RESUMEN
We developed a sensing strategy that mimics the bead-based electrogenerated chemiluminescence immunoassay. However, instead of the most common metal complexes, such as Ru or Ir, the luminophore is luminol. The electrogenerated chemiluminescence of luminol was promoted by in situ electrochemical generation of hydrogen peroxide at a boron-doped diamond electrode. The electrochemical production of hydrogen peroxide was achieved in a carbonate solution by an oxidation reaction, while at the same time, microbeads labelled with luminol were deposited on the electrode surface. For the first time, we proved that was possible to obtain light emission from luminol without its direct oxidation at the electrode. This new emission mechanism is obtained at higher potentials than the usual luminol electrogenerated chemiluminescence at 0.3-0.5 V, in conjunction with hydrogen peroxide production on boron-doped diamond at around 2-2.5 V (vs Ag/AgCl).
RESUMEN
Electrogenerated chemiluminescence (ECL) stands out as a remarkable phenomenon of light emission at electrodes initiated by electrogenerated species in solution. Characterized by its exceptional sensitivity and minimal background optical signals, ECL finds applications across diverse domains, including biosensing, imaging, and various analytical applications. This review aims to serve as a comprehensive guide to the utilization of ECL in analytical applications. Beginning with a brief exposition on the theory at the basis of ECL generation, we elucidate the diverse systems employed to initiate ECL. Furthermore, we delineate the principal systems utilized for ECL generation in analytical contexts, elucidating both advantages and challenges inherent to their use. Additionally, we provide an overview of different electrode materials and novel ECL-based protocols tailored for analytical purposes, with a specific emphasis on biosensing applications.
RESUMEN
As a working electrode, boron-doped diamond (BDD) has been studied in detail in electrochemical processes because of its superior electrochemical properties. However, these characteristics have rarely been mentioned when BDD is used as a quasi-reference electrode (QRE). Herein, we conducted a systematic investigation on BDD electrodes, with different boron-doping levels (1 and 0.1%) and different surface terminations (hydrogen and oxygen) for their application as a QRE. A BDD electrode with 1% boron and a hydrogen-terminated surface achieved the best stability. Its open-circuit potential (OCP) exhibited less than 100 mV of potential drift over 6000 s and showed a minuscule half-wave potential difference (E1/2) of 0.0037 V in 0.1 mM K3[Fe(CN)6]/1 M KCl solution before and after the OCP measurement. Based on these observations, anions are found to contribute to the potential, which we preliminarily speculate as related to the capacitance caused by electrostatic adsorption on the positively charged hydrogen-terminated surface. The repeatability of measurement was verified through continuous cyclic voltammetry tests in 0.1 mM K3[Fe(CN)6]/1 M KCl, showing a maximum E1/2 difference of 0.042 V. The contribution of the redox couples was excluded, and the repeatability was considered to originate from its surface stability. Finally, a linear response of the optimized BDD as a QRE was validated (R2 > 0.99) by determination of free chlorine and dopamine concentrations, respectively. These results consolidate the existing fundamental research on BDD electrodes and promote the possibility of its application as a QRE in harsh environments or in vivo biological monitoring.
Asunto(s)
Boro , Diamante , Diamante/química , Boro/química , Técnicas Electroquímicas , Electrodos , Hidrógeno/químicaRESUMEN
Electrogenerated chemiluminescence (ECL) of luminol at a boron-doped diamond electrode has been used for hypochlorite determination. The presence of H2O2 induces the generation of the ECL signals of luminol. In contrast, the presence of hypochlorite oxidizes luminol directly to decrease the ECL signals of luminol. Accordingly, a decrease of the ECL signals of luminol in the presence of H2O2 was used as the signal response for hypochlorite detection. A linear decrease of ECL signals with the NaClO concentration in the range from 0 to 20 µM was observed with a sensitivity of 18.56 a.u. µM-1 cm-2. An estimated detection limit of 0.88 µM was achieved, which is around one order lower than the detection limit obtained using the normal electrochemical method with the same electrode. The system also provides a good selectivity towards Cu2+ and Na+. A reproducibility of 3.40%RSD was noted for 15 repetitive measurements. The analytical performance was found to be favourable in comparison to those of other typical electrochemical and electrochemiluminescence methods, indicating that it is applicable for real sample detection.
Asunto(s)
Técnicas Biosensibles , Luminol , Técnicas Biosensibles/métodos , Boro , Técnicas Electroquímicas/métodos , Electrodos , Oro , Peróxido de Hidrógeno , Ácido Hipocloroso , Límite de Detección , Luminiscencia , Mediciones Luminiscentes/métodos , Reproducibilidad de los ResultadosRESUMEN
The electrogenerated chemiluminescence of luminol is a process by which light generation is triggered by adding hydrogen peroxide and then applying a suitable electrode potential. Here, we take this phenomenon one step forward by avoiding the addition of hydrogen peroxide using a smart combination of a boron-doped diamond electrode and a carbonate electrolyte to generate the hydrogen peroxide directly in situ. The reaction occurs because of the carbonate electrochemical oxidation to peroxydicarbonate and the following hydrolysis to hydrogen peroxide, which triggers the emission from luminol. The electrogenerated chemiluminescence emission has been optimized by an investigation of the applied potentials, the carbonate concentration, and the pH. Furthermore, these results have been used to shine a light on the reaction mechanisms. Because this method does not require the addition of hydrogen peroxide, it might find application in efforts to avoid instability of hydrogen peroxide or its interference with the analytes of interest.
RESUMEN
An electrogenerated chemiluminescence (ECL) system by in situ coreactant production, where Ru(bpy)32+ emission is generated at a boron-doped diamond (BDD) electrode, is presented. The system takes advantage of the unique properties of BDD to promote oxidation of carbonate (CO32-) into peroxydicarbonate (C2O62-), which further reacts with water to form hydrogen peroxide (H2O2), which acts as a coreactant for Ru(bpy)32+ ECL. Investigation of the mechanism reveals that ECL emission is triggered by the reduction of H2O2 to hydroxyl radicals (OHâ¢), which later react with the reduced Ru(bpy)3+ molecules to form excited states, followed by light emission. The ECL signal was found to increase with the concentration of CO32-; therefore, with the concentration of electrogenerated H2O2, although at the same time, higher concentrations of H2O2 can quench the ECL emission, resulting in a decrease in intensity. The carbonate concentration, pH, and oxidation parameters, such as potential and time, were optimized to find the best emission conditions.
RESUMEN
In this work, we quantify the electrogenerated chemiluminescence arising from the reaction of electrogenerated tris(bipyridine)ruthenium(iii) with hydroxyl ions, in terms of emission intensity and reaction rate. Different electrode materials (glassy carbon and boron-doped diamond) and different supporting electrolytes (perchlorate, phosphate, and carbonate) were investigated with pH variation. Relative quantification of the electrogenerated chemiluminescence was achieved using the Ru(bpy)32+/tri-n-propylamine system, taken as a reference, with relative emission as low as 600 and 230 times that observed at the same coreactant concentration and the same pH, respectively. The kinetics was investigated by foot of the wave analysis of cyclic voltammetry to measure the turnover frequency of the reaction.
RESUMEN
The use of electrochemiluminescence (ECL), i.e., chemiluminescence triggered by electrochemical stimulus, as emitting light source for microscopy is an emerging approach with different applications ranging from the visualization of nanomaterials to cell mapping. In this trend article, we give an overview of the state of the art in this new field with the purpose to illustrate all the possible applications so far explored as well as describing the mechanism underlying this transduction technique. The results discussed here would highlight the great potential of the combination between ECL and microscopy and how this marriage can turn into an innovative approach with specific application in analytical sciences. Graphical abstract.
Asunto(s)
Técnicas Electroquímicas/métodos , Luminiscencia , Mediciones Luminiscentes/métodos , Microscopía/métodos , Electrodos , Nanoestructuras , Análisis de la Célula IndividualRESUMEN
We report on the use of boron doped diamond electrodes for the electrochemiluminescence (ECL) of the coreactant peroxydisulfate and the luminophore ruthenium(II)-tris(2,2'-bipyridine). Compared to common electrode materials (i.e., Pt, Au, glassy carbon), boron doped diamond has a large overpotential for the evolution of hydrogen in aqueous electrolyte solutions. This intrinsic feature enables reductive-oxidation ECL with peroxydisulfate to be obtained without interference from hydrogen evolution and with high reproducible signals and stable emission. We investigated the effects of the peroxydisulfate concentration and the pH on the ECL emission to find the optimal conditions for enhancing the signal.
RESUMEN
Salophens and Salens are Schiff bases generated through the condensation of two equivalents of salicylaldehyde with either 1,2-phenylenediamines or aliphatic diamines, respectively. Both ligands have been extensively exploited as key building blocks in coordination chemistry and catalysis. In particular, their metal complexes have been widely used for various catalytical transformations with high yield and selectivity. Through the modification of the phenol unit it is possible to tune the steric hindrance and electronic properties of Salophen and Salen. The introduction of long aliphatic chains in salicylaldehydes can be used to promote their self-assembly into ordered supramolecular structures on solid surfaces. Herein, we report a novel method towards the facile synthesis of robust and air-stable [Al(Salophen)] derivatives capable of undergoing spontaneous self-assembly at the graphite/solution interface forming highly-ordered nanopatterns. The new synthetic approach relies on the use of [MeAlIII (Salophen)] as a building unit to introduce, via a simple acid/base reaction with functionalized acidic phenol derivatives, selected frameworks integrating multiple functions for efficient surface decoration. STM imaging at the solid/liquid interface made it possible to monitor the formation of ordered supramolecular structures. In addition, the redox properties of the Salophen derivatives functionalized with ferrocene units in solution and on surface were unraveled by cyclic voltammetry. The use of a five-coordinate aluminum alkyl Salophen precursor enables the tailoring of new Salophen molecules capable of undergoing controlled self-assembly on HOPG, and thereby it can be exploited to introduce multiple functionalities with subnanometer precision at surfaces, ultimately forming ordered functional patterns.
RESUMEN
A novel co-reactant-free electrogenerated chemiluminescence (ECL) system is developed where Ru(bpy)32+ emission is obtained on boron-doped diamond (BDD) electrodes. The method exploits the unique ability of BDD to operate at very high oxidation potential in aqueous solutions and to promote the conversion of inert SO42- into the reactive co-reactant S2O82-. This novel procedure is rather straightforward, not requiring any particular electrode geometry, and since the co-reactant is only generated in situ, the interference with biological samples is minimized. The underlying mechanism is similar to that of the Ru(bpy)32+/S2O82- system; however, the intensity of the emitted signal increases linearly with [SO42-] up to â¼0.6 M, with possible implications for analytical uses of the proposed procedure.
RESUMEN
The electrochemistry, photophysics, and electrochemically generated chemiluminescence (ECL) of a family of polysulfurated dendrimers with a pyrene core have been thoroughly investigated and complemented by theoretical calculations. The redox and luminescence properties of dendrimers are dependent on the generation number. From low to higher generation it is both easier to reduce and oxidize them and the emission efficiency increases along the family, with respect to the polysulfurated pyrene core. The analysis of such data evidences that the formation of the singlet excited state by cation-anion annihilation is an energy-deficient process and, thus, the ECL has been justified through the triplet-triplet annihilation pathway. The study of the dynamics of the ECL emission was achieved both experimentally and theoretically by molecular mechanics and quantum chemical calculations. It has allowed rationalization of a possible mechanism and the experimental dependence of the transient ECL on the dendrimer generation. The theoretically calculated Marcus electron-transfer rate constant compares very well with that obtained by the finite element simulation of the whole ECL mechanism. This highlights the role played by the thioether dendrons in modulating the redox and photophysical properties, responsible for the occurrence and dynamics of the electron transfer involved in the ECL. Thus, the combination of experimental and computational results allows understanding of the dendrimer size dependence of the ECL transient signal as a result of factors affecting the annihilation electron transfer.
RESUMEN
Collagen electrospun scaffolds well reproduce the structure of the extracellular matrix (ECM) of natural tissues by coupling high biomimetism of the biological material with the fibrous morphology of the protein. Structural properties of collagen electrospun fibers are still a debated subject and there are conflicting reports in the literature addressing the presence of ultrastructure of collagen in electrospun fibers. In this work collagen type I was successfully electrospun from two different solvents, trifluoroethanol (TFE) and dilute acetic acid (AcOH). Characterization of collagen fibers was performed by means of SEM, ATR-IR, Circular Dichroism and WAXD. We demonstrated that collagen fibers contained a very low amount of triple helix with respect to pristine collagen (18 and 16% in fibers electrospun from AcOH and TFE, respectively) and that triple helix denaturation occurred during polymer dissolution. Collagen scaffolds were crosslinked by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a commonly employed crosslinker for electrospun collagen, and 1,4-butanediol diglycidyl ether (BDDGE), that was tested for the first time in this work as crosslinking agent for collagen in the form of electrospun fibers. We demonstrated that BDDGE successfully crosslinked collagen and preserved at the same time the scaffold fibrous morphology, while scaffolds crosslinked with EDC completely lost their porous structure. Mesenchymal stem cell experiments demonstrated that collagen scaffolds crosslinked with BDDGE are biocompatible and support cell attachment.
Asunto(s)
Colágeno/química , Reactivos de Enlaces Cruzados/farmacología , Nanofibras/química , Solventes/farmacología , Andamios del Tejido , Animales , Materiales Biocompatibles/química , Butileno Glicoles , Células Cultivadas , Colágeno/efectos de los fármacos , Estabilidad de Medicamentos , Galvanoplastia/métodos , Matriz Extracelular/química , Ensayo de Materiales , Conejos , Ingeniería de Tejidos/métodos , Andamios del Tejido/químicaRESUMEN
Electrogenerated chemiluminescence (ECL) refers to the phenomenon of light emission from molecular species which is triggered by an electrochemical reaction. Therefore, like most electrochemical systems, the electrode material plays a pivotal role and much effort has been made in order to find the best material for ECL, in terms of light signal intensity and long-term stability, especially after the development of ECL for analytical applications. In this article, we will introduce and highlight the distinctive features of boron-doped diamond (BDD) as an electrode material for ECL which has complementary properties compared to the most common metals (e.g., Au or Pt) and carbon materials (e.g., glassy carbon, carbon nanotubes and graphene). Boron-doped diamond electrodes emerged as novel electrodes, gaining more and more interest from the electrochemical community for their peculiar characteristics such as a wide solvent window, low capacitance, resistance to fouling and mechanical robustness. Furthermore, compared to metal electrodes, BDD does not form an oxide layer in aqueous solutions, and the sp3 carbon hybridization gives BDD the ability to enable peculiar electrochemical reactions that are not possible on sp2 carbon materials. Electrogenerated chemiluminescence investigations with boron-doped diamond electrodes have been reported for common ECL systems (luminophores and co-reactants), and special ECL that is only possible on BDD which includes the in situ electrochemical generation of the co-reactant.
Asunto(s)
Boro , Nanotubos de Carbono , Boro/química , Luminiscencia , Electrodos , AguaRESUMEN
By means of an initial electrochemical carbon dioxide reduction reaction (eCO2RR), both the reaction current and Faradaic efficiency of the eCO2RR on boron-doped diamond (BDD) electrodes were significantly improved. Here, this effect is referred to as the self-activation of BDD. Generally, the generation of carbon dioxide radical anions (CO2 â¢-) is the most recognized pathway leading to the formation of hydrocarbons and oxygenated products. However, the self-activation process enabled the eCO2RR to take place at a low potential, that is, a low energy, where CO2 â¢- is hardly produced. In this work, we found that unidentate carbonate and carboxylic groups were identified as intermediates during self-activation. Increasing the amount of these intermediates via the self-activation process enhances the performance of eCO2RR. We further evaluated this effect in long-term experiments using a CO2 electrolyzer for formic acid production and found that the electrical-to-chemical energy conversion efficiency reached 50.2% after the BDD self-activation process.
RESUMEN
Electrochemiluminescence (ECL) is a powerful transduction technique where light emission from a molecular species is triggered by an electrochemical reaction. Application to biosensors has led to a wide range of electroanalytical methods with particular impact on clinical analysis for diagnostic and therapeutic monitoring. Therefore, the quest for increasing the sensitivity while maintaining reproducible and easy procedures has brought investigations and innovations in (i) electrode materials, (ii) luminophores, and (iii) reagents. Particularly, the ECL signal is strongly affected by the electrode material and its surface modification during the ECL experiments. Here, we exploit boron-doped diamond (BDD) as an electrode material in microbead-based ECL immunoassay to be compared with the approach used in commercial instrumentation. We conducted a careful characterization of ECL signals from a tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)32+)/tri-n-propylamine (TPrA) system, both homogeneous (i.e., free diffusing Ru(bpy)32+) and heterogeneous (i.e., Ru(bpy)32+ bound on microbeads). We investigated the methods to promote TPrA oxidation, which led to the enhancement of ECL intensity, and the results revealed that the BDD surface properties greatly affect the ECL emission, so it does the addition of neutral, cationic, or anionic surfactants. Our results from homogeneous and heterogeneous microbead-based ECL show opposite outcomes, which have practical consequences in ECL optimization. In conclusion, by using Ru(bpy)32+-labeled immunoglobulins bound on microbeads, the ECL resulted in an increase of 70% and a double signal-to-noise ratio compared to platinum electrodes, which are actually used in commercial instrumentation for clinical analysis. This research infers that microbead-based ECL immunoassays with a higher sensitivity can be realized by BDD.
Asunto(s)
Boro , Rutenio , Electrodos , Inmunoensayo , Microesferas , Rutenio/químicaRESUMEN
Electrochemiluminescence (ECL) microscopy is an emerging technique with a wide range of imaging applications and unique properties in terms of high spatial resolution, surface confinement and favourable signal-to-noise ratio. Despite its successful analytical applications, tuning the depth of field (i.e., thickness of the ECL-emitting layer) is a crucial issue. Indeed, the control of the thickness of this ECL region, which can be considered as an "evanescent" reaction layer, limits the development of cell microscopy as well as bioassays. Here we report an original strategy based on chemical lens effects to tune the ECL-emitting layer in the model [Ru(bpy)3]2+/tri-n-propylamine (TPrA) system. It consists of microbeads decorated with [Ru(bpy)3]2+ labels, classically used in bioassays, and TPrA as the sacrificial coreactant. In particular we exploit the buffer capacity of the solution to modify the rate of the reactions involved in the ECL generation. For the first time, a precise control of the ECL light distribution is demonstrated by mapping the luminescence reactivity at the level of single micrometric bead. The resulting ECL image is the luminescent signature of the concentration profiles of diffusing TPrA radicals, which define the ECL layer. Therefore, our findings provide insights into the ECL mechanism and open new avenues for ECL microscopy and bioassays. Indeed, the reported approach based on a chemical lens controls the spatial extension of the "evanescent" ECL-emitting layer and is conceptually similar to evanescent wave microscopy. Thus, it should allow the exploration and imaging of different heights in substrates or in cells.
RESUMEN
Electrochemiluminescence (ECL) is a powerful transduction technique with a leading role in the biosensing field due to its high sensitivity and low background signal. Although the intrinsic analytical strength of ECL depends critically on the overall efficiency of the mechanisms of its generation, studies aimed at enhancing the ECL signal have mostly focused on the investigation of materials, either luminophores or coreactants, while fundamental mechanistic studies are relatively scarce. Here, we discover an unexpected but highly efficient mechanistic path for ECL generation close to the electrode surface (signal enhancement, 128%) using an innovative combination of ECL imaging techniques and electrochemical mapping of radical generation. Our findings, which are also supported by quantum chemical calculations and spin trapping methods, led to the identification of a family of alternative branched amine coreactants, which raises the analytical strength of ECL well beyond that of present state-of-the-art immunoassays, thus creating potential ECL applications in ultrasensitive bioanalysis.
Asunto(s)
Biomarcadores/análisis , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Electroquímica/métodos , Mediciones Luminiscentes/métodos , Técnicas de Química Analítica , Química Física/métodos , LuminiscenciaRESUMEN
Oligo(Glu70 -co-Leu30 ), a peptide synthesized by protease catalysis, is functionalized at the N-terminus with a 4-pentenoyl unit and grafted to polyLSL[6'Ac,6â³Ac], a glycopolymer prepared by ring-opening metathesis polymerization of lactonic sophorolipid diacetate. First, polyLSL[6'Ac,6"Ac] fiber mats are fabricated by electrospinning. Oxidation of the fiber mats and subsequent reaction with cysteamine lead to thiol-functionalized fiber mats with no significant morphology changes. Grafting of the alkene-modified oligopeptide to thiol-functionalized polyLSL[6'Ac,6â³Ac] fiber mats is achieved via "thiol-ene" click reaction. X-ray photoelectron spectroscopy analysis to characterize peptide grafting reveals that about 50 mol% of polyLSL[6'Ac,6''Ac] repeat units at fiber surfaces are decorated with a peptide moiety, out of which about 1/3 of the oligo(Glu70 -co-Leu30 ) units are physically adsorbed to polyLSL[6'Ac,6''Ac]. The results of this work pave the way to precise engineering of polyLSL fiber mats that can be decorated with a potentially wide range of molecules that tailor surface chemistry and biological properties.
Asunto(s)
Materiales Biocompatibles/química , Biopolímeros/química , Glicoproteínas/química , Péptidos/química , Materiales Biocompatibles/síntesis química , Glicoproteínas/síntesis química , Péptidos/síntesis química , Espectroscopía de Fotoelectrones , Propiedades de SuperficieRESUMEN
Bio-synthetic scaffolds of interspersed poly(l-lactic acid) (PLLA) and gelatin (GEL) fibers are fabricated by co-electrospinning. Tailored PLLA/GEL compositions are obtained and GEL crosslinking with genipin provides for the maintenance of good fiber morphology. Scaffold tensile mechanical properties are intermediate between those of pure PLLA and GEL and vary as a function of PLLA content. Primary human chondrocytes grown on the scaffolds exhibit good proliferation and increased values of the differentiation parameters, especially for intermediate PLLA/GEL compositions. Mineralization tests enable the deposition of a uniform layer of poorly crystalline apatite onto the scaffolds, suggesting potential applications involving cartilage as well as cartilage-bone interface tissue engineering.