Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 22(48): 27955-27965, 2020 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-33073805

RESUMEN

In this study we investigate, using all-atom molecular-dynamics computer simulations, the in-plane diffusion of a doxorubicin drug molecule in a thin film of water confined between two silica surfaces. We find that the molecule diffuses along the channel in the manner of a Gaussian diffusion process, but with parameters that vary according to its varying transversal position. Our analysis identifies that four Gaussians, each describing particle motion in a given transversal region, are needed to adequately describe the data. Each of these processes by itself evolves with time at a rate slower than that associated with classical Brownian motion due to a predominance of anticorrelated displacements. Long adsorption events lead to ageing, a property observed when the diffusion is intermittently hindered for periods of time with an average duration which is theoretically infinite. This study presents a simple system in which many interesting features of anomalous diffusion can be explored. It exposes the complexity of diffusion in nanoconfinement and highlights the need to develop new understanding.


Asunto(s)
Doxorrubicina/química , Dióxido de Silicio/química , Adsorción , Difusión , Modelos Químicos , Simulación de Dinámica Molecular
2.
Phys Rev Lett ; 120(24): 246801, 2018 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-29957006

RESUMEN

Combining concepts of semiconductor physics and corrosion science, we develop a novel approach that allows us to perform ab initio calculations under controlled potentiostat conditions for electrochemical systems. The proposed approach can be straightforwardly applied in standard density functional theory codes. To demonstrate the performance and the opportunities opened by this approach, we study the chemical reactions that take place during initial corrosion at the water-Mg interface under anodic polarization. Based on this insight, we derive an atomistic model that explains the origin of the anodic hydrogen evolution.

3.
J Chem Phys ; 139(20): 204704, 2013 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-24289366

RESUMEN

We present a force field for bulk alumina (Al2O3), which has been parametrized by fitting the energies, forces, and stresses of a large database of reference configurations to those calculated with density functional theory (DFT). We use a functional form that is simpler and computationally more efficient than some existing models of alumina parametrized by a similar technique. Nevertheless, we demonstrate an accuracy of our potential that is comparable to those existing models and to DFT. We present calculations of crystal structures and energies, elastic constants, phonon spectra, thermal expansion, and point defect formation energies.

4.
Nature ; 432(7020): 1008-11, 2004 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-15616557

RESUMEN

Embrittlement by the segregation of impurity elements to grain boundaries is one of a small number of phenomena that can lead to metallurgical failure by fast fracture. Here we settle a question that has been debated for over a hundred years: how can minute traces of bismuth in copper cause this ductile metal to fail in a brittle manner? Three hypotheses for Bi embrittlement of Cu exist: two assign an electronic effect to either a strengthening or weakening of bonds, the third postulates a simple atomic size effect. Here we report first principles quantum mechanical calculations that allow us to reject the electronic hypotheses, while supporting a size effect. We show that upon segregation to the grain boundary, the large Bi atoms weaken the interatomic bonding by pushing apart the Cu atoms at the interface. The resolution of the mechanism underlying grain boundary weakening should be relevant for all cases of embrittlement by oversize impurities.

5.
Nat Commun ; 9(1): 5251, 2018 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-30531799

RESUMEN

Interface diffusion along a metal/ceramic interface present in numerous energy and electronic devices can critically affect their performance and stability. Hole formation in a polycrystalline Ni film on an α-Al2O3 substrate coupled with a continuum diffusion analysis demonstrates that Ni diffusion along the Ni/α-Al2O3 interface is surprisingly fast. Ab initio calculations demonstrate that both Ni vacancy formation and migration energies at the coherent Ni/α-Al2O3 interface are much smaller than in bulk Ni, suggesting that the activation energy for diffusion along coherent Ni/α-Al2O3 interfaces is comparable to that along (incoherent/high angle) grain boundaries. Based on these results, we develop a simple model for diffusion along metal/ceramic interfaces, apply it to a wide range of metal/ceramic systems and validate it with several ab initio calculations. These results suggest that fast metal diffusion along metal/ceramic interfaces should be common, but is not universal.

6.
J Phys Condens Matter ; 25(39): 395001, 2013 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-23959934

RESUMEN

A methodology for calculating the contribution of charged defects to the configurational free energy of an ionic crystal is introduced. The temperature-independent Wang-Landau Monte Carlo technique is applied to a simple model of a solid electrolyte, consisting of charged positive and negative defects on a lattice. The electrostatic energy is computed on lattices with periodic boundary conditions, and used to calculate the density of states and statistical-thermodynamic potentials of this system. The free energy as a function of defect concentration and temperature is accurately described by a regular solution model up to concentrations of 10% of defects, well beyond the range described by the ideal solution theory. The approach, supplemented by short-ranged terms in the energy, is proposed as an alternative to free energy methods that require a number of simulations to be carried out over a range of temperatures.

7.
Chemphyschem ; 6(9): 1848-52, 2005 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-16144013

RESUMEN

We present a method for simulating clusters or molecules subjected to an external pressure, which is exerted by a pressure-transmitting medium. It is based on the canonical Langevin thermostat, but extended in such a way that the Brownian forces are allowed to operate only from the region exterior to the cluster. We show that the frictional force of the Langevin thermostat is linked to the pressure of the reservoir in a unique way, and that this property manifests itself when the particle it acts upon is not pointlike but has finite dimensions. By choosing appropriately the strength of the random forces and the friction coefficient, both temperature and pressure can be controlled independently. We illustrate the capabilities of this new method by calculating the compressibility of small gold clusters under pressure.


Asunto(s)
Simulación por Computador , Oro/química , Nanopartículas/química , Temperatura , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA