Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(39): e2302878120, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37722058

RESUMEN

Although tumor-intrinsic fatty acid ß-oxidation (FAO) is implicated in multiple aspects of tumorigenesis and progression, the impact of this metabolic pathway on cancer cell susceptibility to immunotherapy remains unknown. Here, we report that cytotoxicity of killer T cells induces activation of FAO and upregulation of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO in cancer cells. The repression of CPT1A activity or expression renders cancer cells more susceptible to destruction by cytotoxic T lymphocytes. Our mechanistic studies reveal that FAO deficiency abrogates the prosurvival signaling in cancer cells under immune cytolytic stress. Furthermore, we identify T cell-derived IFN-γ as a major factor responsible for induction of CPT1A and FAO in an AMPK-dependent manner, indicating a dynamic interplay between immune effector cells and tumor targets. While cancer growth in the absence of CPT1A remains largely unaffected, established tumors upon FAO inhibition become significantly more responsive to cellular immunotherapies including chimeric antigen receptor-engineered human T cells. Together, these findings uncover a mode of cancer resistance and immune editing that can facilitate immune escape and limit the benefits of immunotherapies.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Neoplasias , Humanos , Carnitina O-Palmitoiltransferasa/genética , Citotoxicidad Inmunológica , Ácidos Grasos , Metabolismo de los Lípidos , Neoplasias/terapia , Linfocitos T Citotóxicos
2.
Proc Natl Acad Sci U S A ; 120(2): e2205371120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595695

RESUMEN

Development of multicellular organisms is orchestrated by persistent cell-cell communication between neighboring partners. Direct interaction between different cell types can induce molecular signals that dictate lineage specification and cell fate decisions. Current single-cell RNA-seq technology cannot adequately analyze cell-cell contact-dependent gene expression, mainly due to the loss of spatial information. To overcome this obstacle and resolve cell-cell contact-specific gene expression during embryogenesis, we performed RNA sequencing of physically interacting cells (PIC-seq) and assessed them alongside similar single-cell transcriptomes derived from developing mouse embryos between embryonic day (E) 7.5 and E9.5. Analysis of the PIC-seq data identified gene expression signatures that were dependent on the presence of specific neighboring cell types. Our computational predictions, validated experimentally, demonstrated that neural progenitor (NP) cells upregulate Lhx5 and Nkx2-1 genes, when exclusively interacting with definitive endoderm (DE) cells. Moreover, there was a reciprocal impact on the transcriptome of DE cells, as they tend to upregulate Rax and Gsc when in contact with NP cells. Using individual cell transcriptome data, we formulated a means of computationally predicting the impact of one cell type on the transcriptome of its neighboring cell types. We have further developed a distinctive spatial-t-distributed stochastic neighboring embedding to display the pseudospatial distribution of cells in a 2-dimensional space. In summary, we describe an innovative approach to study contact-specific gene regulation during embryogenesis.


Asunto(s)
Desarrollo Embrionario , Regulación del Desarrollo de la Expresión Génica , Animales , Ratones , Desarrollo Embrionario/genética , Diferenciación Celular/genética , Transcriptoma , Análisis de Secuencia de ARN , Análisis de la Célula Individual/métodos , Perfilación de la Expresión Génica
3.
Proc Natl Acad Sci U S A ; 120(45): e2307094120, 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37922327

RESUMEN

Bone metastasis is a frequent and incurable consequence of advanced prostate cancer (PC). An interplay between disseminated tumor cells and heterogeneous bone resident cells in the metastatic niche initiates this process. Melanoma differentiation associated gene-9 (mda-9/Syntenin/syndecan binding protein) is a prometastatic gene expressed in multiple organs, including bone marrow-derived mesenchymal stromal cells (BM-MSCs), under both physiological and pathological conditions. We demonstrate that PDGF-AA secreted by tumor cells induces CXCL5 expression in BM-MSCs by suppressing MDA-9-dependent YAP/MST signaling. CXCL5-derived tumor cell proliferation and immune suppression are consequences of the MDA-9/CXCL5 signaling axis, promoting PC disease progression. mda-9 knockout tumor cells express less PDGF-AA and do not develop bone metastases. Our data document a previously undefined role of MDA-9/Syntenin in the tumor and microenvironment in regulating PC bone metastasis. This study provides a framework for translational strategies to ameliorate health complications and morbidity associated with advanced PC.


Asunto(s)
Neoplasias Óseas , Melanoma , Neoplasias de la Próstata , Masculino , Humanos , Sinteninas/genética , Sinteninas/metabolismo , Melanoma/metabolismo , Neoplasias de la Próstata/genética , Transducción de Señal/genética , Neoplasias Óseas/genética , Línea Celular Tumoral , Microambiente Tumoral , Metástasis de la Neoplasia
4.
EMBO J ; 40(17): e107271, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34368984

RESUMEN

Tumors are complex cellular and acellular environments within which cancer clones are under continuous selection pressures. Cancer cells are in a permanent mode of interaction and competition with each other as well as with the immediate microenvironment. In the course of these competitive interactions, cells share information regarding their general state of fitness, with less-fit cells being typically eliminated via apoptosis at the hands of those cells with greater cellular fitness. Competitive interactions involving exchange of cell fitness information have implications for tumor growth, metastasis, and therapy outcomes. Recent research has highlighted sophisticated pathways such as Flower, Hippo, Myc, and p53 signaling, which are employed by cancer cells and the surrounding microenvironment cells to achieve their evolutionary goals by means of cell competition mechanisms. In this review, we discuss these recent findings and explain their importance and role in evolution, growth, and treatment of cancer. We further consider potential physiological conditions, such as hypoxia and chemotherapy, that can function as selective pressures under which cell competition mechanisms may evolve differently or synergistically to confer oncogenic advantages to cancer.


Asunto(s)
Competencia Celular , Neoplasias/metabolismo , Microambiente Tumoral , Animales , Humanos , Neoplasias/patología , Transducción de Señal
5.
J Cell Physiol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775127

RESUMEN

Primary, glioblastoma, and secondary brain tumors, from metastases outside the brain, are among the most aggressive and therapeutically resistant cancers. A physiological barrier protecting the brain, the blood-brain barrier (BBB), functions as a deterrent to effective therapies. To enhance cancer therapy, we developed a cancer terminator virus (CTV), a unique tropism-modified adenovirus consisting of serotype 3 fiber knob on an otherwise Ad5 capsid that replicates in a cancer-selective manner and simultaneously produces a potent therapeutic cytokine, melanoma differentiation-associated gene-7/interleukin-24 (MDA-7/IL-24). A limitation of the CTV and most other viruses, including adenoviruses, is an inability to deliver systemically to treat brain tumors because of the BBB, nonspecific virus trapping, and immune clearance. These obstacles to effective viral therapy of brain cancer have now been overcome using focused ultrasound with a dual microbubble treatment, the focused ultrasound-double microbubble (FUS-DMB) approach. Proof-of-principle is now provided indicating that the BBB can be safely and transiently opened, and the CTV can then be administered in a second set of complement-treated microbubbles and released in the brain using focused ultrasound. Moreover, the FUS-DMB can be used to deliver the CTV multiple times in animals with glioblastoma  growing in their brain thereby resulting in a further enhancement in survival. This strategy permits efficient therapy of primary and secondary brain tumors enhancing animal survival without promoting harmful toxic or behavioral side effects. Additionally, when combined with a standard of care therapy, Temozolomide, a further increase in survival is achieved. The FUS-DMB approach with the CTV highlights a noninvasive strategy to treat brain cancers without surgery. This innovative delivery scheme combined with the therapeutic efficacy of the CTV provides a novel potential translational therapeutic approach for brain cancers.

6.
Hepatology ; 78(6): 1727-1741, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36120720

RESUMEN

BACKGROUND AND AIMS: The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied. APPROACH AND RESULTS: To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9). Compared with wild-type (WT) littermates, Alb/MDA-9 mice demonstrated significantly higher incidence of N-nitrosodiethylamine/phenobarbital-induced HCC, with marked activation and infiltration of macrophages. RNA sequencing (RNA-seq) in naive WT and Alb/MDA-9 hepatocytes identified activation of signaling pathways associated with invasion, angiogenesis, and inflammation, especially NF-κB and integrin-linked kinase signaling pathways. In nonparenchymal cells purified from naive livers, single-cell RNA-seq showed activation of Kupffer cells and macrophages in Alb/MDA-9 mice versus WT mice. A robust increase in the expression of Secreted phosphoprotein 1 (Spp1/osteopontin) was observed upon overexpression of MDA-9. Inhibition of NF-κB pathway blocked MDA-9-induced Spp1 induction, and knock down of Spp1 resulted in inhibition of MDA-9-induced macrophage migration, as well as angiogenesis. CONCLUSIONS: Alb/MDA-9 is a mouse model with MDA-9 overexpression in any tissue type. Our findings unravel an HCC-promoting role of MDA-9 mediated by NF-κB and Spp1 and support the rationale of using MDA-9 inhibitors as a potential treatment for aggressive HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melanoma , Ratones , Animales , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , FN-kappa B/metabolismo , Sinteninas/genética , Sinteninas/metabolismo , Ratones Transgénicos , Línea Celular Tumoral
7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34016751

RESUMEN

Melanoma differentiation associated gene-9 (MDA-9), Syntenin-1, or syndecan binding protein is a differentially regulated prometastatic gene with elevated expression in advanced stages of melanoma. MDA-9/Syntenin expression positively associates with advanced disease stage in multiple histologically distinct cancers and negatively correlates with patient survival and response to chemotherapy. MDA-9/Syntenin is a highly conserved PDZ-domain scaffold protein, robustly expressed in a spectrum of diverse cancer cell lines and clinical samples. PDZ domains interact with a number of proteins, many of which are critical regulators of signaling cascades in cancer. Knockdown of MDA-9/Syntenin decreases cancer cell metastasis, sensitizing these cells to radiation. Genetic silencing of MDA-9/Syntenin or treatment with a pharmacological inhibitor of the PDZ1 domain, PDZ1i, also activates the immune system to kill cancer cells. Additionally, suppression of MDA-9/Syntenin deregulates myeloid-derived suppressor cell differentiation via the STAT3/interleukin (IL)-1ß pathway, which concomitantly promotes activation of cytotoxic T lymphocytes. Biologically, PDZ1i treatment decreases metastatic nodule formation in the lungs, resulting in significantly fewer invasive cancer cells. In summary, our observations indicate that MDA-9/Syntenin provides a direct therapeutic target for mitigating aggressive breast cancer and a small-molecule inhibitor, PDZ1i, provides a promising reagent for inhibiting advanced breast cancer pathogenesis.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Interleucina-1beta/genética , Neoplasias Pulmonares/tratamiento farmacológico , Oxadiazoles/farmacología , Pirimidinas/farmacología , Sinteninas/genética , Animales , Antineoplásicos/síntesis química , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Quimiocina CCL11/genética , Quimiocina CCL11/inmunología , Quimiocina CCL17/genética , Quimiocina CCL17/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Interleucina-10/genética , Interleucina-10/inmunología , Interleucina-1alfa/genética , Interleucina-1alfa/inmunología , Interleucina-1beta/antagonistas & inhibidores , Interleucina-1beta/inmunología , Subunidad p19 de la Interleucina-23/genética , Subunidad p19 de la Interleucina-23/inmunología , Interleucina-5/genética , Interleucina-5/inmunología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Oxadiazoles/síntesis química , Pirimidinas/síntesis química , Transducción de Señal , Sinteninas/antagonistas & inhibidores , Sinteninas/inmunología , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Proc Natl Acad Sci U S A ; 117(22): 12324-12331, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32409605

RESUMEN

Glioblastoma multiforme (GBM) is an aggressive cancer without currently effective therapies. Radiation and temozolomide (radio/TMZ) resistance are major contributors to cancer recurrence and failed GBM therapy. Heat shock proteins (HSPs), through regulation of extracellular matrix (ECM) remodeling and epithelial mesenchymal transition (EMT), provide mechanistic pathways contributing to the development of GBM and radio/TMZ-resistant GBM. The Friend leukemia integration 1 (Fli-1) signaling network has been implicated in oncogenesis in GBM, making it an appealing target for advancing novel therapeutics. Fli-1 is linked to oncogenic transformation with up-regulation in radio/TMZ-resistant GBM, transcriptionally regulating HSPB1. This link led us to search for targeted molecules that inhibit Fli-1. Expression screening for Fli-1 inhibitors identified lumefantrine, an antimalarial drug, as a probable Fli-1 inhibitor. Docking and isothermal calorimetry titration confirmed interaction between lumefantrine and Fli-1. Lumefantrine promoted growth suppression and apoptosis in vitro in parental and radio/TMZ-resistant GBM and inhibited tumor growth without toxicity in vivo in U87MG GBM and radio/TMZ-resistant GBM orthotopic tumor models. These data reveal that lumefantrine, an FDA-approved drug, represents a potential GBM therapeutic that functions through inhibition of the Fli-1/HSPB1/EMT/ECM remodeling protein networks.


Asunto(s)
Antimaláricos/administración & dosificación , Antineoplásicos Alquilantes/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Lumefantrina/administración & dosificación , Temozolomida/administración & dosificación , Neoplasias Encefálicas/radioterapia , Línea Celular Tumoral , Resistencia a Antineoplásicos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Transactivadores/genética , Transactivadores/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(12): 5687-5692, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30842276

RESUMEN

Melanoma differentiation-associated gene-7/interleukin-24 (mda-7/IL-24) is a multifunctional cytokine displaying broad-spectrum anticancer activity in vitro or in vivo in preclinical animal cancer models and in a phase 1/2 clinical trial in patients with advanced cancers. mda-7/IL-24 targets specific miRNAs, including miR-221 and miR-320, for down-regulation in a cancer-selective manner. We demonstrate that mda-7/IL-24, administered through a replication incompetent type 5 adenovirus (Ad.mda-7) or with His-MDA-7/IL-24 protein, down-regulates DICER, a critical regulator in miRNA processing. This effect is specific for mature miR-221, as it does not affect Pri-miR-221 expression, and the DICER protein, as no changes occur in other miRNA processing cofactors, including DROSHA, PASHA, or Argonaute. DICER is unchanged by Ad.mda-7/IL-24 in normal immortal prostate cells, whereas Ad.mda-7 down-regulates DICER in multiple cancer cells including glioblastoma multiforme and prostate, breast, lung, and liver carcinoma cells. MDA-7/IL-24 protein down-regulates DICER expression through canonical IL-20/IL-22 receptors. Gain- and loss-of-function studies confirm that overexpression of DICER rescues deregulation of miRNAs by mda-7/IL-24, partially rescuing cancer cells from mda-7/IL-24-mediated cell death. Stable overexpression of DICER in cancer cells impedes Ad.mda-7 or His-MDA-7/IL-24 inhibition of cell growth, colony formation, PARP cleavage, and apoptosis. In addition, stable overexpression of DICER renders cancer cells more resistant to Ad.mda-7 inhibition of primary and secondary tumor growth. MDA-7/IL-24-mediated regulation of DICER is reactive oxygen species-dependent and mediated by melanogenesis-associated transcription factor. Our research uncovers a distinct role of mda-7/IL-24 in the regulation of miRNA biogenesis through alteration of the MITF-DICER pathway.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Interleucinas/metabolismo , MicroARNs/metabolismo , Factor de Transcripción Asociado a Microftalmía/metabolismo , Ribonucleasa III/metabolismo , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , ARN Helicasas DEAD-box/biosíntesis , ARN Helicasas DEAD-box/genética , Regulación hacia Abajo , Genes Supresores de Tumor , Humanos , Interleucinas/genética , Masculino , Ratones , Ratones Desnudos , MicroARNs/biosíntesis , Factor de Transcripción Asociado a Microftalmía/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/parasitología , Especies Reactivas de Oxígeno/metabolismo , Ribonucleasa III/biosíntesis , Ribonucleasa III/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
10.
Semin Cancer Biol ; 66: 140-154, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-31356866

RESUMEN

Apoptosis and autophagy play seminal roles in maintaining organ homeostasis. Apoptosis represents canonical type I programmed cell death. Autophagy is viewed as pro-survival, however, excessive autophagy can promote type II cell death. Defective regulation of these two obligatory cellular pathways is linked to various diseases, including cancer. Biologic or chemotherapeutic agents, which can reprogram cancer cells to undergo apoptosis- or toxic autophagy-mediated cell death, are considered effective tools for treating cancer. Melanoma differentiation associated gene-7 (mda-7) selectively promotes these effects in cancer cells. mda-7 was identified more than two decades ago by subtraction hybridization showing elevated expression during induction of terminal differentiation of metastatic melanoma cells following treatment with recombinant fibroblast interferon and mezerein (a PKC activating agent). MDA-7 was classified as a member of the IL-10 gene family based on its chromosomal location, and the presence of an IL-10 signature motif and a secretory sequence, and re-named interleukin-24 (MDA-7/IL-24). Multiple studies have established MDA-7/IL-24 as a potent anti-cancer agent, which when administered at supra-physiological levels induces growth arrest and cell death through apoptosis and toxic autophagy in a wide variety of tumor cell types, but not in corresponding normal/non-transformed cells. Furthermore, in a phase I/II clinical trial, MDA-7/IL-24 administered by means of a non-replicating adenovirus was well tolerated and displayed significant clinical activity in patients with multiple advanced cancers. This review examines our current comprehension of the role of MDA-7/IL-24 in mediating cancer-specific cell death via apoptosis and toxic autophagy.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/fisiología , Autofagia/fisiología , Interleucinas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Muerte Celular/fisiología , Ensayos Clínicos Fase I como Asunto , Ensayos Clínicos Fase II como Asunto , Humanos , Neoplasias/patología
11.
J Cell Physiol ; 236(11): 7775-7791, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33834508

RESUMEN

Neuroblastoma (NB) is a common solid extracranial tumor developing in pediatric populations. NB can spontaneously regress or grow and metastasize displaying resistance to therapy. This tumor is derived from primitive cells, mainly those of the neural crest, in the sympathetic nervous system and usually develops in the adrenal medulla and paraspinal ganglia. Our understanding of the molecular characteristics of human NBs continues to advance documenting abnormalities at the genome, epigenome, and transcriptome levels. The high-risk tumors have MYCN oncogene amplification, and the MYCN transcriptional regulator encoded by the MYCN oncogene is highly expressed in the neural crest. Studies on the biology of NB has enabled a more precise risk stratification strategy and a concomitant reduction in the required treatment in an expanding number of cases worldwide. However, newer treatment strategies are mandated to improve outcomes in pediatric patients who are at high-risk and display relapse. To improve outcomes and survival rates in such high-risk patients, it is necessary to use a multicomponent therapeutic approach. Accuracy in clinical staging of the disease and assessment of the associated risks based on biological, clinical, surgical, and pathological criteria are of paramount importance for prognosis and to effectively plan therapeutic approaches. This review discusses the staging of NB and the biological and genetic features of the disease and several current therapies including targeted delivery of chemotherapy, novel radiation therapy, and immunotherapy for NB.


Asunto(s)
Antineoplásicos/uso terapéutico , Inmunoterapia , Neuroblastoma/terapia , Animales , Antineoplásicos/efectos adversos , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia/efectos adversos , Terapia Molecular Dirigida , Estadificación de Neoplasias , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patología , Dosis de Radiación , Transducción de Señal
12.
Cancer Metastasis Rev ; 39(3): 769-781, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32410111

RESUMEN

Tumor metastasis comprises a series of coordinated events that culminate in dissemination of cancer cells to distant sites within the body representing the greatest challenge impeding effective therapy of cancer and the leading cause of cancer-associated morbidity. Cancer cells exploit multiple genes and pathways to colonize to distant organs. These pathways are integrated and regulated at different levels by cellular- and extracellular-associated factors. Defining the genes and pathways that govern metastasis can provide new targets for therapeutic intervention. Melanoma differentiation associated gene-9 (mda-9) (also known as Syntenin-1 and SDCBP (Syndecan binding protein)) was identified by subtraction hybridization as a novel gene displaying differential temporal expression during differentiation of melanoma. MDA-9/Syntenin is an established Syndecan binding protein that functions as an adaptor protein. Expression of MDA-9/Syntenin is elevated at an RNA and protein level in a wide-range of cancers including melanoma, glioblastoma, neuroblastoma, and prostate, breast and liver cancer. Expression is increased significantly in metastatic cancer cells as compared with non-metastatic cancer cells or normal cells, which make it an attractive target in treating cancer metastasis. In this review, we focus on the role and regulation of mda-9 in cancer progression and metastasis.


Asunto(s)
Neoplasias/metabolismo , Sinteninas/metabolismo , Animales , Humanos , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/patología , Sinteninas/genética
13.
Proc Natl Acad Sci U S A ; 115(22): 5768-5773, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760085

RESUMEN

Glioma stem cells (GSCs) comprise a small subpopulation of glioblastoma multiforme cells that contribute to therapy resistance, poor prognosis, and tumor recurrence. Protective autophagy promotes resistance of GSCs to anoikis, a form of programmed cell death occurring when anchorage-dependent cells detach from the extracellular matrix. In nonadherent conditions, GSCs display protective autophagy and anoikis-resistance, which correlates with expression of melanoma differentiation associated gene-9/Syntenin (MDA-9) (syndecan binding protein; SDCBP). When MDA-9 is suppressed, GSCs undergo autophagic death supporting the hypothesis that MDA-9 regulates protective autophagy in GSCs under anoikis conditions. MDA-9 maintains protective autophagy through phosphorylation of BCL2 and by suppressing high levels of autophagy through EGFR signaling. MDA-9 promotes these changes by modifying FAK and PKC signaling. Gain-of-function and loss-of-function genetic approaches demonstrate that MDA-9 regulates pEGFR and pBCL2 expression through FAK and pPKC. EGFR signaling inhibits autophagy markers (ATG5, Lamp1, LC3B), helping to maintain protective autophagy, and along with pBCL2 maintain survival of GSCs. In the absence of MDA-9, this protective mechanism is deregulated; EGFR no longer maintains protective autophagy, leading to highly elevated and sustained levels of autophagy and consequently decreased cell survival. In addition, pBCL2 is down-regulated in the absence of MDA-9, leading to cell death in GSCs under conditions of anoikis. Our studies confirm a functional link between MDA-9 expression and protective autophagy in GSCs and show that inhibition of MDA-9 reverses protective autophagy and induces anoikis and cell death in GSCs.


Asunto(s)
Anoicis/genética , Autofagia/genética , Resistencia a Antineoplásicos/genética , Glioma/metabolismo , Células Madre Neoplásicas/metabolismo , Sinteninas/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Glioma/genética , Humanos , Sinteninas/genética , Células Tumorales Cultivadas
14.
Int J Mol Sci ; 23(1)2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-35008495

RESUMEN

Melanoma differentiation associated gene-7/interleukin-24 (MDA-7/IL-24), a secreted protein of the IL-10 family, was first identified more than two decades ago as a novel gene differentially expressed in terminally differentiating human metastatic melanoma cells. MDA-7/IL-24 functions as a potent tumor suppressor exerting a diverse array of functions including the inhibition of tumor growth, invasion, angiogenesis, and metastasis, and induction of potent "bystander" antitumor activity and synergy with conventional cancer therapeutics. MDA-7/IL-24 induces cancer-specific cell death through apoptosis or toxic autophagy, which was initially established in vitro and in preclinical animal models in vivo and later in a Phase I clinical trial in patients with advanced cancers. This review summarizes the history and our current understanding of the molecular/biological mechanisms of MDA-7/IL-24 action rendering it a potent cancer suppressor.


Asunto(s)
Interleucinas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Apoptosis/fisiología , Autofagia/fisiología , Muerte Celular/fisiología , Humanos , Melanoma/metabolismo
15.
Pharmacol Res ; 155: 104695, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32061839

RESUMEN

The primary cause of cancer-related death from solid tumors is metastasis. While unraveling the mechanisms of this complicated process continues, our ability to effectively target and treat it to decrease patient morbidity and mortality remains disappointing. Early detection of metastatic lesions and approaches to treat metastases (both pharmacological and genetic) are of prime importance to obstruct this process clinically. Metastasis is complex involving both genetic and epigenetic changes in the constantly evolving tumor cell. Moreover, many discrete steps have been identified in metastatic spread, including invasion, intravasation, angiogenesis, attachment at a distant site (secondary seeding), extravasation and micrometastasis and tumor dormancy development. Here, we provide an overview of the metastatic process and highlight a unique pro-metastatic gene, melanoma differentiation associated gene-9/Syntenin (MDA-9/Syntenin) also called syndecan binding protein (SDCBP), which is a major contributor to the majority of independent metastatic events. MDA-9 expression is elevated in a wide range of carcinomas and other cancers, including melanoma, glioblastoma multiforme and neuroblastoma, suggesting that it may provide an appropriate target to intervene in metastasis. Pre-clinical studies confirm that inhibiting MDA-9 either genetically or pharmacologically profoundly suppresses metastasis. An additional benefit to blocking MDA-9 in metastatic cells is sensitization of these cells to a second therapeutic agent, which converts anti-invasion effects to tumor cytocidal effects. Continued mechanistic and therapeutic insights hold promise to advance development of truly effective therapies for metastasis in the future.


Asunto(s)
Metástasis de la Neoplasia/genética , Neoplasias/terapia , Sinteninas/genética , Animales , Humanos , Neoplasias/genética , Neoplasias/patología
16.
Proc Natl Acad Sci U S A ; 114(2): 370-375, 2017 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-28011764

RESUMEN

Glioblastoma multiforme (GBM) is an intractable tumor despite therapeutic advances, principally because of its invasive properties. Radiation is a staple in therapeutic regimens, although cells surviving radiation can become more aggressive and invasive. Subtraction hybridization identified melanoma differentiation-associated gene 9 [MDA-9/Syntenin; syndecan-binding protein (SDCBP)] as a differentially regulated gene associated with aggressive cancer phenotypes in melanoma. MDA-9/Syntenin, a highly conserved double-PDZ domain-containing scaffolding protein, is robustly expressed in human-derived GBM cell lines and patient samples, with expression increasing with tumor grade and correlating with shorter survival times and poorer response to radiotherapy. Knockdown of MDA-9/Syntenin sensitizes GBM cells to radiation, reducing postradiation invasion gains. Radiation induces Src and EGFRvIII signaling, which is abrogated through MDA-9/Syntenin down-regulation. A specific inhibitor of MDA-9/Syntenin activity, PDZ1i (113B7), identified through NMR-guided fragment-based drug design, inhibited MDA-9/Syntenin binding to EGFRvIII, which increased following radiation. Both genetic (shmda-9) and pharmacological (PDZ1i) targeting of MDA-9/Syntenin reduced invasion gains in GBM cells following radiation. Although not affecting normal astrocyte survival when combined with radiation, PDZ1i radiosensitized GBM cells. PDZ1i inhibited crucial GBM signaling involving FAK and mutant EGFR, EGFRvIII, and abrogated gains in secreted proteases, MMP-2 and MMP-9, following radiation. In an in vivo glioma model, PDZ1i resulted in smaller, less invasive tumors and enhanced survival. When combined with radiation, survival gains exceeded radiotherapy alone. MDA-9/Syntenin (SDCBP) provides a direct target for therapy of aggressive cancers such as GBM, and defined small-molecule inhibitors such as PDZ1i hold promise to advance targeted brain cancer therapy.


Asunto(s)
Glioblastoma/genética , Invasividad Neoplásica/genética , Sinteninas/genética , Animales , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Movimiento Celular/genética , Regulación hacia Abajo/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Glioma/genética , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/genética , Melanoma/genética , Ratones , Ratones Desnudos , Dominios PDZ/genética , Transducción de Señal/genética , Familia-src Quinasas/genética
17.
Genes Dev ; 26(10): 1041-54, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22588718

RESUMEN

Autophagy is a lysosomal degradation pathway that converts macromolecules into substrates for energy production during nutrient-scarce conditions such as those encountered in tumor microenvironments. Constitutive mitochondrial uptake of endoplasmic reticulum (ER) Ca²âº mediated by inositol triphosphate receptors (IP3Rs) maintains cellular bioenergetics, thus suppressing autophagy. We show that the ER membrane protein Bax inhibitor-1 (BI-1) promotes autophagy in an IP3R-dependent manner. By reducing steady-state levels of ER Ca²âº via IP3Rs, BI-1 influences mitochondrial bioenergetics, reducing oxygen consumption, impacting cellular ATP levels, and stimulating autophagy. Furthermore, BI-1-deficient mice show reduced basal autophagy, and experimentally reducing BI-1 expression impairs tumor xenograft growth in vivo. BI-1's ability to promote autophagy could be dissociated from its known function as a modulator of IRE1 signaling in the context of ER stress. The results reveal BI-1 as a novel autophagy regulator that bridges Ca²âº signaling between ER and mitochondria, reducing cellular oxygen consumption and contributing to cellular resilience in the face of metabolic stress.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/inmunología , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Metabolismo Energético , Proteínas de la Membrana/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Autofagia/genética , Línea Celular Tumoral , Endorribonucleasas/metabolismo , Humanos , Macrófagos/inmunología , Macrófagos/microbiología , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Consumo de Oxígeno , Proteínas Serina-Treonina Quinasas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Infecciones Estreptocócicas/inmunología , Streptococcus/inmunología , Estrés Fisiológico , Ensayos Antitumor por Modelo de Xenoinjerto
19.
J Cell Physiol ; 233(8): 5684-5695, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29278667

RESUMEN

In principle, viral gene therapy holds significant potential for the therapy of solid cancers. However, this promise has not been fully realized and systemic administration of viruses has not proven as successful as envisioned in the clinical arena. Our research is focused on developing the next generation of efficacious viruses to specifically treat both primary cancers and a major cause of cancer lethality, metastatic tumors (that have spread from a primary site of origin to other areas in the body and are responsible for an estimated 90% of cancer deaths). We have generated a chimeric tropism-modified type 5 and 3 adenovirus that selectively replicates in cancer cells and simultaneously produces a secreted anti-cancer toxic cytokine, melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24), referred to as a Cancer Terminator Virus (CTV) (Ad.5/3-CTV). In preclinical animal models, injection into a primary tumor causes selective cell death and therapeutic activity is also observed in non-injected distant tumors, that is, "bystander anti-tumor activity." To enhance the impact and therapeutic utility of the CTV, we have pioneered an elegant approach in which viruses are encapsulated in microbubbles allowing "stealth delivery" to tumor cells that when treated with focused ultrasound causes viral release killing tumor cells through viral replication, and producing and secreting MDA-7/IL-24, which stimulates the immune system to attack distant cancers, inhibits tumor angiogenesis and directly promotes apoptosis in distant cancer cells. This strategy is called UTMD (ultrasound-targeted microbubble-destruction). This novel CTV and UTMD approach hold significant promise for the effective therapy of primary and disseminated tumors.


Asunto(s)
Adenoviridae/genética , Neoplasias/terapia , Neoplasias/virología , Animales , Apoptosis/genética , Terapia Genética/métodos , Humanos , Neoplasias/genética , Neovascularización Patológica/genética , Neovascularización Patológica/virología , Replicación Viral/genética
20.
Hepatology ; 66(2): 466-480, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28437865

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the most prevalent cause of chronic liver disease in the Western world. However, an optimum therapy for NASH is yet to be established, mandating more in-depth investigation into the molecular pathogenesis of NASH to identify novel regulatory molecules and develop targeted therapies. Here, we unravel a unique function of astrocyte elevated gene-1(AEG-1)/metadherin in NASH using a transgenic mouse with hepatocyte-specific overexpression of AEG-1 (Alb/AEG-1) and a conditional hepatocyte-specific AEG-1 knockout mouse (AEG-1ΔHEP ). Alb/AEG-1 mice developed spontaneous NASH whereas AEG-1ΔHEP mice were protected from high-fat diet (HFD)-induced NASH. Intriguingly, AEG-1 overexpression was observed in livers of NASH patients and wild-type (WT) mice that developed steatosis upon feeding HFD. In-depth molecular analysis unraveled that inhibition of peroxisome proliferator-activated receptor alpha activity resulting in decreased fatty acid ß-oxidation, augmentation of translation of fatty acid synthase resulting in de novo lipogenesis, and increased nuclear factor kappa B-mediated inflammation act in concert to mediate AEG-1-induced NASH. Therapeutically, hepatocyte-specific nanoparticle-delivered AEG-1 small interfering RNA provided marked protection from HFD-induced NASH in WT mice. CONCLUSION: AEG-1 might be a key molecule regulating initiation and progression of NASH. AEG-1 inhibitory strategies might be developed as a potential therapeutic intervention in NASH patients. (Hepatology 2017;66:466-480).


Asunto(s)
Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/patología , PPAR alfa/metabolismo , Análisis de Varianza , Animales , Biopsia con Aguja , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Hepatocitos/citología , Hepatocitos/metabolismo , Humanos , Inmunohistoquímica , Ratones , Ratones Endogámicos CBA , Ratones Transgénicos , Distribución Aleatoria , Rol
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA