Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Am J Bot ; 111(2): e16286, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38366863

RESUMEN

PREMISE: In frequently burned southeastern USA pine-grassland communities, wiregrass (Aristida stricta and A. beyrichiana) are dominant bunchgrasses whose flowers are infected during flowering by a smut fungus (Langdonia walkerae). We hypothesized that because prescribed fire timing affects wiregrass flowering patterns, it could affect smut incidence (occurrence of smut on plants) and severity of infection in inflorescences and spikelets. Because soil order could influence plant susceptibility, we hypothesized that these patterns would differ between soil orders. We hypothesized differences between species as representative of geographic variation in this ecosystem. METHODS: We surveyed the incidence and severity of L. walkerae in wiregrass populations (85 populations at 14 sites) that had been prescription burned at different times during the previous year. We used binomial regressions to test whether incidence and severity differed by burn day, soil order, or species, with site as a random effect. RESULTS: Fires that occurred in the winter were associated with significantly lower incidence than fires later in the year (as the months progressed into summer). Plants growing on Spodosol soils were significantly less likely to be infected than those on other soils. More variation in incidence, however, was explained by site, suggesting that site-specific characteristics were important. Smut severity in inflorescences and spikelets was greater overall in populations of A. stricta than in southern populations (A. beyrichiana). CONCLUSIONS: Our findings indicate that fire timing and soil order affect L. walkerae incidence in wiregrass plants, but neither appears to be associated with greater severity. Patterns of smut infection are related to site history and geographic variation.


Asunto(s)
Ecosistema , Incendios , Incidencia , Poaceae , Suelo , Hongos
2.
Proc Biol Sci ; 286(1897): 20182528, 2019 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-30963838

RESUMEN

The exponential increase in species introductions during the Anthropocene has brought about a major loss of biodiversity. Amphibians have suffered large declines, with more than 16% considered to be threatened by invasive species. We conducted a global meta-analysis of the impacts of alien species on native amphibians to determine which aspects of amphibian ecology are most affected by plant, invertebrate, fish, amphibian, reptile, or mammal introductions. Measures of fitness were most strongly affected; amphibian performance was consistently lower in the presence of alien species. While exposure to alien species caused a significant decrease in amphibian behavioural activity when compared with a no species control, this response was stronger towards a control of native impacting species. This indicates a high degree of prey naiveté towards alien species and highlights the importance of using different types of controls in empirical studies. Alien invertebrates had the greatest overall impact on amphibians. This study sets a new agenda for research on biological invasions, highlighting the lack of studies investigating the impacts of alien species on amphibian terrestrial life-history stages. It also emphasizes the strong ecological impacts that alien species have on amphibian fitness and suggests that future introductions or global spread of alien invertebrates could strongly exacerbate current amphibian declines.


Asunto(s)
Anfibios/fisiología , Distribución Animal , Especies Introducidas , Anfibios/crecimiento & desarrollo , Animales , Aptitud Genética , Invertebrados , Plantas , Dinámica Poblacional , Vertebrados
3.
Glob Chang Biol ; 25(10): 3562-3569, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31297944

RESUMEN

Trends in average annual or seasonal precipitation are insufficient for detecting changes in the climatic fire season, especially in regions where the fire season is defined by wet-dry seasonal cycles and lightning activity. Using an extensive dataset (1897-2017) in the Coastal Plain of the southeastern United States, we examined changes in annual dry season length, total precipitation, and (since 1945) the seasonal distribution of thunder-days as a correlate of lightning activity. We found that across the entire region, the dry season has lengthened by as much as 156 days (130% over 120 years), both starting earlier and ending later with less total precipitation. Less rainfall over a longer dry season, with no change in seasonal thunderstorm patterns, likely increases both the potential for lightning-ignited wildfires and fire severity. Global climate change could be having a hitherto undetected influence on fire regimes by altering the synchrony of climatic seasonal parameters.


Asunto(s)
Relámpago , Incendios Forestales , Cambio Climático , Estaciones del Año , Sudeste de Estados Unidos
4.
J Environ Manage ; 185: 1-10, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27815003

RESUMEN

The long-term effectiveness of ecological restoration projects is seldom reported in the scientific literature. This paper reports on the outcomes of ecosystem restoration following the clearing of alien Pinus plantations and associated alien plant invasions over 13 years from an 8000 ha mountain catchment in the Western Cape Province, South Africa. We examined the goals, methods and costs of management, and the ecological outcomes in terms of reduced alien plant cover and native vegetation recovery. While the goals were not explicitly formulated at the outset, they were implicitly focussed on the conservation of water resources, the restoration of biodiversity, and the provision of employment. Initially, most (>90% of the area) was occupied by Pinus and Acacia invasions, mostly at low densities. The cost of control (initial clearing and up to 16 follow-up visits to remove emergent seedlings) amounted to almost ZAR 50 million (14 ZAR âˆ¼ 1US$). Although the cover of alien plants was greatly reduced, over 1000 ha still support dense or medium invasions (>25% cover), and the area occupied by scattered Pinus plants increased by over 3000 ha to >5700 ha. A reliance on passive restoration had not yet resulted in full recovery of the natural vegetation. The mean number of species, and total projected canopy cover on 50 m2 plots was lower in cleared than in comparable reference sites with pristine vegetation (21 vs 32 species/plot, and 94 vs 168% cover respectively). While the project is ongoing, we conclude that the entire area could revert to a more densely-invaded state in the event of a reduction of funding. Several changes to the management approach (including the integrated use of fire, a greater use of power tools, and active re-seeding of cleared areas with indigenous shrubs) would substantially increase the future effectiveness of the project and the sustainability of its outcomes.


Asunto(s)
Ecosistema , Restauración y Remediación Ambiental , Incendios , Especies Introducidas , Plantas/clasificación , Sudáfrica , Factores de Tiempo
6.
Ecol Evol ; 14(7): e70021, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39026947

RESUMEN

Overstory trees serve multiple functions in grassy savannas. Past research has shown that understory species can vary along gradients of canopy cover and basal area in savannas. This variation is frequently associated with light availability but could also be related to other mechanisms, such as heterogeneity in soil and litter depth and fire intensity. Several savanna studies have found differences in understory plant functional groups within the local environment near trees versus away from them in canopy openings. Although small-scale variation is known to be high in southeastern U.S. pine savannas, patterns in understory species diversity have not been examined at the scale of individual overstory pine trees in this system. We conducted an observational study of the relationship between understory plant communities and proximity to individual pine trees in xeric and mesic pine savannas in frequently burned sites (1-3 year intervals). We recorded the plant community composition in plots adjacent to tree boles (basal) or outside crown driplines (open). Within each environment, raw species richness was significantly greater in open locations, where light transmittance was greater. In contrast, rarified species richness did not differ. Multivariate analyses showed that community composition differed significantly between basal and open plots. One native, woody species in each environment, Serenoa repens (W. Bartram) Small in mesic and Diospyros virginiana L. in xeric, was more abundant in basal plots. In mesic environments, eight species had greater occurrence in open plots. In xeric environments, four understory forbs were more abundant in open plots. Our results support previous research indicating that individual pine trees are associated with significant variation in understory vegetation in pine savannas.

7.
PLoS One ; 16(2): e0247159, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33596591

RESUMEN

Restoring fire regimes is a major goal of biodiversity conservation efforts in fire-prone ecosystems from which fire has been excluded. In the southeastern U.S.A., nearly a century of fire exclusion in pine savannas has led to significant biodiversity declines in one of the most species-rich ecosystems of North America. In these savannas, frequent fires that support biodiversity are driven by vegetation-fire feedbacks. Understory grasses are key components of these feedbacks, fueling the spread of fires that keep tree density low and maintain a high-light environment. When fire is reintroduced to long-unburned sites, however, remnant populations of bunchgrasses might experience high mortality from fuel accumulation during periods of fire exclusion. Our objective was to quantify fire effects on wiregrass (Aristida beyrichiana), a key component of vegetation-fire feedbacks, following 16 years without fire in a dry pine savanna typically considered to burn every 1-3 years. We examined how wiregrass size and fuel (duff depth and presence of pinecones) affected post-fire survival, inflorescence and seed production, and seed germination. Wiregrass exhibited high survival regardless of size or fuels. Probability of flowering and inflorescence number per plant were unaffected by fuel treatments but increased significantly with plant size (p = 0.016). Germination of filled seeds was consistent (29-43%) regardless of fuels, although plants in low duff produced the greatest proportion of filled seeds. The ability of bunchgrasses to persist and reproduce following fire exclusion could jumpstart efforts to reinstate frequent-fire regimes and facilitate biodiversity restoration where remnant bunchgrass populations remain.


Asunto(s)
Poaceae/fisiología , Biodiversidad , Ecosistema , Germinación/fisiología , Pradera , Semillas/fisiología
8.
PLoS One ; 14(1): e0211295, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682179

RESUMEN

The presence of native grasses in communities can suppress native forbs through competition and indirectly benefit these forbs by suppressing the invasion of highly competitive exotic species. We conducted a greenhouse experiment to examine the potential of direct and indirect interactions to influence the aboveground biomass of four native forb species in the presence of the native perennial grass Schizachyrium scoparium and exotic invasive Lespedeza cuneata. We examined patterns of growth for the invasive legume, the perennial grass, and four native species in four scenarios: 1) native species grown with the grass, 2) native species grown with the legume, 3) native species grown with both the grass and legume together, and 4) native species grown alone. Schizachyrium scoparium significantly decreased biomass of all forb species (p<0.05). In contrast, L. cuneata alone only significantly affected biomass of Asclepias tuberosa; L. cuneata increased the biomass of A. tuberosa only when the grass was present. When S. scoparium and L. cuneata were grown together, L. cuneata had significantly lower biomass (p = 0.007) and S. scoparium had significantly greater biomass (p = 0.002) than when each grew alone. These reciprocal effects suggest a potential pathway by which L. cuneata could alter forb diversity in grassland communities In this scenario, L. cuneata facilitates grass growth and competition with other natives. Our results emphasize the importance of monitoring interactions between exotic invasive plant species and dominant native species in grassland communities to understand pathways of plant community change.


Asunto(s)
Fabaceae/fisiología , Poaceae/crecimiento & desarrollo , Biomasa , Ecosistema , Especies Introducidas
9.
Trends Ecol Evol ; 35(10): 867-868, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32703704
10.
PLoS One ; 10(4): e0123307, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25915926

RESUMEN

UNLABELLED: In evaluating conservation and management options for species, practitioners might consider surrogate habitats at multiple scales when estimating available habitat or modeling species' potential distributions based on suitable habitats, especially when native environments are rare. Species' dependence on surrogates likely increases as optimal habitat is degraded and lost due to anthropogenic landscape change, and thus surrogate habitats may be vital for an imperiled species' survival in highly modified landscapes. We used spatial habitat models to examine a potential surrogate habitat for an imperiled ambush predator (eastern diamondback rattlesnake, Crotalus adamanteus; EDB) at two scales. The EDB is an apex predator indigenous to imperiled longleaf pine ecosystems (Pinus palustris) of the southeastern United States. Loss of native open-canopy pine savannas and woodlands has been suggested as the principal cause of the species' extensive decline. We examined EDB habitat selection in the Coastal Plain tidewater region to evaluate the role of marsh as a potential surrogate habitat and to further quantify the species' habitat requirements at two scales: home range (HR) and within the home range (WHR). We studied EDBs using radiotelemetry and employed an information-theoretic approach and logistic regression to model habitat selection as use vs. AVAILABILITY: We failed to detect a positive association with marsh as a surrogate habitat at the HR scale; rather, EDBs exhibited significantly negative associations with all landscape patches except pine savanna. Within home range selection was characterized by a negative association with forest and a positive association with ground cover, which suggests that EDBs may use surrogate habitats of similar structure, including marsh, within their home ranges. While our HR analysis did not support tidal marsh as a surrogate habitat, marsh may still provide resources for EDBs at smaller scales.


Asunto(s)
Crotalus/fisiología , Bosques , Modelos Biológicos , Animales , Especies en Peligro de Extinción , Femenino , Masculino , Pinus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA