET family resulting in different transcriptional outcomes and highlight the importance of BD1 in transcriptional regulation.


Asunto(s)
Modelos Moleculares , Quinazolinas/química , Quinazolinas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Cristalización , Recuperación de Fluorescencia tras Fotoblanqueo , Células Hep G2 , Humanos , Estructura Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , Estructura Terciaria de Proteína/fisiología , Quinazolinonas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA