RESUMEN
Formation of the functional connectome in early life underpins future learning and behavior. However, our understanding of how the functional organization of brain regions into interconnected hubs (centrality) matures in the early postnatal period is limited, especially in response to factors associated with adverse neurodevelopmental outcomes such as preterm birth. We characterized voxel-wise functional centrality (weighted degree) in 366 neonates from the Developing Human Connectome Project. We tested the hypothesis that functional centrality matures with age at scan in term-born babies and is disrupted by preterm birth. Finally, we asked whether neonatal functional centrality predicts general neurodevelopmental outcomes at 18 months. We report an age-related increase in functional centrality predominantly within visual regions and a decrease within the motor and auditory regions in term-born infants. Preterm-born infants scanned at term equivalent age had higher functional centrality predominantly within visual regions and lower measures in motor regions. Functional centrality was not related to outcome at 18 months old. Thus, preterm birth appears to affect functional centrality in regions undergoing substantial development during the perinatal period. Our work raises the question of whether these alterations are adaptive or disruptive and whether they predict neurodevelopmental characteristics that are more subtle or emerge later in life.
Asunto(s)
Conectoma , Nacimiento Prematuro , Lactante , Embarazo , Femenino , Recién Nacido , Humanos , Imagen por Resonancia Magnética , Encéfalo , Recien Nacido PrematuroRESUMEN
BACKGROUND: Accurate registration between microscopy and MRI data is necessary for validating imaging biomarkers against neuropathology, and to disentangle complex signal dependencies in microstructural MRI. Existing registration methods often rely on serial histological sampling or significant manual input, providing limited scope to work with a large number of stand-alone histology sections. Here we present a customisable pipeline to assist the registration of stand-alone histology sections to whole-brain MRI data. METHODS: Our pipeline registers stained histology sections to whole-brain post-mortem MRI in 4 stages, with the help of two photographic intermediaries: a block face image (to undistort histology sections) and coronal brain slab photographs (to insert them into MRI space). Each registration stage is implemented as a configurable stand-alone Python script using our novel platform, Tensor Image Registration Library (TIRL), which provides flexibility for wider adaptation. We report our experience of registering 87 PLP-stained histology sections from 14 subjects and perform various experiments to assess the accuracy and robustness of each stage of the pipeline. RESULTS: All 87 histology sections were successfully registered to MRI. Histology-to-block registration (Stage 1) achieved 0.2-0.4 mm accuracy, better than commonly used existing methods. Block-to-slice matching (Stage 2) showed great robustness in automatically identifying and inserting small tissue blocks into whole brain slices with 0.2 mm accuracy. Simulations demonstrated sub-voxel level accuracy (0.13 mm) of the slice-to-volume registration (Stage 3) algorithm, which was observed in over 200 actual brain slice registrations, compensating 3D slice deformations up to 6.5 mm. Stage 4 combined the previous stages and generated refined pixelwise aligned multi-modal histology-MRI stacks. CONCLUSIONS: Our open-source pipeline provides robust automation tools for registering stand-alone histology sections to MRI data with sub-voxel level precision, and the underlying framework makes it readily adaptable to a diverse range of microscopy-MRI studies.
Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Neuroimagen , Técnicas Histológicas/métodos , Autopsia , Imagenología Tridimensional/métodosRESUMEN
BACKGROUND: Early risk stratification for developing retinopathy of prematurity (ROP) is essential for tailoring screening strategies and preventing abnormal retinal development. This study aims to examine the ability of physiological data during the first postnatal month to distinguish preterm infants with and without ROP requiring laser treatment. METHODS: In this cohort study, preterm infants with a gestational age <32 weeks and/or birth weight <1500 g, who were screened for ROP were included. Differences in the physiological data between the laser and non-laser group were identified, and tree-based classification models were trained and independently tested to predict ROP requiring laser treatment. RESULTS: In total, 208 preterm infants were included in the analysis of whom 30 infants (14%) required laser treatment. Significant differences were identified in the level of hypoxia and hyperoxia, oxygen requirement, and skewness of heart rate. The best model had a balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) and included the SpO2/FiO2 ratio and baseline demographics (including gestational age and birth weight). CONCLUSIONS: Routinely monitored physiological data from preterm infants in the first postnatal month are already predictive of later development of ROP requiring laser treatment, although validation is required in larger cohorts. IMPACT: Routinely monitored physiological data from the first postnatal month are predictive of later development of ROP requiring laser treatment, although model performance was not significantly better than baseline characteristics (gestational age, birth weight, sex, multiple birth, prenatal glucocorticosteroids, route of delivery, and Apgar scores) alone. A balanced accuracy of 0.81 (0.72-0.87), a sensitivity of 0.73 (0.64-0.81), and a specificity of 0.88 (0.80-0.93) was achieved with a model including the SpO2/FiO2 ratio and baseline characteristics. Physiological data have potential to play a significant role for future ROP prediction and provide opportunities for early interventions to protect infants from abnormal retinal development.
Asunto(s)
Recien Nacido Prematuro , Retinopatía de la Prematuridad , Lactante , Femenino , Embarazo , Recién Nacido , Humanos , Peso al Nacer , Retinopatía de la Prematuridad/diagnóstico , Retinopatía de la Prematuridad/cirugía , Estudios de Cohortes , Factores de Riesgo , Edad Gestacional , Estudios Retrospectivos , Recién Nacido de muy Bajo PesoRESUMEN
Pain assessment in preterm infants is challenging as behavioral, autonomic, and neurophysiological measures of pain are reported to be less sensitive and specific than in term infants. Understanding the pattern of preterm infants' noxious-evoked responses is vital to improve pain assessment in this group. This study investigated the discriminability and development of multimodal noxious-evoked responses in infants aged 28-40 weeks postmenstrual age. A classifier was trained to discriminate responses to a noxious heel lance from a nonnoxious control in 47 infants, using measures of facial expression, brain activity, heart rate, and limb withdrawal, and tested in two independent cohorts with a total of 97 infants. The model discriminates responses to the noxious from the nonnoxious procedure with an overall accuracy of 0.76-0.84 and an accuracy of 0.78-0.79 in the 28-31-week group. Noxious-evoked responses have distinct developmental patterns. Heart rate responses increase in magnitude with age, while noxious-evoked brain activity undergoes three distinct developmental stages, including a previously unreported transitory stage consisting of a negative event-related potential between 30 and 33 weeks postmenstrual age. These findings demonstrate that while noxious-evoked responses change across early development, infant responses to noxious and nonnoxious stimuli are discriminable in prematurity.
Asunto(s)
Encéfalo , Recien Nacido Prematuro , Encéfalo/fisiología , Niño , Potenciales Evocados , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro/fisiología , Dolor , Dimensión del DolorRESUMEN
The World Health Organization promotes physical exercise and a healthy lifestyle as means to improve youth development. However, relationships between physical lifestyle and human brain development are not fully understood. Here, we asked whether a human brain-physical latent mode of covariation underpins the relationship between physical activity, fitness, and physical health measures with multimodal neuroimaging markers. In 50 12-year old school pupils (26 females), we acquired multimodal whole-brain MRI, characterizing brain structure, microstructure, function, myelin content, and blood perfusion. We also acquired physical variables measuring objective fitness levels, 7 d physical activity, body mass index, heart rate, and blood pressure. Using canonical correlation analysis, we unravel a latent mode of brain-physical covariation, independent of demographics, school, or socioeconomic status. We show that MRI metrics with greater involvement in this mode also showed spatially extended patterns across the brain. Specifically, global patterns of greater gray matter perfusion, volume, cortical surface area, greater white matter extra-neurite density, and resting state networks activity covaried positively with measures reflecting a physically active phenotype (high fit, low sedentary individuals). Showing that a physically active lifestyle is linked with systems-level brain MRI metrics, these results suggest widespread associations relating to several biological processes. These results support the notion of close brain-body relationships and underline the importance of investigating modifiable lifestyle factors not only for physical health but also for brain health early in adolescence.SIGNIFICANCE STATEMENT An active lifestyle is key for healthy development. In this work, we answer the following question: How do brain neuroimaging markers relate with young adolescents' level of physical activity, fitness, and physical health? Combining advanced whole-brain multimodal MRI metrics with computational approaches, we show a robust relationship between physically active lifestyles and spatially extended, multimodal brain imaging-derived phenotypes. Suggesting a wider effect on brain neuroimaging metrics than previously thought, this work underlies the importance of studying physical lifestyle, as well as other brain-body relationships in an effort to foster brain health at this crucial stage in development.
Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Ejercicio Físico/fisiología , Estilo de Vida Saludable/fisiología , Imagen Multimodal/métodos , Acelerometría/métodos , Acelerometría/tendencias , Adolescente , Niño , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Imagen por Resonancia Magnética/tendencias , Masculino , Imagen Multimodal/tendenciasRESUMEN
In the mature human brain, the neural processing related to different body parts is reflected in patterns of functional connectivity, which is strongest between functional homologs in opposite cortical hemispheres. To understand how this organization is first established, we investigated functional connectivity between limb regions in the sensorimotor cortex in 400 preterm and term infants aged across the equivalent period to the third trimester of gestation (32-45 weeks postmenstrual age). Masks were obtained from empirically derived functional responses in neonates from an independent data set. We demonstrate the early presence of a crude but spatially organized functional connectivity, that rapidly matures across the preterm period to achieve an adult-like configuration by the normal time of birth. Specifically, connectivity was strongest between homolog regions, followed by connectivity between adjacent regions (different limbs but same hemisphere) already in the preterm brain, and increased with age. These changes were specific to the sensorimotor network. Crucially, these trajectories were strongly dependent on age more than age of birth. This demonstrates that during the perinatal period the sensorimotor cortex undergoes preprogrammed changes determining the functional movement organization that are not altered by preterm birth in absence of brain injury.
Asunto(s)
Nacimiento Prematuro , Corteza Sensoriomotora , Adulto , Encéfalo/fisiología , Mapeo Encefálico , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Corteza Sensoriomotora/diagnóstico por imagenRESUMEN
The Developing Human Connectome Project is an Open Science project that provides the first large sample of neonatal functional MRI data with high temporal and spatial resolution. These data enable mapping of intrinsic functional connectivity between spatially distributed brain regions under normal and adverse perinatal circumstances, offering a framework to study the ontogeny of large-scale brain organization in humans. Here, we characterize in unprecedented detail the maturation and integrity of resting state networks (RSNs) at term-equivalent age in 337 infants (including 65 born preterm). First, we applied group independent component analysis to define 11 RSNs in term-born infants scanned at 43.5-44.5 weeks postmenstrual age (PMA). Adult-like topography was observed in RSNs encompassing primary sensorimotor, visual and auditory cortices. Among six higher-order, association RSNs, analogues of the adult networks for language and ocular control were identified, but a complete default mode network precursor was not. Next, we regressed the subject-level datasets from an independent cohort of infants scanned at 37-43.5 weeks PMA against the group-level RSNs to test for the effects of age, sex and preterm birth. Brain mapping in term-born infants revealed areas of positive association with age across four of six association RSNs, indicating active maturation in functional connectivity from 37 to 43.5 weeks PMA. Female infants showed increased connectivity in inferotemporal regions of the visual association network. Preterm birth was associated with striking impairments of functional connectivity across all RSNs in a dose-dependent manner; conversely, connectivity of the superior parietal lobules within the lateral motor network was abnormally increased in preterm infants, suggesting a possible mechanism for specific difficulties such as developmental coordination disorder, which occur frequently in preterm children. Overall, we found a robust, modular, symmetrical functional brain organization at normal term age. A complete set of adult-equivalent primary RSNs is already instated, alongside emerging connectivity in immature association RSNs, consistent with a primary-to-higher order ontogenetic sequence of brain development. The early developmental disruption imposed by preterm birth is associated with extensive alterations in functional connectivity.
Asunto(s)
Encéfalo/anatomía & histología , Conectoma , Red Nerviosa/anatomía & histología , Vías Nerviosas/anatomía & histología , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Imagen por Resonancia Magnética , Masculino , Neurogénesis/fisiologíaRESUMEN
INTRODUCTION: The dynamic nature and complexity of the cellular events that take place during the last trimester of pregnancy make the developing cortex particularly vulnerable to perturbations. Abrupt interruption to normal gestation can lead to significant deviations to many of these processes, resulting in atypical trajectory of cortical maturation in preterm birth survivors. METHODS: We sought to first map typical cortical micro- and macrostructure development using invivo MRI in a large sample of healthy term-born infants scanned after birth (n = 259). Then we offer a comprehensive characterization of the cortical consequences of preterm birth in 76 preterm infants scanned at term-equivalent age (37-44 weeks postmenstrual age). We describe the group-average atypicality, the heterogeneity across individual preterm infants, and relate individual deviations from normative development to age at birth and neurodevelopment at 18 months. RESULTS: In the term-born neonatal brain, we observed heterogeneous and regionally specific associations between age at scan and measures of cortical morphology and microstructure, including rapid surface expansion, greater cortical thickness, lower cortical anisotropy and higher neurite orientation dispersion. By term-equivalent age, preterm infants had on average increased cortical tissue water content and reduced neurite density index in the posterior parts of the cortex, and greater cortical thickness anteriorly compared to term-born infants. While individual preterm infants were more likely to show extreme deviations (over 3.1 standard deviations) from normative cortical maturation compared to term-born infants, these extreme deviations were highly variable and showed very little spatial overlap between individuals. Measures of regional cortical development were associated with age at birth, but not with neurodevelopment at 18 months. CONCLUSION: We showed that preterm birth alters cortical micro- and macrostructural maturation near the time of full-term birth. Deviations from normative development were highly variable between individual preterm infants.
Asunto(s)
Corteza Cerebral/crecimiento & desarrollo , Recien Nacido Prematuro/crecimiento & desarrollo , Imagen por Resonancia Magnética/métodos , Nacimiento Prematuro/diagnóstico por imagen , Anisotropía , Encéfalo/crecimiento & desarrollo , Grosor de la Corteza Cerebral , Femenino , Edad Gestacional , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Tercer Trimestre del EmbarazoRESUMEN
Premature birth occurs during a period of rapid brain growth. In this context, interpreting clinical neuroimaging can be complicated by the typical changes in brain contrast, size and gyrification occurring in the background to any pathology. To model and describe this evolving background in brain shape and contrast, we used a Bayesian regression technique, Gaussian process regression, adapted to multiple correlated outputs. Using MRI, we simultaneously estimated brain tissue intensity on T1- and T2-weighted scans as well as local tissue shape in a large cohort of 408 neonates scanned cross-sectionally across the perinatal period. The resulting model provided a continuous estimate of brain shape and intensity, appropriate to age at scan, degree of prematurity and sex. Next, we investigated the clinical utility of this model to detect focal white matter injury. In individual neonates, we calculated deviations of a neonate's observed MRI from that predicted by the model to detect punctate white matter lesions with very good accuracy (area under the curve > 0.95). To investigate longitudinal consistency of the model, we calculated model deviations in 46 neonates who were scanned on a second occasion. These infants' voxelwise deviations from the model could be used to identify them from the other 408 images in 83% (T2-weighted) and 76% (T1-weighted) of cases, indicating an anatomical fingerprint. Our approach provides accurate estimates of non-linear changes in brain tissue intensity and shape with clear potential for radiological use.
Asunto(s)
Lesiones Encefálicas/patología , Encéfalo/crecimiento & desarrollo , Nacimiento Prematuro/patología , Sustancia Blanca/patología , Encéfalo/patología , Estudios de Cohortes , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Lactante , Recién Nacido , Recien Nacido Prematuro , Estudios Longitudinales , Neuroimagen/métodos , Embarazo , Sustancia Blanca/crecimiento & desarrolloRESUMEN
Recent work has highlighted the scale and ubiquity of subject variability in observations from functional MRI data (fMRI). Furthermore, it is highly likely that errors in the estimation of either the spatial presentation of, or the coupling between, functional regions can confound cross-subject analyses, making accurate and unbiased representations of functional data essential for interpreting any downstream analyses. Here, we extend the framework of probabilistic functional modes (PFMs) (Harrison et al., 2015) to capture cross-subject variability not only in the mode spatial maps, but also in the functional coupling between modes and in mode amplitudes. A new implementation of the inference now also allows for the analysis of modern, large-scale data sets, and the combined inference and analysis package, PROFUMO, is available from git.fmrib.ox.ac.uk/samh/profumo. A new implementation of the inference now also allows for the analysis of modern, large-scale data sets. Using simulated data, resting-state data from 1000 subjects collected as part of the Human Connectome Project (Van Essen et al., 2013), and an analysis of 14 subjects in a variety of continuous task-states (Kieliba et al., 2019), we demonstrate how PFMs are able to capture, within a single model, a rich description of how the spatio-temporal structure of resting-state fMRI activity varies across subjects. We also compare the new PFM model to the well established independent component analysis with dual regression (ICA-DR) pipeline. This reveals that, under PFM assumptions, much more of the (behaviorally relevant) cross-subject variability in fMRI activity should be attributed to the variability in spatial maps, and that, after accounting for this, functional coupling between modes primarily reflects current cognitive state. This has fundamental implications for the interpretation of cross-sectional studies of functional connectivity that do not capture cross-subject variability to the same extent as PFMs.
Asunto(s)
Mapeo Encefálico , Encéfalo/patología , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Algoritmos , Conectoma , Estudios Transversales , Humanos , Procesamiento de Imagen Asistido por Computador/métodosRESUMEN
The developing Human Connectome Project (dHCP) aims to create a detailed 4-dimensional connectome of early life spanning 20-45 weeks post-menstrual age. This is being achieved through the acquisition of multi-modal MRI data from over 1000 in- and ex-utero subjects combined with the development of optimised pre-processing pipelines. In this paper we present an automated and robust pipeline to minimally pre-process highly confounded neonatal resting-state fMRI data, robustly, with low failure rates and high quality-assurance. The pipeline has been designed to specifically address the challenges that neonatal data presents including low and variable contrast and high levels of head motion. We provide a detailed description and evaluation of the pipeline which includes integrated slice-to-volume motion correction and dynamic susceptibility distortion correction, a robust multimodal registration approach, bespoke ICA-based denoising, and an automated QC framework. We assess these components on a large cohort of dHCP subjects and demonstrate that processing refinements integrated into the pipeline provide substantial reduction in movement related distortions, resulting in significant improvements in SNR, and detection of high quality RSNs from neonates.
Asunto(s)
Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Artefactos , Humanos , Lactante , Relación Señal-RuidoRESUMEN
The Third Modeling Workshop focusing on bioprocess modeling was held in Kenilworth, NJ in May 2019. A summary of these Workshop proceedings is captured in this manuscript. Modeling is an active area of research within the biotechnology community, and there is a critical need to assess the current state and opportunities for continued investment to realize the full potential of models, including resource and time savings. Beyond individual presentations and topics of novel interest, a substantial portion of the Workshop was devoted toward group discussions of current states and future directions in modeling fields. All scales of modeling, from biophysical models at the molecular level and up through large scale facility and plant modeling, were considered in these discussions and are summarized in the manuscript. Model life cycle management from model development to implementation and sustainment are also considered for different stages of clinical development and commercial production. The manuscript provides a comprehensive overview of bioprocess modeling while suggesting an ideal future state with standardized approaches aligned across the industry.
Asunto(s)
Biotecnología , Simulación por Computador , Modelos TeóricosRESUMEN
The infant brain is unlike the adult brain, with considerable differences in morphological, neurodynamic, and haemodynamic features. As the majority of current MRI analysis tools were designed for use in adults, a primary objective of the Developing Human Connectome Project (dHCP) is to develop optimised methodological pipelines for the analysis of neonatal structural, resting state, and diffusion MRI data. Here, in an independent neonatal dataset we have extended and optimised the dHCP fMRI preprocessing pipeline for the analysis of stimulus-response fMRI data. We describe and validate this extended dHCP fMRI preprocessing pipeline to analyse changes in brain activity evoked following an acute noxious stimulus applied to the infant's foot. We compare the results obtained from this extended dHCP pipeline to results obtained from a typical FSL FEAT-based analysis pipeline, evaluating the pipelines' outputs using a wide range of tests. We demonstrate that a substantial increase in spatial specificity and sensitivity to signal can be attained with a bespoke neonatal preprocessing pipeline through optimised motion and distortion correction, ICA-based denoising, and haemodynamic modelling. The improved sensitivity and specificity, made possible with this extended dHCP pipeline, will be paramount in making further progress in our understanding of the development of sensory processing in the infant brain.
Asunto(s)
Encéfalo/fisiología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Nocicepción/fisiología , Artefactos , Femenino , Edad Gestacional , Humanos , Recién Nacido , Masculino , Estimulación Física , Programas InformáticosRESUMEN
Diffusion MRI data can be affected by hardware and subject-related artefacts that can adversely affect downstream analyses. Therefore, automated quality control (QC) is of great importance, especially in large population studies where visual QC is not practical. In this work, we introduce an automated diffusion MRI QC framework for single subject and group studies. The QC is based on a comprehensive, non-parametric approach for movement and distortion correction: FSL EDDY, which allows us to extract a rich set of QC metrics that are both sensitive and specific to different types of artefacts. Two different tools are presented: QUAD (QUality Assessment for DMRI), for single subject QC and SQUAD (Study-wise QUality Assessment for DMRI), which is designed to enable group QC and facilitate cross-studies harmonisation efforts.
Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Imagen de Difusión por Resonancia Magnética , Procesamiento de Imagen Asistido por Computador/métodos , Artefactos , Imagen de Difusión Tensora , Femenino , Humanos , Masculino , Control de Calidad , Reproducibilidad de los Resultados , Relación Señal-RuidoRESUMEN
The developing Human Connectome Project is set to create and make available to the scientific community a 4-dimensional map of functional and structural cerebral connectivity from 20 to 44 weeks post-menstrual age, to allow exploration of the genetic and environmental influences on brain development, and the relation between connectivity and neurocognitive function. A large set of multi-modal MRI data from fetuses and newborn infants is currently being acquired, along with genetic, clinical and developmental information. In this overview, we describe the neonatal diffusion MRI (dMRI) image processing pipeline and the structural connectivity aspect of the project. Neonatal dMRI data poses specific challenges, and standard analysis techniques used for adult data are not directly applicable. We have developed a processing pipeline that deals directly with neonatal-specific issues, such as severe motion and motion-related artefacts, small brain sizes, high brain water content and reduced anisotropy. This pipeline allows automated analysis of in-vivo dMRI data, probes tissue microstructure, reconstructs a number of major white matter tracts, and includes an automated quality control framework that identifies processing issues or inconsistencies. We here describe the pipeline and present an exemplar analysis of data from 140 infants imaged at 38-44 weeks post-menstrual age.
Asunto(s)
Encéfalo/diagnóstico por imagen , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Recién Nacido , Encéfalo/crecimiento & desarrollo , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , MasculinoRESUMEN
We propose a method for constructing a spatio-temporal cortical surface atlas of neonatal brains aged between 36 and 44 weeks of post-menstrual age (PMA) at the time of scan. The data were acquired as part of the Developing Human Connectome Project (dHCP), and the constructed surface atlases are publicly available. The method is based on a spherical registration approach: Multimodal Surface Matching (MSM), using cortical folding for driving the alignment. Templates have been generated for the anatomical cortical surface and for the cortical feature maps: sulcal depth, curvature, thickness, T1w/T2w myelin maps and cortical regions. To achieve this, cortical surfaces from 270 infants were first projected onto the sphere. Templates were then generated in two stages: first, a reference space was initialised via affine alignment to a group average adult template. Following this, templates were iteratively refined through repeated alignment of individuals to the template space until the variability of the average feature sets converged. Finally, bias towards the adult reference was removed by applying the inverse of the average affine transformations on the template and de-drifting the template. We used temporal adaptive kernel regression to produce age-dependant atlases for 9 weeks (36-44 weeks PMA). The generated templates capture expected patterns of cortical development including an increase in gyrification as well as an increase in thickness and T1w/T2w myelination with increasing age.
Asunto(s)
Atlas como Asunto , Corteza Cerebral/anatomía & histología , Conectoma/métodos , Recién Nacido , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia MagnéticaRESUMEN
The Developing Human Connectome Project (dHCP) seeks to create the first 4-dimensional connectome of early life. Understanding this connectome in detail may provide insights into normal as well as abnormal patterns of brain development. Following established best practices adopted by the WU-MINN Human Connectome Project (HCP), and pioneered by FreeSurfer, the project utilises cortical surface-based processing pipelines. In this paper, we propose a fully automated processing pipeline for the structural Magnetic Resonance Imaging (MRI) of the developing neonatal brain. This proposed pipeline consists of a refined framework for cortical and sub-cortical volume segmentation, cortical surface extraction, and cortical surface inflation, which has been specifically designed to address considerable differences between adult and neonatal brains, as imaged using MRI. Using the proposed pipeline our results demonstrate that images collected from 465 subjects ranging from 28 to 45 weeks post-menstrual age (PMA) can be processed fully automatically; generating cortical surface models that are topologically correct, and correspond well with manual evaluations of tissue boundaries in 85% of cases. Results improve on state-of-the-art neonatal tissue segmentation models and significant errors were found in only 2% of cases, where these corresponded to subjects with high motion. Downstream, these surfaces will enhance comparisons of functional and diffusion MRI datasets, supporting the modelling of emerging patterns of brain connectivity.
Asunto(s)
Encéfalo/anatomía & histología , Conectoma/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Femenino , Humanos , Recién Nacido , Imagen por Resonancia Magnética/métodos , MasculinoRESUMEN
We present a practical "how-to" guide to help determine whether single-subject fMRI independent components (ICs) characterise structured noise or not. Manual identification of signal and noise after ICA decomposition is required for efficient data denoising: to train supervised algorithms, to check the results of unsupervised ones or to manually clean the data. In this paper we describe the main spatial and temporal features of ICs and provide general guidelines on how to evaluate these. Examples of signal and noise components are provided from a wide range of datasets (3T data, including examples from the UK Biobank and the Human Connectome Project, and 7T data), together with practical guidelines for their identification. Finally, we discuss how the data quality, data type and preprocessing can influence the characteristics of the ICs and present examples of particularly challenging datasets.
Asunto(s)
Encéfalo/diagnóstico por imagen , Neuroimagen Funcional/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adulto , Niño , HumanosRESUMEN
The volume fraction of red blood cells (RBCs) in a capillary affects the degree to which platelets are promoted to marginate to near a vessel wall and form blood clots. In this work we investigate the relationship between RBC hematocrit and platelet adhesion activity. We perform experiments flowing blood samples through a microfluidic channel coated with type 1 collagen and observe the rate at which platelets adhere to the wall. We compare these results with three-dimensional boundary integral simulations of a suspension of RBCs and platelets in a periodic channel where platelets can adhere to the wall. In both cases, we find that the rate of platelet adhesion varies greatly with the RBC hematocrit. We observe that the relative decrease in platelet activity as hematocrit falls shows a similar profile for simulation and experiment.