RESUMEN
Due to the progressive ageing of the human population, the number of cancer cases is increasing. For this reason, there is an urgent need for new treatments that can prolong the lives of cancer patients or ensure them a good quality of life. Although significant progress has been made in the treatment of cancer in recent years and the survival rate of patients is increasing, limitations in the use of conventional therapies include the frequent occurrence of side effects and the development of resistance to chemotherapeutic agents. These limitations are prompting researchers to investigate whether combining natural agents with conventional drugs could have a positive therapeutic effect in cancer treatment. Several natural bioactive compounds, especially polyphenols, have been shown to be effective against cancer progression and do not exert toxic effects on healthy tissues. Many studies have investigated the possibility of combining polyphenols with conventional drugs as a novel anticancer strategy. Indeed, this combination often has synergistic benefits that increase drug efficacy and reduce adverse side effects. In this review, we provide an overview of the studies describing the synergistic effects of curcumin, a polyphenol that has been shown to have extensive cytotoxic functions against cancer cells, including combined treatment. In particular, we have described the results of recent preclinical and clinical studies exploring the pleiotropic effects of curcumin in combination with standard drugs and the potential to consider it as a promising new tool for cancer therapy.
Asunto(s)
Curcumina , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Neoplasias , Humanos , Curcumina/farmacología , Curcumina/uso terapéutico , Calidad de Vida , Terapia Combinada , Polifenoles/farmacología , Polifenoles/uso terapéutico , Neoplasias/tratamiento farmacológicoRESUMEN
A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.
Asunto(s)
Histona Demetilasas/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Animales , Caenorhabditis elegans , Línea Celular , Proteínas de Unión al ADN/metabolismo , Femenino , Células HEK293 , Inhibidores de Histona Desacetilasas/farmacología , Histona Demetilasas/genética , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/metabolismo , Vorinostat/farmacologíaRESUMEN
The interest in dietary polyphenols in recent years has greatly increased due to their antioxidant bioactivity with preventive properties against chronic diseases. Polyphenols, by modulating different cellular functions, play an important role in neuroprotection and are able to neutralize the effects of oxidative stress, inflammation, and apoptosis. Interestingly, all these mechanisms are involved in neurodegeneration. Although polyphenols display differences in their effectiveness due to interindividual variability, recent studies indicated that bioactive polyphenols in food and beverages promote health and prevent age-related cognitive decline. Polyphenols have a poor bioavailability and their digestion by gut microbiota produces active metabolites. In fact, dietary bioactive polyphenols need to be modified by microbiota present in the intestine before being absorbed, and to exert health preventive effects by interacting with cellular signalling pathways. This literature review includes an evaluation of the literature in English up to December 2019 in PubMed and Web of Science databases. A total of 307 studies, consisting of research reports, review articles and articles were examined and 146 were included. The review highlights the role of bioactive polyphenols in neurodegeneration, with a particular emphasis on the cellular and molecular mechanisms that are modulated by polyphenols involved in protection from oxidative stress and apoptosis prevention.
Asunto(s)
Enfermedades Neurodegenerativas/tratamiento farmacológico , Polifenoles/farmacología , Polifenoles/uso terapéutico , Animales , Antioxidantes/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Transducción de Señal/efectos de los fármacosRESUMEN
Intellectual disability (ID) and epilepsy often occur together and have a dramatic impact on the development and quality of life of the affected children. Polyalanine (polyA)-expansion-encoding mutations of aristaless-related homeobox (ARX) cause a spectrum of X-linked ID (XLID) diseases and chronic epilepsy, including infantile spasms. We show that lysine-specific demethylase 5C (KDM5C), a gene known to be mutated in XLID-affected children and involved in chromatin remodeling, is directly regulated by ARX through the binding in a conserved noncoding element. We have studied altered ARX carrying various polyA elongations in individuals with XLID and/or epilepsy. The changes in polyA repeats cause hypomorphic ARX alterations, which exhibit a decreased trans-activity and reduced, but not abolished, binding to the KDM5C regulatory region. The altered functioning of the mutants tested is likely to correlate with the severity of XLID and/or epilepsy. By quantitative RT-PCR, we observed a dramatic Kdm5c mRNA downregulation in murine Arx-knockout embryonic and neural stem cells. Such Kdm5c mRNA diminution led to a severe decrease in the KDM5C content during in vitro neuronal differentiation, which inversely correlated with an increase in H3K4me3 signal. We established that ARX polyA alterations damage the regulation of KDM5C expression, and we propose a potential ARX-dependent path acting via chromatin remodeling.
Asunto(s)
Epilepsia/genética , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Oxidorreductasas N-Desmetilantes/genética , Factores de Transcripción/genética , Animales , Niño , Expansión de las Repeticiones de ADN , Histona Demetilasas , Humanos , Ratones , Ratones Noqueados , Péptidos/genéticaRESUMEN
Rett syndrome (RTT) is a rare neurodevelopmental disorder affecting almost exclusively females, caused in the overwhelming majority of the cases by loss-of-function mutations in the gene encoding methyl-CpG binding protein 2 (MECP2). High circulating levels of oxidative stress (OS) markers in patients suggest the involvement of OS in the RTT pathogenesis. To investigate the occurrence of oxidative brain damage in Mecp2 mutant mouse models, several OS markers were evaluated in whole brains of Mecp2-null (pre-symptomatic, symptomatic, and rescued) and Mecp2-308 mutated (pre-symptomatic and symptomatic) mice, and compared to those of wild type littermates. Selected OS markers included non-protein-bound iron, isoprostanes (F2-isoprostanes, F4-neuroprostanes, F2-dihomo-isoprostanes) and 4-hydroxy-2-nonenal protein adducts. Our findings indicate that oxidative brain damage 1) occurs in both Mecp2-null (both -/y and stop/y) and Mecp2-308 (both 308/y males and 308/+ females) mouse models of RTT; 2) precedes the onset of symptoms in both Mecp2-null and Mecp2-308 models; and 3) is rescued by Mecp2 brain specific gene reactivation. Our data provide direct evidence of the link between Mecp2 deficiency, oxidative stress and RTT pathology, as demonstrated by the rescue of the brain oxidative homeostasis following brain-specifically Mecp2-reactivated mice. The present study indicates that oxidative brain damage is a previously unrecognized hallmark feature of murine RTT, and suggests that Mecp2 is involved in the protection of the brain from oxidative stress.
Asunto(s)
Lesiones Encefálicas/etiología , Proteína 2 de Unión a Metil-CpG/genética , Mutación/genética , Estrés Oxidativo/fisiología , Síndrome de Rett/complicaciones , Síndrome de Rett/genética , Aldehídos/metabolismo , Análisis de Varianza , Animales , Ácido Araquidónico/metabolismo , Lesiones Encefálicas/sangre , Lesiones Encefálicas/patología , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas , Isoprostanos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Nestina/genética , Neuroprostanos/metabolismo , Síndrome de Rett/sangreRESUMEN
The maintenance of redox homeostasis is associated with a healthy status while the disruption of this mechanism leads to the development of various pathological conditions. Bioactive molecules such as carbohydrates accessible to the microbiota (MACs), polyphenols, and polyunsaturated fatty acids (PUFAs) are food components best characterized for their beneficial effect on human health. In particular, increasing evidence suggests that their antioxidant ability is involved in the prevention of several human diseases. Some experimental data indicate that the activation of the nuclear factor 2-related erythroid 2 (Nrf2) pathway-the key mechanism in the maintenance of redox homeostasis-is involved in the beneficial effects exerted by the intake of PUFAs and polyphenols. However, it is known that the latter must be metabolized before becoming active and that the intestinal microbiota play a key role in the biotransformation of some ingested food components. In addition, recent studies, indicating the efficacy of the MACs, polyphenols, and PUFAs in increasing the microbial population with the ability to yield biologically active metabolites (e.g., polyphenol metabolites, short-chain fatty acids (SCFAs)), support the hypothesis that these factors are responsible for the antioxidant action on the physiology of the host. The underlying mechanisms through which MACs, polyphenols, and PUFAs might influence the redox status have not been fully elucidated, but based on the efficacy of SCFAs as Nrf2 activators, their contribution to the antioxidant efficacy of dietary bioactives cannot be excluded. In this review, we aimed to summarize the main mechanisms through which MACs, polyphenols, and PUFAs can modulate the host's redox homeostasis through their ability to directly or indirectly activate the Nrf2 pathway. We discuss their probiotic effects and the role played by the alteration of the metabolism/composition of the gut microbiota in the generation of potential Nrf2-ligands (e.g., SCFAs) in the host's redox homeostasis.
RESUMEN
Grapevine (Vitis vinifera L.) seeds are rich in polyphenols including proanthocyanidins, molecules with a variety of biological effects including anticancer action. We have previously reported that the grape seed semi-polar extract of Aglianico cultivar (AGS) was able to induce apoptosis and decrease cancer properties in different mesothelioma cell lines. Concomitantly, this extract resulted in enriched oligomeric proanthocyanidins which might be involved in determining the anticancer activity. Through transcriptomic and metabolomic analyses, we investigated in detail the anticancer pathway induced by AGS. Transcriptomics analysis and functional annotation allowed the identification of the relevant causative genes involved in the apoptotic induction following AGS treatment. Subsequent biological validation strengthened the hypothesis that MDM2 could be the molecular target of AGS and that it could act in both a p53-dependent and independent manner. Finally, AGS significantly inhibited tumor progression in a xenograft mouse model of mesothelioma, confirming also in vivo that MDM2 could act as molecular player responsible for the AGS antitumor effect. Our findings indicated that AGS, exerting a pro-apoptotic effect by hindering MDM2 pathway, could represent a novel source of anticancer molecules.
Asunto(s)
Extracto de Semillas de Uva , Mesotelioma , Proantocianidinas , Vitis , Humanos , Animales , Ratones , Extracto de Semillas de Uva/farmacología , Proantocianidinas/farmacología , Semillas , Redes y Vías Metabólicas , Proteínas Proto-Oncogénicas c-mdm2RESUMEN
The serious side effects caused by chemotherapeutics and the development of cancer chemoresistance represent the most significant limitations in the treatment of cancer. Some alternative approaches have been developed in recent years, which are based on natural compounds, and have allowed important advances in cancer therapeutics. During the last 50 years, sponges have been considered a promising source of natural products from the marine environment, representing ~30% of all marine natural products. Among sponges, the Mediterranean species Geodia cydonium represents a potential source of these type of products with considerable biotechnological interest as pharmaceutical agents. The present study demonstrated the antiproliferative effect of an organic G. cydonium extract (GEOCYDO) against three human mesothelioma cell lines, MSTO-211H (MSTO), NCI-H2452 (NCI) and Ist-Mes2 (Mes2), which differ in their sensitivity (MSTO and NCI) and resistance (Mes2) to standard combined treatment with cisplatin and piroxicam. To this aim, the activity of the extract was evaluated by analyzing its effects on cell viability, cancer properties and cell cycle progression by means of colony formation assay, cell cycle analysis and protein expression analysis. The results revealed, in mesothelioma, this extract was able to reduce self-renewal, cell migration and it could induce cell cycle arrest in G0/G1 stage, thus blocking cell proliferation. In conclusion, to the best of our knowledge, the present results indicated for the first time that GEOCYDO can contain active compounds able to affect cell proliferation in mesothelioma, suggesting that it could be considered as a potential novel drug source for cancer treatment.
RESUMEN
Oxidative damage has been reported in Rett syndrome (RTT), a pervasive developmental disorder caused in up to 95% of cases by mutations in the X-linked methyl-CpG binding protein 2 gene. Herein, we have synthesized F(2)-dihomo-isoprostanes (F(2)-dihomo-IsoPs), peroxidation products from adrenic acid (22:4 n-6), a known component of myelin, and tested the potential value of F(2)-dihomo-IsoPs as a novel disease marker and its relationship with clinical presentation and disease progression. F(2)-dihomo-IsoPs were determined by gas chromatography/negative-ion chemical ionization tandem mass spectrometry. Newly synthesized F(2)-dihomo-IsoP isomers [ent-7(RS)-F(2t)-dihomo-IsoP and 17-F(2t)-dihomo-IsoP] were used as reference standards. The measured ions were the product ions at m/z 327 derived from the [M-181](-) precursor ions (m/z 597) produced from both the derivatized ent-7(RS)-F(2t)-dihomo-IsoP and 17-F(2t)-dihomo-IsoP. Average plasma F(2)-dihomo-IsoP levels in RTT were about one order of magnitude higher than those in healthy controls, being higher in typical RTT as compared with RTT variants, with a remarkable increase of about two orders of magnitude in patients at the earliest stage of the disease followed by a steady decrease during the natural clinical progression. hese data indicate for the first time that quantification of F(2)-dihomo-IsoPs in plasma represents an early marker of the disease and may provide a better understanding of the pathogenic mechanisms behind the neurological regression in patients with RTT.
Asunto(s)
F2-Isoprostanos/sangre , Peroxidación de Lípido , Estrés Oxidativo , Síndrome de Rett/sangre , Síndrome de Rett/metabolismo , Adolescente , Adulto , Biomarcadores/sangre , Biomarcadores/química , Niño , Preescolar , Progresión de la Enfermedad , Ácidos Erucicos/metabolismo , F2-Isoprostanos/química , Ácidos Grasos Insaturados , Femenino , Humanos , Lactante , Vaina de Mielina/metabolismo , Especificidad de Órganos , Adulto JovenRESUMEN
Short or small interfering RNAs (siRNAs) and microRNA (miRNAs) are molecules similar in size and function able to inhibit gene expression based on their complementarity with mRNA sequences, inducing the degradation of the transcript or the inhibition of their translation.siRNAs bind specifically to a single gene location by sequence complementarity and regulate gene expression by specifically targeting transcription units via posttranscriptional gene silencing. miRNAs can regulate the expression of different gene targets through their imperfect base pairing.This process - known as RNA interference (RNAi) - modulates transcription in order to maintain a correct physiological environment, playing a role in almost the totality of the cellular pathways.siRNAs have been evolutionary evolved for the protection of genome integrity in response to exogenous and invasive nucleic acids such as transgenes or transposons. Artificial siRNAs are widely used in molecular biology for transient silencing of genes of interest. This strategy allows to inhibit the expression of any target protein of known sequence and is currently used for the treatment of different human diseases including cancer.Modifications and rearrangements in gene regions encoding for miRNAs have been found in cancer cells, and specific miRNA expression profiles characterize the developmental lineage and the differentiation state of the tumor. miRNAs with different expression patterns in tumors have been reported as oncogenes (oncomirs) or tumor-suppressors (anti-oncomirs). RNA modulation has become important in cancer research not only for development of early and easy diagnosis tools but also as a promising novel therapeutic approach.Despite the emerging discoveries supporting the role of miRNAs in carcinogenesis and their and siRNAs possible use in therapy, a series of concerns regarding their development, delivery and side effects have arisen.In this review we report the biology of miRNAs and siRNAs in relation to cancer summarizing the recent methods described to use them as novel therapeutic drugs and methods to specifically deliver them to cancer cells and overcome the limitations in the use of these molecules.
Asunto(s)
MicroARNs/genética , Neoplasias/terapia , ARN Interferente Pequeño/genética , ARN no Traducido/genética , Humanos , Neoplasias/genéticaRESUMEN
Oxidative stress has been associated to neuronal cell loss in neurodegenerative diseases. Neurons are post-mitotic cells that are very sensitive to oxidative stress-especially considering their limited capacity to be replaced. Therefore, reduction of oxidative stress, and inhibiting apoptosis, will potentially prevent neurodegeneration. In this study, we investigated the neuroprotective effect of Ginkgo biloba extract (EGb 761) against H2O2 induced apoptosis in SK-N-BE neuroblastoma cells. We analysed the molecular signalling pathway involved in the apoptotic cell death. H2O2 induced an increased acetylation of p53 lysine 382, a reduction in mitochondrial membrane potential, an increased BAX/Bcl-2 ratio and consequently increased Poly (ADP-ribose) polymerase (PARP) cleavage. All these effects were blocked by EGb 761 treatment. Thus, EGb 761, acting as intracellular antioxidant, protects neuroblastoma cells against activation of p53 mediated pathway and intrinsic mitochondrial apoptosis. Our results suggest that EGb 761, protecting against oxidative-stress induced apoptotic cell death, could potentially be used as nutraceutical for the prevention and treatment of neurodegenerative diseases.
RESUMEN
BACKGROUND: A major limitation in the treatment for malignant mesothelioma is related to serious side effects caused by chemotherapeutics and to the development of cancer-resistance. Advances in cancer therapies have been reached thanks to the introduction of alternative approaches, such as the use of phytochemicals. Curcumin-C3complex®/Bioperine® is a commercially standardized extract containing a ratio-defined mixture of three curcuminoids and piperine that greatly increase its bioavailability. Interestingly, the anticancer effect of this formulation has been described in different studies and several clinical trials have been started, but to our knowledge none refers to human mesothelioma. METHODS: Curcumin-C3complex®/Bioperine® anticancer effect was evaluated in vitro in different human mesothelioma cell lines analysing cell proliferation, colony-forming assay, wound healing assays, invasion assay and FACS analysis. In vivo anticancer properties were analysed in a mesothelioma xenograft mouse model in CD1 Nude mice. RESULTS: Curcumin-C3complex®/Bioperine® in vitro induced growth inhibition in all mesothelioma cell lines analysed in a dose- and time-depended manner and reduced self-renewal cell migration and cell invasive ability. Cell death was due to apoptosis. The analysis of the molecular signalling pathway suggested that intrinsic apoptotic pathway is activated by this treatment. This treatment in vivo delayed the growth of the ectopic tumours in a mesothelioma xenograft mouse model. CONCLUSIONS: Curcumin-C3complex®/Bioperine® treatment strongly reduces in vitro tumorigenic properties of mesothelioma cells by impairing cellular self-renewal ability, proliferative cell rate and cell migration and delays tumor growth in xenograft mouse model by reducing angiogenesis and increasing apoptosis. Considering that curcumin in vivo synergizes drug effects, its administration to treatment regimen may help to enhance drug therapeutic efficacy in mesothelioma. Our results suggest that implementation of standard pharmacological therapies with novel compounds may pave the way to develop alternative approaches to mesothelioma.
Asunto(s)
Antineoplásicos/farmacología , Curcumina/química , Curcumina/farmacología , Mesotelioma/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Apoptosis , Movimiento Celular , Proliferación Celular , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones Desnudos , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
In this study, we report, for the first time, the synthesis of two original nanosystems, based on gold Au(III) and copper Cu(II): simple gold-copper nanoparticles (Cu0AuNPs) and enriched monopicolinate cyclam (L1)-Cu(II)-Au(III)-complex (L1@Cu2+AuNPs). The two nanomaterials differ substantially by the chelation or not of the Cu(II) ions during the NPs synthesis process. The two hybrid nanoparticles (Cu0AuNPs; L1@Cu2+AuNPs) were deeply studied from the chemical and physical point of view, using many different analytical techniques such as Raman and UV-vis spectroscopy, electron transmission microscopy, and dynamic light scattering. Both nanosystems show morphological and good chemical stability at pH 4 values and in physiological conditions during 98 h. Undifferentiated and neural differentiated murine embryonic stem cells were used as a model system for in vitro experiments to reveal the effects of NPs on these cells. The comparative study between Cu0AuNPs and L1@Cu2+AuNPs highlights that copper chelated in its +2 oxidation state in the NPs is more functional for biological application.
RESUMEN
Oxidative stress is caused by imbalance between the production of reactive oxygen species (ROS) and biological system ability to readily detoxify the reactive intermediates or repair the resulting damage. 2-deoxy-D-ribose (dRib) is known to induce apoptosis by provoking an oxidative stress by depleting glutathione (GSH). In this paper, we elucidate the mechanisms underlying GSH depletion in response to dRib treatment. We demonstrated that the observed GSH depletion is not only due to inhibition of synthesis, by inhibiting gamma-glutamyl-cysteine synthetase, but also due to its increased efflux, by the activity of multidrug resistance associated proteins transporters. We conclude that dRib interferes with GSH homeostasis and that likely cellular oxidative stress is a consequence of GSH depletion. Various GSH fates, such as direct oxidation, lack of synthesis or of storage, characterize different kinds of oxidative stress. In the light of our observations we conclude that dRib does not induce GSH oxidation but interferes with GSH synthesis and storage. Lack of GSH allows accumulation of ROS and cells, disarmed against oxidative insults, undergo apoptosis.
Asunto(s)
Apoptosis/fisiología , Desoxirribosa/metabolismo , Glutatión/metabolismo , Estrés Oxidativo/fisiología , Animales , Western Blotting , Línea Celular , Cromatografía en Capa Delgada , RatonesRESUMEN
Biotechnologies such as high-throughput screening (HTS) enable evaluation of large compound libraries for their biological activity and toxic properties. In the field of drug development, embryonic stem (ES) cells have been instrumental in HTS for testing the effect of new compounds. We report an innovative method in one step to differentiate ES cells in neurons and glial cells. The four different neuronal subtypes, gamma-aminobutyric acid (GABA)-ergic, dopaminergic, serotonergic, and motor neurons, are formed in culture. This protocol is adaptable to small wells and is highly reproducible, as indicated by the Z-factor value. Moreover, by using either leukemia inhibitory factor (LIF) or recombinant Cripto protein in our culture conditions, we provide evidence that this protocol is suitable for testing the effect of different molecules on neuronal differentiation of ES cells. Finally, thanks to the simplicity in carrying out the experiment, this method provides the possibility of following the morphological evolution of the in vitro differentiating neuronal cells by timelapse videomicroscopy. Our experimental system provides a powerful tool for testing the effect of different substances on survival and/or differentiation of neuronal and glial cells in an HTS-based approach. Furthermore, using genetically modified ES cells, it would be possible to screen for drugs that have a therapeutic effect on specific neuronal pathologies or to follow, by time-lapse videomicroscopy, their ability to in vitro differentiate.
Asunto(s)
Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Células Madre Embrionarias/citología , Neuronas/citología , Biomarcadores/metabolismo , Encéfalo/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Estratos Germinativos/citología , Estratos Germinativos/efectos de los fármacos , Factor Inhibidor de Leucemia/farmacología , Neuronas/efectos de los fármacos , Factores de TiempoRESUMEN
Organizing centers emit signaling molecules that specify different neuronal cell types at precise positions along the anterior-posterior (A-P) and dorsal-ventral (D-V) axes of neural tube during development. Here we report that reduction in Otx proteins near the alar-basal plate boundary (ABB) of murine midbrain resulted in a dorsal shift of Shh expression, and reduction in Otx proteins at the midbrain-hindbrain boundary (MHB) resulted in an anterior expansion of the Fgf8 domain. Our data thus indicate that an Otx dose-dependent repressive effect coordinates proper positioning of Shh and Fgf8 expression. Furthermore, this control is effective for conferring proper cell identity in the floor-plate region of midbrain and does not require an Otx2-specific property. We propose that this mechanism may provide both A-P and D-V positional information to neuronal precursors located within the midbrain.
Asunto(s)
Tipificación del Cuerpo , Proteínas de Homeodominio/biosíntesis , Mesencéfalo/embriología , Mesencéfalo/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Transactivadores/biosíntesis , Factores de Transcripción/biosíntesis , Animales , Tipificación del Cuerpo/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Mutantes , Proteínas del Tejido Nervioso/genética , Factores de Transcripción Otx , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Transactivadores/genética , Factores de Transcripción/genéticaRESUMEN
Increasing evidence suggests that food ingested polyphenols can have beneficial effects in neuronal protection acting against oxidative stress and inflammatory injury. Moreover, polyphenols have been reported to promote cognitive functions. Biotransformation of polyphenols is needed to obtain metabolites active in brain and it occurs through their processing by gut microbiota. Polyphenols metabolites could directly act as neurotransmitters crossing the blood-brain barrier or indirectly by modulating the cerebrovascular system. The microbiota-gut-brain axis is considered a neuroendocrine system that acts bidirectionally and plays an important role in stress responses. The metabolites produced by microbiota metabolism can modulate gut bacterial composition and brain biochemistry acting as neurotransmitters in the central nervous system. Gut microbiota composition can be influenced by dietary ingestion of natural bioactive molecules such as probiotics, prebiotics and polyphenol. Microbiota composition can be altered by dietary changes and gastrointestinal dysfunctions are observed in neurodegenerative diseases. In addition, several pieces of evidence support the idea that alterations in gut microbiota and enteric neuroimmune system could contribute to onset and progression of these age-related disorders. The impact of polyphenols on microbiota composition strengthens the idea that maintaining a healthy microbiome by modulating diet is essential for having a healthy brain across the lifespan. Moreover, it is emerging that they could be used as novel therapeutics to prevent brain from neurodegeneration.
RESUMEN
BACKGROUND: The gut-brain axis is considered a neuroendocrine system, which connects the brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for health conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. METHOD: We selected recent papers analysing the association among alterations in the homeostasis of the gut-brain axis and neurological disorders. In addition, we described how bioactive natural molecules - such as polyphenols - by influencing gut microbiota composition may help rescue neural signalling pathways impaired in neurodegenerative diseases. RESULTS: Recent studies show that gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Gut bacterial community plays a key role in maintaining normal brain functions. Metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both the gut bacterial composition and brain biochemistry. CONCLUSION: This review highlights the role of gut microbiota in regulating regulates brain biochemistry and the role of microbiota metabolites on neuropathologies. Dietary ingestion of probiotics, prebiotics and polyphenols affect gut microbiota composition underlining the key role played by specific metabolites not only in the gut microbiota composition but also in the brain health maintenance.
Asunto(s)
Microbioma Gastrointestinal , Enfermedades Neurodegenerativas/microbiología , Animales , Humanos , Polifenoles/uso terapéutico , Prebióticos , Probióticos/uso terapéuticoRESUMEN
Ultraviolet (UV) radiations are responsible for skin photoaging inducing alteration of the molecular and cellular pathways resulting in dryness and reduction of skin elasticity. In this study, we investigated, in vitro, the antiaging and antioxidant effects of hyaluronan formulations based hydrogel. Skinkò E, an intradermic formulation composed of hyaluronic acid (HA), minerals, amino acids, and vitamins, was compared with the sole HA of the same size. For this purpose, HaCaT cells were subjected to UV-A radiations and H2O2 exposure and then treated with growth medium (CTR) combined with M-HA or Skinkò E to evaluate their protective ability against stressful conditions. Cells reparation was evaluated using a scratch in vitro model and Time-Lapse Video Microscopy. A significant protective effect for Skinkò E was shown with respect to M-HA. In addition, Skinkò E increased cell reparation. Therefore, NF-kB, SOD-2, and HO-1 were significantly reduced at the transcriptional and protein level. Interestingly, γ-H2AX and protein damage assay confirmed the protection by hyaluronans tested against oxidative stress. G6pdΔ ES cell line, highly susceptible to oxidative stress, was used as a further cellular model to assess the antioxidant effect of Skinkò E. Western blotting analyses showed that the treatment with this new formulation exerts marked antioxidant action in cells exposed to UV-A and H2O2. Thus, the protective and reparative properties of Skinkò E make it an interesting tool to treat skin aging.
Asunto(s)
Aminoácidos/farmacología , Antioxidantes/farmacología , Ácido Hialurónico/farmacología , Estrés Oxidativo , Rayos Ultravioleta/efectos adversos , Vitaminas/farmacología , Humanos , Peróxido de Hidrógeno , Minerales , Envejecimiento de la PielRESUMEN
Blood-brain barrier (BBB) breakdown, due to the concomitant disruption of the tight junctions (TJs), normally required for the maintenance of BBB function, and to the altered transport of molecules between blood and brain and vice-versa, has been suggested to significantly contribute to the development and progression of different brain disorders including Huntington's disease (HD). Although the detrimental consequence the BBB breakdown may have in the clinical settings, the timing of its alteration remains elusive for many neurodegenerative diseases. In this study we demonstrate for the first time that BBB disruption in HD is not confined to established symptoms, but occurs early in the disease progression. Despite the obvious signs of impaired BBB permeability were only detectable in concomitance with the onset of the disease, signs of deranged TJs integrity occur precociously in the disease and precede the onset of overt symptoms. To our perspective this finding may add a new dimension to the horizons of pathological mechanisms underlying this devastating disease, however much remains to be elucidated for understanding how specific BBB drug targets can be approached in the future.