Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Biomed Eng ; 25: 387-412, 2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37068766

RESUMEN

Neurotechnologies for treating pain rely on electrical stimulation of the central or peripheral nervous system to disrupt or block pain signaling and have been commercialized to treat a variety of pain conditions. While their adoption is accelerating, neurotechnologies are still frequently viewed as a last resort, after many other treatment options have been explored. We review the pain conditions commonly treated with electrical stimulation, as well as the specific neurotechnologies used for treating those conditions. We identify barriers to adoption, including a limited understanding of mechanisms of action, inconsistent efficacy across patients, and challenges related to selectivity of stimulation and off-target side effects. We describe design improvements that have recently been implemented, as well as some cutting-edge technologies that may address the limitations of existing neurotechnologies. Addressing these challenges will accelerate adoption and change neurotechnologies from last-line to first-line treatments for people living with chronic pain.


Asunto(s)
Dolor Crónico , Terapia por Estimulación Eléctrica , Humanos , Dolor Crónico/terapia , Manejo del Dolor , Estimulación Eléctrica , Sistema Nervioso Periférico
2.
J Physiol ; 601(15): 3103-3121, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36409303

RESUMEN

Seventy years ago, Hodgkin and Huxley published the first mathematical model to describe action potential generation, laying the foundation for modern computational neuroscience. Since then, the field has evolved enormously, with studies spanning from basic neuroscience to clinical applications for neuromodulation. Computer models of neuromodulation have evolved in complexity and personalization, advancing clinical practice and novel neurostimulation therapies, such as spinal cord stimulation. Spinal cord stimulation is a therapy widely used to treat chronic pain, with rapidly expanding indications, such as restoring motor function. In general, simulations contributed dramatically to improve lead designs, stimulation configurations, waveform parameters and programming procedures and provided insight into potential mechanisms of action of electrical stimulation. Although the implementation of neural models are relentlessly increasing in number and complexity, it is reasonable to ask whether this observed increase in complexity is necessary for improved accuracy and, ultimately, for clinical efficacy. With this aim, we performed a systematic literature review and a qualitative meta-synthesis of the evolution of computational models, with a focus on complexity, personalization and the use of medical imaging to capture realistic anatomy. Our review showed that increased model complexity and personalization improved both mechanistic and translational studies. More specifically, the use of medical imaging enabled the development of patient-specific models that can help to transform clinical practice in spinal cord stimulation. Finally, we combined our results to provide clear guidelines for standardization and expansion of computational models for spinal cord stimulation.


Asunto(s)
Dolor Crónico , Estimulación de la Médula Espinal , Humanos , Estimulación de la Médula Espinal/métodos , Dolor Crónico/terapia , Simulación por Computador , Estimulación Eléctrica , Médula Espinal/fisiología
3.
PLoS Comput Biol ; 16(12): e1008350, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33326417

RESUMEN

Computational models of the musculoskeletal system are scientific tools used to study human movement, quantify the effects of injury and disease, plan surgical interventions, or control realistic high-dimensional articulated prosthetic limbs. If the models are sufficiently accurate, they may embed complex relationships within the sensorimotor system. These potential benefits are limited by the challenge of implementing fast and accurate musculoskeletal computations. A typical hand muscle spans over 3 degrees of freedom (DOF), wrapping over complex geometrical constraints that change its moment arms and lead to complex posture-dependent variation in torque generation. Here, we report a method to accurately and efficiently calculate musculotendon length and moment arms across all physiological postures of the forearm muscles that actuate the hand and wrist. Then, we use this model to test the hypothesis that the functional similarities of muscle actions are embedded in muscle structure. The posture dependent muscle geometry, moment arms and lengths of modeled muscles were captured using autogenerating polynomials that expanded their optimal selection of terms using information measurements. The iterative process approximated 33 musculotendon actuators, each spanning up to 6 DOFs in an 18 DOF model of the human arm and hand, defined over the full physiological range of motion. Using these polynomials, the entire forearm anatomy could be computed in <10 µs, which is far better than what is required for real-time performance, and with low errors in moment arms (below 5%) and lengths (below 0.4%). Moreover, we demonstrate that the number of elements in these autogenerating polynomials does not increase exponentially with increasing muscle complexity; complexity increases linearly instead. Dimensionality reduction using the polynomial terms alone resulted in clusters comprised of muscles with similar functions, indicating the high accuracy of approximating models. We propose that this novel method of describing musculoskeletal biomechanics might further improve the applications of detailed and scalable models to describe human movement.


Asunto(s)
Biología Computacional , Fenómenos Fisiológicos Musculoesqueléticos , Fenómenos Biomecánicos , Antebrazo/fisiología , Humanos , Músculo Esquelético/fisiología
4.
Physiology (Bethesda) ; 34(2): 150-162, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30724129

RESUMEN

Autonomic nerves are attractive targets for medical therapies using electroceutical devices because of the potential for selective control and few side effects. These devices use novel materials, electrode configurations, stimulation patterns, and closed-loop control to treat heart failure, hypertension, gastrointestinal and bladder diseases, obesity/diabetes, and inflammatory disorders. Critical to progress is a mechanistic understanding of multi-level controls of target organs, disease adaptation, and impact of neuromodulation to restore organ function.


Asunto(s)
Sistema Nervioso Autónomo/fisiopatología , Terapia por Estimulación Eléctrica/métodos , Cardiopatías/terapia , Animales , Diabetes Mellitus/fisiopatología , Diabetes Mellitus/terapia , Terapia por Estimulación Eléctrica/instrumentación , Enfermedades Gastrointestinales/fisiopatología , Enfermedades Gastrointestinales/terapia , Cardiopatías/fisiopatología , Humanos , Inflamación/fisiopatología , Inflamación/terapia , Obesidad/fisiopatología , Obesidad/terapia , Estimulación de la Médula Espinal/instrumentación , Estimulación de la Médula Espinal/métodos , Enfermedades de la Vejiga Urinaria/fisiopatología , Enfermedades de la Vejiga Urinaria/terapia , Estimulación del Nervio Vago/instrumentación , Estimulación del Nervio Vago/métodos
5.
Muscle Nerve ; 59(2): 154-167, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30152101

RESUMEN

Post-amputation phantom limb pain (PLP) is a widespread phenomenon that can have physical, psychological, and functional impacts on amputees who experience the condition. The varying presentations and mechanisms of PLP make it difficult to effectively provide long-term pain relief. Multiple neuromodulatory approaches to treating PLP have focused on electrical stimulation of the peripheral nervous system, with varying degrees of success. More recently, research has been done to study the effects of neuroprosthetic approaches on PLP. Neuroprosthetics combine the use of a functional prosthetic with stimulation to the peripheral nerves in the residual limb. Although many of the neuroprosthetic studies focus on improving function, several have shown preliminary evidence for the reduction of severity of PLP. In this review we provide an overview of the current understanding of the neurological mechanisms that initiate and sustain PLP, as well as the neuromodulatory and neuroprosthetic approaches under development for treatment of the condition. Muscle Nerve 59:154-167, 2019.


Asunto(s)
Miembros Artificiales , Nervios Periféricos/fisiología , Miembro Fantasma/terapia , Estimulación Eléctrica Transcutánea del Nervio/métodos , Humanos
6.
J Neurophysiol ; 116(1): 51-60, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27052583

RESUMEN

Patterned microstimulation of the dorsal root ganglion (DRG) has been proposed as a method for delivering tactile and proprioceptive feedback to amputees. Previous studies demonstrated that large- and medium-diameter afferent neurons could be recruited separately, even several months after implantation. However, those studies did not examine the anatomical localization of sensory fibers recruited by microstimulation in the DRG. Achieving precise recruitment with respect to both modality and receptive field locations will likely be crucial to create a viable sensory neuroprosthesis. In this study, penetrating microelectrode arrays were implanted in the L5, L6, and L7 DRG of four isoflurane-anesthetized cats instrumented with nerve cuff electrodes around the proximal and distal branches of the sciatic and femoral nerves. A binary search was used to find the recruitment threshold for evoking a response in each nerve cuff. The selectivity of DRG stimulation was characterized by the ability to recruit individual distal branches to the exclusion of all others at threshold; 84.7% (n = 201) of the stimulation electrodes recruited a single nerve branch, with 9 of the 15 instrumented nerves recruited selectively. The median stimulation threshold was 0.68 nC/phase, and the median dynamic range (increase in charge while stimulation remained selective) was 0.36 nC/phase. These results demonstrate the ability of DRG microstimulation to achieve selective recruitment of the major nerve branches of the hindlimb, suggesting that this approach could be used to drive sensory input from localized regions of the limb. This sensory input might be useful for restoring tactile and proprioceptive feedback to a lower-limb amputee.


Asunto(s)
Estimulación Eléctrica , Ganglios Espinales/fisiología , Extremidad Inferior/fisiología , Neuronas Aferentes/fisiología , Anestésicos por Inhalación/farmacología , Animales , Gatos , Estimulación Eléctrica/métodos , Electrodos Implantados , Nervio Femoral/fisiología , Isoflurano/farmacología , Vértebras Lumbares , Masculino , Microelectrodos , Nervio Peroneo/fisiología , Nervio Ciático/fisiología
7.
J Neural Eng ; 21(4)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39094627

RESUMEN

Objective. Phantom limb pain (PLP) is debilitating and affects over 70% of people with lower-limb amputation. Other neuropathic pain conditions correspond with increased spinal excitability, which can be measured using reflexes andF-waves. Spinal cord neuromodulation can be used to reduce neuropathic pain in a variety of conditions and may affect spinal excitability, but has not been extensively used for treating PLP. Here, we propose using a non-invasive neuromodulation method, transcutaneous spinal cord stimulation (tSCS), to reduce PLP and modulate spinal excitability after transtibial amputation.Approach. We recruited three participants, two males (5- and 9-years post-amputation, traumatic and alcohol-induced neuropathy) and one female (3 months post-amputation, diabetic neuropathy) for this 5 d study. We measured pain using the McGill Pain Questionnaire (MPQ), visual analog scale (VAS), and pain pressure threshold (PPT) test. We measured spinal reflex and motoneuron excitability using posterior root-muscle (PRM) reflexes andF-waves, respectively. We delivered tSCS for 30 min d-1for 5 d.Main Results. After 5 d of tSCS, MPQ scores decreased by clinically-meaningful amounts for all participants from 34.0 ± 7.0-18.3 ± 6.8; however, there were no clinically-significant decreases in VAS scores. Two participants had increased PPTs across the residual limb (Day 1: 5.4 ± 1.6 lbf; Day 5: 11.4 ± 1.0 lbf).F-waves had normal latencies but small amplitudes. PRM reflexes had high thresholds (59.5 ± 6.1µC) and low amplitudes, suggesting that in PLP, the spinal cord is hypoexcitable. After 5 d of tSCS, reflex thresholds decreased significantly (38.6 ± 12.2µC;p< 0.001).Significance. These preliminary results in this non-placebo-controlled study suggest that, overall, limb amputation and PLP may be associated with reduced spinal excitability and tSCS can increase spinal excitability and reduce PLP.


Asunto(s)
Amputación Quirúrgica , Miembro Fantasma , Estimulación de la Médula Espinal , Humanos , Miembro Fantasma/fisiopatología , Masculino , Femenino , Estimulación de la Médula Espinal/métodos , Amputación Quirúrgica/efectos adversos , Amputación Quirúrgica/métodos , Persona de Mediana Edad , Médula Espinal/fisiopatología , Médula Espinal/fisiología , Adulto , Tibia/cirugía , Estimulación Eléctrica Transcutánea del Nervio/métodos , Dimensión del Dolor/métodos , Resultado del Tratamiento
8.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405798

RESUMEN

Regaining sensory feedback is pivotal for people living with limb amputation. Electrical stimulation of sensory fibers in peripheral nerves has been shown to restore focal percepts in the missing limb. However, conventional rectangular current pulses induce sensations often described as unnatural. This is likely due to the synchronous and periodic nature of activity evoked by these pulses. Here we introduce a fast-oscillating amplitude-modulated sinusoidal (FAMS) stimulation waveform that desynchronizes evoked neural activity. We used a computational model to show that sinusoidal waveforms evoke asynchronous and irregular firing and that firing patterns are frequency dependent. We designed the FAMS waveform to leverage both low- and high-frequency effects and found that membrane non-linearities enhance neuron-specific differences when exposed to FAMS. We implemented this waveform in a feline model of peripheral nerve stimulation and demonstrated that FAMS-evoked activity is more asynchronous than activity evoked by rectangular pulses, while being easily controllable with simple stimulation parameters. These results represent an important step towards biomimetic stimulation strategies useful for clinical applications to restore sensory feedback.

9.
J Neural Eng ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39231464

RESUMEN

OBJECTIVE: For prosthesis users, sensory feedback that appears to come from the missing limb can improve function, confidence, and phantom limb pain. Numerous pre-clinical studies have considered stimulation via penetrating microelectrodes at the dorsal root ganglion (DRG) as a potential approach for somatosensory neuroprostheses. However, to develop clinically translatable neuroprosthetic devices, a less invasive approach, such as stimulation via epineural macroelectrodes, would be preferable. This work explores the feasibility of using such electrodes to deliver focal sensory feedback by examining the mechanisms of selective activation in response to stimulation via epineural electrodes compared with penetrating electrodes. Approach: We developed computational models of the DRG, representing the biophysical properties of the DRG and surrounding tissue to evaluate neural responses to stimulation via penetrating microelectrodes and epineural macroelectrodes. To assess the role of properties such as neuron morphology and spatial arrangement we designed three models, including one that contained only axons (axon only), one with pseudounipolar neurons arranged randomly (random), and one with pseudounipolar neurons placed according to a realistic spatial distribution (realistic). Main results: Our models demonstrate that activation in response to stimulation via epineural electrodes in a realistic model is commonly initiated in the axon initial segment adjacent to the cell body, whereas penetrating electrodes commonly elicit responses in t-junctions and axons. Moreover, we see a wider dynamic range for epineural electrodes compared with penetrating electrodes. This difference appears to be driven by the spatial organization and neuron morphology of the realistic DRG. Significance: We demonstrate that the anatomical features of the DRG make it a potentially effective target for epineural stimulation to deliver focal sensations from the limbs. Specifically, we show that epineural stimulation at the DRG can be highly selective thanks to the neuroanatomical arrangement of the DRG, making this a promising approach for future neuroprosthetic development. .

10.
Neurogastroenterol Motil ; 36(3): e14749, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38316631

RESUMEN

BACKGROUND: Gastric myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, and studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the signal power of gastric myoelectric recordings. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.


Asunto(s)
Anestesia , Isoflurano , Animales , Isoflurano/farmacología , Hurones , Estómago , Electrodos , Complejo Mioeléctrico Migratorio
11.
J Neural Eng ; 21(2)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38502956

RESUMEN

Objective.Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated Platinum/Iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, it is important to note that the effectiveness of stimulation through TES relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures.Approach.We employed a hybrid computational modeling approach to analyze the impact of Injectrode system design parameters on charge delivery and neural response to stimulation. We constructed multiple finite element method models of DRG stimulation, followed by the implementation of multi-compartment models of DRG neurons. By calculating potential distribution during monopolar stimulation, we simulated neural responses using various parameters based on prior acute experiments. Additionally, we developed a canonical monopolar stimulation and full-scale model of bipolar bilateral L5 DRG stimulation, allowing us to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds.Main results.Our findings were in accordance with acute experimental measurements and indicate that the minimally invasive Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity.Significance.The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aßactivation from the undesired Aδ-fiber activation.


Asunto(s)
Ganglios Espinales , Neuronas , Humanos , Ganglios Espinales/fisiología , Dolor , Estimulación Eléctrica , Simulación por Computador
12.
Nat Biomed Eng ; 8(8): 992-1003, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38097809

RESUMEN

Restoring somatosensory feedback in individuals with lower-limb amputations would reduce the risk of falls and alleviate phantom limb pain. Here we show, in three individuals with transtibial amputation (one traumatic and two owing to diabetic peripheral neuropathy), that sensations from the missing foot, with control over their location and intensity, can be evoked via lateral lumbosacral spinal cord stimulation with commercially available electrodes and by modulating the intensity of stimulation in real time on the basis of signals from a wireless pressure-sensitive shoe insole. The restored somatosensation via closed-loop stimulation improved balance control (with a 19-point improvement in the composite score of the Sensory Organization Test in one individual) and gait stability (with a 5-point improvement in the Functional Gait Assessment in one individual). And over the implantation period of the stimulation leads, the three individuals experienced a clinically meaningful decrease in phantom limb pain (with an average reduction of nearly 70% on a visual analogue scale). Our findings support the further clinical assessment of lower-limb neuroprostheses providing somatosensory feedback.


Asunto(s)
Retroalimentación Sensorial , Pie , Miembro Fantasma , Estimulación de la Médula Espinal , Humanos , Miembro Fantasma/terapia , Miembro Fantasma/fisiopatología , Retroalimentación Sensorial/fisiología , Estimulación de la Médula Espinal/métodos , Estimulación de la Médula Espinal/instrumentación , Pie/fisiología , Masculino , Persona de Mediana Edad , Femenino , Marcha/fisiología , Adulto , Anciano , Amputación Quirúrgica
13.
J Neuroeng Rehabil ; 10: 25, 2013 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-23442372

RESUMEN

BACKGROUND: Multi-contact stimulating electrodes are gaining acceptance as a means for interfacing with the peripheral nervous system. These electrodes can potentially activate many independent populations of motor units within a single peripheral nerve, but quantifying their recruitment properties and the overlap in stimulation between contacts is difficult and time consuming. Further, current methods for quantifying overlap between contacts are ambiguous and can lead to suboptimal selective stimulation parameters. This study describes a novel method for optimizing stimulation parameters for multi-contact peripheral stimulating electrodes to produce strong, selective muscle contractions. The method is tested with four-contact spiral nerve-cuff electrodes implanted on bilateral femoral nerves of two individuals with spinal cord injury, but it is designed to be extendable to other electrode technologies with higher densities of contacts. METHODS: To optimize selective stimulation parameters for multi-contact electrodes, first, recruitment and overlap are characterized for all contacts within an electrode. Recruitment is measured with the twitch response to single stimulus pulses, and overlap between pairs of contacts is quantified by the deviation in their combined response from linear addition of individual responses. Simple mathematical models are fit to recruitment and overlap data, and a cost function is defined to maximize recruitment and minimize overlap between all contacts. RESULTS: Results are presented for four-contact nerve-cuff electrodes stimulating bilateral femoral nerves of two human subjects with spinal cord injury. Knee extension moments between 11.6 and 43.2 Nm were achieved with selective stimulation through multiple contacts of each nerve-cuff with less than 10% overlap between pairs of contacts. The overlap in stimulation measured in response to selective stimulation parameters was stable at multiple repeated time points after implantation. CONCLUSIONS: These results suggest that the method described here can provide an automated means of determining stimulus parameters to achieve strong muscle contractions via selective stimulation through multi-contact peripheral nerve electrodes.


Asunto(s)
Estimulación Eléctrica/métodos , Electrodos Implantados , Algoritmos , Nervio Femoral/fisiología , Humanos , Articulaciones/fisiología , Rodilla/inervación , Rodilla/fisiología , Modelos Estadísticos , Neuronas Motoras/fisiología , Movimiento/fisiología , Contracción Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Sistema Nervioso Periférico/fisiología , Reclutamiento Neurofisiológico/fisiología , Traumatismos de la Médula Espinal/fisiopatología
14.
Artículo en Inglés | MEDLINE | ID: mdl-37860289

RESUMEN

Somatosensory neuroprostheses are devices with the potential to restore the senses of touch and movement from prosthetic limbs for people with limb amputation or paralysis. By electrically stimulating the peripheral or central nervous system, these devices evoke sensations that appear to emanate from the missing or insensate limb, and when paired with sensors on the prosthesis, they can improve the functionality and embodiment of the prosthesis. There have been major advances in the design of these systems over the past decade, although several important steps remain before they can achieve widespread clinical adoption outside the lab setting. Here, we provide a brief overview of somatosensory neuroprostheses and explores these hurdles and potential next steps towards clinical translation.

15.
PLoS One ; 18(7): e0289076, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37498882

RESUMEN

Functional and motility-related gastrointestinal (GI) disorders affect nearly 40% percent of the population. Disturbances of GI myoelectric activity have been proposed to play a significant role in these disorders. A significant barrier to usage of these signals in diagnosis and treatment is the lack of consistent relationships between GI myoelectric features and function. A potential cause of this issue is the use of arbitrary classification criteria, such as percentage of power in tachygastric and bradygastric frequency bands. Here we applied automatic feature extraction using a deep neural network architecture on GI myoelectric signals from free-moving ferrets. For each animal, we recorded during baseline control and feeding conditions lasting for 1 h. Data were trained on a 1-dimensional residual convolutional network, followed by a fully connected layer, with a decision based on a sigmoidal output. For this 2-class problem, accuracy was 90%, sensitivity (feeding detection) was 90%, and specificity (baseline detection) was 89%. By comparison, approaches using hand-crafted features (e.g., SVM, random forest, and logistic regression) produced an accuracy from 54% to 82%, sensitivity from 46% to 84% and specificity from 66% to 80%. These results suggest that automatic feature extraction and deep neural networks could be useful to assess GI function for comparing baseline to an active functional GI state, such as feeding. In future testing, the current approach could be applied to determine normal and disease-related GI myoelectric patterns to diagnosis and assess patients with GI disease.


Asunto(s)
Hurones , Redes Neurales de la Computación , Animales , Tracto Gastrointestinal , Bosques Aleatorios
16.
Assist Technol ; 35(3): 258-270, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982647

RESUMEN

Existing prosthetic technologies for people with upper limb amputation are being adopted at moderate rates. Once fitted for these devices, many upper limb amputees report not using them regularly or at all. The primary aim of this study was to solicit feedback about prosthetic technology and important device design criteria from amputees, clinicians, and device regulators. We compare these perspectives to identify common or divergent priorities. Twenty-one adults with upper limb loss, 35 clinicians, and 3 regulators completed a survey on existing prosthetic technologies and a conceptual sensorimotor prosthesis driven by implanted myoelectric electrodes with sensory feedback via spinal root stimulation. The survey included questions from the Trinity Amputation and Prosthesis Experience Scale, the Disabilities of the Arm, Shoulder, and Hand, and novel questions about technology acceptance and neuroprosthetic design. User and clinician ratings of satisfaction with existing devices were similar. Amputees were most accepting of the proposed sensorimotor prosthesis (75.5% vs clinicians (68.8%), regulators (67.8%)). Stakeholders valued user-centered outcomes like individualized task goals, improved quality of life, device reliability, and user safety; regulators emphasized these last two. The results of this study provide insight into amputee, clinician, and regulator priorities to inform future upper-limb prosthetic design and clinical trial protocol development.


Asunto(s)
Amputados , Miembros Artificiales , Adulto , Humanos , Calidad de Vida , Reproducibilidad de los Resultados , Estudios Prospectivos , Extremidad Superior/cirugía , Diseño de Prótesis
17.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36865110

RESUMEN

BACKGROUND: Gastrointestinal myoelectric signals have been the focus of extensive research; although it is unclear how general anesthesia affects these signals, studies have often been conducted under general anesthesia. Here, we explore this issue directly by recording gastric myoelectric signals during awake and anesthetized states in the ferret and also explore the contribution of behavioral movement to observed changes in signal power. METHODS: Ferrets were surgically implanted with electrodes to record gastric myoelectric activity from the serosal surface of the stomach, and, following recovery, were tested in awake and isoflurane-anesthetized conditions. Video recordings were also analyzed during awake experiments to compare myoelectric activity during behavioral movement and rest. KEY RESULTS: A significant decrease in gastric myoelectric signal power was detected under isoflurane anesthesia compared to the awake condition. Moreover, a detailed analysis of the awake recordings indicates that behavioral movement is associated with increased signal power compared to rest. CONCLUSIONS & INFERENCES: These results suggest that both general anesthesia and behavioral movement can affect the amplitude of gastric myoelectric. In summary, caution should be taken in studying myoelectric data collected under anesthesia. Further, behavioral movement could have an important modulatory role on these signals, affecting their interpretation in clinical settings.

18.
bioRxiv ; 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37790562

RESUMEN

Objective: Minimally invasive neuromodulation therapies like the Injectrode, which is composed of a tightly wound polymer-coated platinum/iridium microcoil, offer a low-risk approach for administering electrical stimulation to the dorsal root ganglion (DRG). This flexible electrode is aimed to conform to the DRG. The stimulation occurs through a transcutaneous electrical stimulation (TES) patch, which subsequently transmits the stimulation to the Injectrode via a subcutaneous metal collector. However, effectiveness of stimulation relies on the specific geometrical configurations of the Injectrode-collector-patch system. Hence, there is a need to investigate which design parameters influence the activation of targeted neural structures. Approach: We employed a hybrid computational modeling approach to analyze the impact of the Injectrode system design parameters on charge delivery and the neural response to stimulation. We constructed multiple finite element method models of DRG stimulation and multi-compartment models of DRG neurons. We simulated the neural responses using parameters based on prior acute preclinical experiments. Additionally, we developed multiple human-scale computational models of DRG stimulation to investigate how design parameters like Injectrode size and orientation influenced neural activation thresholds. Main results: Our findings were in accordance with acute experimental measurements and indicated that the Injectrode system predominantly engages large-diameter afferents (Aß-fibers). These activation thresholds were contingent upon the surface area of the Injectrode. As the charge density decreased due to increasing surface area, there was a corresponding expansion in the stimulation amplitude range before triggering any pain-related mechanoreceptor (Aδ-fibers) activity. Significance: The Injectrode demonstrates potential as a viable technology for minimally invasive stimulation of the DRG. Our findings indicate that utilizing a larger surface area Injectrode enhances the therapeutic margin, effectively distinguishing the desired Aß activation from the undesired Aδ-fiber activation.

19.
medRxiv ; 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38076797

RESUMEN

Spinal cord stimulation (SCS) restores motor control after spinal cord injury (SCI) and stroke. This evidence led to the hypothesis that SCS facilitates residual supraspinal inputs to spinal motoneurons. Instead, here we show that SCS does not facilitate residual supraspinal inputs but directly triggers motoneurons action potentials. However, supraspinal inputs can shape SCS-mediated activity, mimicking volitional control of motoneuron firing. Specifically, by combining simulations, intraspinal electrophysiology in monkeys and single motor unit recordings in humans with motor paralysis, we found that residual supraspinal inputs transform subthreshold SCS-induced excitatory postsynaptic potentials into suprathreshold events. We then demonstrated that only a restricted set of stimulation parameters enables volitional control of motoneuron firing and that lesion severity further restricts the set of effective parameters. Our results explain the facilitation of voluntary motor control during SCS while predicting the limitations of this neurotechnology in cases of severe loss of supraspinal axons.

20.
Nat Med ; 29(3): 689-699, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36807682

RESUMEN

Cerebral strokes can disrupt descending commands from motor cortical areas to the spinal cord, which can result in permanent motor deficits of the arm and hand. However, below the lesion, the spinal circuits that control movement remain intact and could be targeted by neurotechnologies to restore movement. Here we report results from two participants in a first-in-human study using electrical stimulation of cervical spinal circuits to facilitate arm and hand motor control in chronic post-stroke hemiparesis ( NCT04512690 ). Participants were implanted for 29 d with two linear leads in the dorsolateral epidural space targeting spinal roots C3 to T1 to increase excitation of arm and hand motoneurons. We found that continuous stimulation through selected contacts improved strength (for example, grip force +40% SCS01; +108% SCS02), kinematics (for example, +30% to +40% speed) and functional movements, thereby enabling participants to perform movements that they could not perform without spinal cord stimulation. Both participants retained some of these improvements even without stimulation and no serious adverse events were reported. While we cannot conclusively evaluate safety and efficacy from two participants, our data provide promising, albeit preliminary, evidence that spinal cord stimulation could be an assistive as well as a restorative approach for upper-limb recovery after stroke.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Estimulación de la Médula Espinal , Accidente Cerebrovascular , Humanos , Paresia/etiología , Paresia/terapia , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones , Traumatismos de la Médula Espinal/terapia , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/terapia , Extremidad Superior , Femenino , Adulto , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA