Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34312224

RESUMEN

Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Factores de Transcripción Forkhead/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Linfocitos T Reguladores/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proliferación Celular , Supervivencia Celular , Clonación Molecular , Factores de Transcripción Forkhead/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/inmunología , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Terapia de Inmunosupresión , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Quinazolinas/farmacología , Transducción de Señal , Tiofenos/farmacología , Ubiquitina-Proteína Ligasas/genética
2.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685903

RESUMEN

Phospholipase C (PLC) enzymes represent crucial participants in the plasma membrane of mammalian cells, including the cardiac sarcolemmal (SL) membrane of cardiomyocytes. They are responsible for the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) into 1,2-diacylglycerol (DAG) and inositol (1,4,5) trisphosphate (Ins(1,4,5)P3), both essential lipid mediators. These second messengers regulate the intracellular calcium (Ca2+) concentration, which activates signal transduction cascades involved in the regulation of cardiomyocyte activity. Of note, emerging evidence suggests that changes in cardiomyocytes' phospholipid profiles are associated with an increased occurrence of cardiovascular diseases, but the underlying mechanisms are still poorly understood. This review aims to provide a comprehensive overview of the significant impact of PLC on the cardiovascular system, encompassing both physiological and pathological conditions. Specifically, it focuses on the relevance of PLCß isoforms as potential cardiac biomarkers, due to their implications for pathological disorders, such as cardiac hypertrophy, diabetic cardiomyopathy, and myocardial ischemia/reperfusion injury. Gaining a deeper understanding of the mechanisms underlying PLCß activation and regulation is crucial for unraveling the complex signaling networks involved in healthy and diseased myocardium. Ultimately, this knowledge holds significant promise for advancing the development of potential therapeutic strategies that can effectively target and address cardiac disorders by focusing on the PLCß subfamily.


Asunto(s)
Cardiopatías , Isoenzimas , Animales , Humanos , Fosfolipasa C beta , Miocitos Cardíacos , Biomarcadores , Mamíferos
4.
Handb Exp Pharmacol ; 259: 291-308, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31889219

RESUMEN

Nuclear inositides have a specific subcellular distribution that is linked to specific functions; thus their regulation is fundamental both in health and disease. Emerging evidence shows that alterations in multiple inositide signalling pathways are involved in pathophysiology, not only in cancer but also in other diseases. Here, we give an overview of the main features of inositides in the cell, and we discuss their potential as new molecular therapeutic targets.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles/fisiología , Transducción de Señal , Humanos
5.
J Lipid Res ; 60(2): 312-317, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30287524

RESUMEN

Phosphoinositide-specific phospholipases C (PI-PLCs) are involved in signaling pathways related to critical cellular functions, such as cell cycle regulation, cell differentiation, and gene expression. Nuclear PI-PLCs have been studied as key enzymes, molecular targets, and clinical prognostic/diagnostic factors in many physiopathologic processes. Here, we summarize the main studies about nuclear PI-PLCs, specifically, the imbalance of isozymes such as PI-PLCß1 and PI-PLCζ, in cerebral, hematologic, neuromuscular, and fertility disorders. PI-PLCß1 and PI-PLCÉ£1 affect epilepsy, depression, and bipolar disorder. In the brain, PI-PLCß1 is involved in endocannabinoid neuronal excitability and is a potentially novel signature gene for subtypes of high-grade glioma. An altered quality or quantity of PI-PLCζ contributes to sperm defects that result in infertility, and PI-PLCß1 aberrant inositide signaling contributes to both hematologic and degenerative muscle diseases. Understanding the mechanisms behind PI-PLC involvement in human pathologies may help identify new strategies for personalized therapies of these conditions.


Asunto(s)
Encefalopatías/enzimología , Núcleo Celular/enzimología , Enfermedades Hematológicas/enzimología , Infertilidad/enzimología , Enfermedades Neuromusculares/enzimología , Fosfolipasas de Tipo C/metabolismo , Animales , Encefalopatías/patología , Enfermedades Hematológicas/patología , Humanos , Infertilidad/patología , Isoenzimas/metabolismo , Enfermedades Neuromusculares/patología
6.
Int J Mol Sci ; 20(9)2019 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-31035587

RESUMEN

Phosphatidylinositol (PI)-related signaling plays a pivotal role in many cellular aspects, including survival, cell proliferation, differentiation, DNA damage, and trafficking. PI is the core of a network of proteins represented by kinases, phosphatases, and lipases which are able to add, remove or hydrolyze PI, leading to different phosphoinositide products. Among the seven known phosphoinositides, phosphatidylinositol 5 phosphate (PI5P) was the last to be discovered. PI5P presence in cells is very low compared to other PIs. However, much evidence collected throughout the years has described the role of this mono-phosphoinositide in cell cycles, stress response, T-cell activation, and chromatin remodeling. Interestingly, PI5P has been found in different cellular compartments, including the nucleus. Here, we will review the nuclear role of PI5P, describing how it is synthesized and regulated, and how changes in the levels of this rare phosphoinositide can lead to different nuclear outputs.


Asunto(s)
Núcleo Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Animales , Humanos , Metabolismo de los Lípidos , Proteínas Nucleares/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Transducción de Señal , Estrés Fisiológico
7.
Int J Mol Sci ; 20(8)2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31022972

RESUMEN

Stem cells are undifferentiated cells that can give rise to several different cell types and can self-renew. Given their ability to differentiate into different lineages, stem cells retain huge therapeutic potential for regenerative medicine. Therefore, the understanding of the signaling pathways involved in stem cell pluripotency maintenance and differentiation has a paramount importance in order to understand these biological processes and to develop therapeutic strategies. In this review, we focus on phosphoinositide 3 kinase (PI3K) since its signaling pathway regulates many cellular processes, such as cell growth, proliferation, survival, and cellular transformation. Precisely, in human stem cells, the PI3K cascade is involved in different processes from pluripotency and induced pluripotent stem cell (iPSC) reprogramming to mesenchymal and oral mesenchymal differentiation, through different and interconnected mechanisms.


Asunto(s)
Diferenciación Celular , Reprogramación Celular , Células Madre Embrionarias Humanas/citología , Células Madre Pluripotentes Inducidas/citología , Células Madre Mesenquimatosas/citología , Fosfatidilinositol 3-Quinasa/metabolismo , Transducción de Señal , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Mesenquimatosas/metabolismo
8.
J Cell Physiol ; 232(9): 2550-2557, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27731506

RESUMEN

Phosphatidylinositol (PI) signaling is an essential regulator of cell motility and proliferation. A portion of PI metabolism and signaling takes place in the nuclear compartment of eukaryotic cells, where an array of kinases and phosphatases localize and modulate PI. Among these, Diacylglycerol Kinases (DGKs) are a class of phosphotransferases that phosphorylate diacylglycerol and induce the synthesis of phosphatidic acid. Nuclear DGKalpha modulates cell cycle progression, and its activity or expression can lead to changes in the phosphorylated status of the Retinoblastoma protein, thus, impairing G1/S transition and, subsequently, inducing cell cycle arrest, which is often uncoupled with apoptosis or autophagy induction. Here we report for the first time not only that the DGKalpha isoform is highly expressed in the nuclei of human erythroleukemia cell line K562, but also that its nuclear activity drives K562 cells through the G1/S transition during cell cycle progression. J. Cell. Physiol. 232: 2550-2557, 2017. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Núcleo Celular/enzimología , Proliferación Celular , Diacilglicerol Quinasa/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular , Leucemia Eritroblástica Aguda/enzimología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/patología , Proliferación Celular/efectos de los fármacos , Diacilglicerol Quinasa/antagonistas & inhibidores , Diacilglicerol Quinasa/genética , Relación Dosis-Respuesta a Droga , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Isoenzimas , Células K562 , Leucemia Eritroblástica Aguda/genética , Leucemia Eritroblástica Aguda/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Proteína de Retinoblastoma/metabolismo , Transducción de Señal , Factores de Tiempo , Transfección
9.
Biochim Biophys Acta ; 1851(6): 898-910, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25728392

RESUMEN

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated lipid kinases that phosphorylate PtdIns5P to generate PtdIns(4,5)P2. There are three isoforms of PIP4Ks: PIP4K2A, 2B and 2C, which localise to different subcellular compartments with the PIP4K2B isoform being localised predominantly in the nucleus. Suppression of PIP4K expression selectively prevents tumour cell growth in vitro and prevents tumour development in mice that have lost the tumour suppressor p53. p53 is lost or mutated in over 70% of all human tumours. These studies suggest that inhibition of PIP4K signalling constitutes a novel anti-cancer therapeutic target. In this review we will discuss the role of PIP4K in tumour suppression and speculate on how PIP4K modulates nuclear phosphoinositides (PPIns) and how this might impact on nuclear functions to regulate cell growth. This article is part of a Special Issue entitled Phosphoinositides.


Asunto(s)
1-Fosfatidilinositol 4-Quinasa/metabolismo , Núcleo Celular/enzimología , Regulación Leucémica de la Expresión Génica , Leucemia Mieloide Aguda/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , 1-Fosfatidilinositol 4-Quinasa/antagonistas & inhibidores , 1-Fosfatidilinositol 4-Quinasa/genética , Animales , Antineoplásicos/farmacología , Citoplasma/enzimología , Humanos , Isoenzimas/antagonistas & inhibidores , Isoenzimas/genética , Isoenzimas/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Ratones , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
10.
Adv Biol Regul ; 91: 101014, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242820

RESUMEN

Myelodysplastic Syndromes, a heterogeneous group of hematological disorders, are characterized by abnormalities in phosphoinositide-dependent signaling, epigenetic regulators, apoptosis, and cytokine interactions within the bone marrow microenvironment, contributing to disease pathogenesis and neoplastic growth. Comprehensive knowledge of these pathways is crucial for the development of innovative therapies that aim to restore normal apoptosis and improve patient outcomes.


Asunto(s)
Células Madre Hematopoyéticas , Síndromes Mielodisplásicos , Humanos , Células Madre Hematopoyéticas/metabolismo , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/metabolismo , Médula Ósea/patología , Citocinas/metabolismo , Transducción de Señal
11.
Curr Top Microbiol Immunol ; 362: 235-45, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23086421

RESUMEN

Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. A number of MDS progresses to acute myeloid leukemia (AML) with the involvement of genetic and epigenetic mechanisms affecting PI-PLC ß1. The molecular mechanisms underlying the MDS evolution to AML are still unclear, even though it is now clear that the nuclear signaling elicited by PI-PLC ß1, Cyclin D3, and Akt plays an important role in the control of the balance between cell cycle progression and apoptosis in both normal and pathologic conditions. Moreover, a correlation between other PI-PLCs, such as PI-PLC ß3, kinases and phosphatases has been postulated in MDS pathogenesis. Here, we review the findings hinting at the role of nuclear lipid signaling pathways in MDS, which could become promising therapeutic targets.


Asunto(s)
Núcleo Celular/enzimología , Síndromes Mielodisplásicos/etiología , Fosfatidilinositoles/metabolismo , Fosfolipasa C beta/fisiología , Epigenómica , Humanos , Transducción de Señal/fisiología
12.
FASEB J ; 26(1): 203-10, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21974932

RESUMEN

Type 2 diabetes is a heterogeneous disorder caused by concomitant impairment of insulin secretion by pancreatic ß cells and of insulin action in peripheral target tissues. Studies with inhibitors and agonists established a role for PLC in the regulation of insulin secretion but did not distinguish between effects due to nuclear or cytoplasmic PLC signaling pathways that act in a distinct fashion. We report that in MIN6 ß cells, PLCß1 localized in both nucleus and cytoplasm, PLCδ4 in the nucleus, and PLCγ1 in the cytoplasm. By silencing each isoform, we observed that they all affected glucose-induced insulin release both at basal and high glucose concentrations. To elucidate the molecular basis of PLC regulation, we focused on peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor transcription factor that regulates genes critical to ß-cell maintenance and functions. Silencing of PLCß1 and PLCδ4 resulted in a decrease in the PPARγ mRNA level. By means of a PPARγ-promoter-luciferase assay, the decrease could be attributed to a PLC action on the PPARγ-promoter region. The effect was specifically observed on silencing of the nuclear and not the cytoplasmic PLC. These findings highlight a novel pathway by which nuclear PLCs affect insulin secretion and identify PPARγ as a novel molecular target of nuclear PLCs.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , PPAR gamma/metabolismo , Fosfolipasa C beta/metabolismo , Fosfolipasa C delta/metabolismo , Fosfolipasa C gamma/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/enzimología , Citoplasma/enzimología , Diabetes Mellitus Tipo 2/metabolismo , Silenciador del Gen , Glucosa/farmacocinética , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/enzimología , Insulinoma , Ratones , Fosfolipasa C beta/genética , Fosfolipasa C delta/genética , Fosfolipasa C gamma/genética , Sistemas de Mensajero Secundario/fisiología
13.
FASEB J ; 26(7): 3042-8, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22459146

RESUMEN

Phosphoinositide-phospholipase C ß1 (PLCß1) plays a crucial role in the initiation of the genetic program responsible for muscle differentiation. We previously demonstrated that nuclear PLCß1 activates the cyclin D3 promoter during the differentiation of myoblasts to myotubes, indicating that PLCß1 is essential for cyclin D3 promoter activation and gene transcription, through c-jun/AP1. Myotonic dystrophy (DM) is the most prevalent form of muscular dystrophy in adults. DM type 1 (DM1) and type 2 (DM2) are dominantly inherited multisystem disorders. DM1 is triggered by the pathological expansion of a (CTG)(n) triplet repeat in the gene coding for DMPK, the dystrophia myotonica-protein kinase, whereas a (CCTG)(n) tetranucleotide repeat expansion in the ZNF9 gene, encoding a CCHC-type zinc finger protein, causes DM2. We found that, unlike in normal myotubes, the level of expression of PLCß1 in DM1 and DM2 cells was already elevated in proliferating cells. Treatment with insulin induced a dramatic decrease in the amount of PLCß1. During differentiation, cyclin D3 and myogenin were elevated in normal myotubes, whereas differentiating DM1 and DM2 cells did not increase these proteins. Forced expression of PLCß1 in DM1 and DM2 cells increased the expression of differentiation markers, myogenin and cyclin D3, and enhanced fusion of DM myoblasts. These results highlight again that PLCß1 expression is a key player in myoblast differentiation, functioning as a positive regulator in the correction of delayed differentiation of skeletal muscle in DM human myoblasts.


Asunto(s)
Trastornos Miotónicos/enzimología , Trastornos Miotónicos/genética , Distrofia Miotónica/enzimología , Distrofia Miotónica/genética , Fosfolipasa C beta/genética , Fosfolipasa C beta/metabolismo , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Células Cultivadas , Ciclina D3/genética , Ciclina D3/metabolismo , Perfilación de la Expresión Génica , Humanos , Insulina/farmacología , Fibras Musculares Esqueléticas/enzimología , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Mioblastos Esqueléticos/efectos de los fármacos , Mioblastos Esqueléticos/enzimología , Mioblastos Esqueléticos/patología , Miogenina/genética , Miogenina/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transfección , Regulación hacia Arriba
14.
Subcell Biochem ; 59: 335-61, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22374096

RESUMEN

Lipid signalling in human disease is an important field of investigation and stems from the fact that phosphoinositide signalling has been implicated in the control of nearly all the important cellular pathways including metabolism, cell cycle control, membrane trafficking, apoptosis and neuronal conduction. A distinct nuclear inositide signalling metabolism has been identified, thus defining a new role for inositides in the nucleus, which are now considered essential co-factors for several nuclear processes, including DNA repair, transcription regulation, and RNA dynamics. Deregulation of phoshoinositide metabolism within the nuclear compartment may contribute to disease progression in several disorders, such as chronic inflammation, cancer, metabolic, and degenerative syndromes. In order to utilize these very druggable pathways for human benefit there is a need to identify how nuclear inositides are regulated specifically within this compartment and what downstream nuclear effectors process and integrate inositide signalling cascades in order to specifically control nuclear function. Here we describe some of the facets of nuclear inositide metabolism with a focus on their relationship to cell cycle control and differentiation.


Asunto(s)
Núcleo Celular/metabolismo , Síndromes Mielodisplásicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfolipasa C beta/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte Biológico , Ciclo Celular/genética , Diferenciación Celular , Regulación de la Expresión Génica , Humanos , Inflamación/genética , Inflamación/metabolismo , Inflamación/patología , Síndromes Mielodisplásicos/genética , Síndromes Mielodisplásicos/patología , Fosfatidilinositol 3-Quinasas/genética , Fosfolipasa C beta/genética , Monoéster Fosfórico Hidrolasas/genética , Transducción de Señal
15.
Biomolecules ; 13(7)2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37509085

RESUMEN

Polyphosphoinositides (PPIns) are signalling messengers representing less than five per cent of the total phospholipid concentration within the cell. Despite their low concentration, these lipids are critical regulators of various cellular processes, including cell cycle, differentiation, gene transcription, apoptosis and motility. PPIns are generated by the phosphorylation of the inositol head group of phosphatidylinositol (PtdIns). Different pools of PPIns are found at distinct subcellular compartments, which are regulated by an array of kinases, phosphatases and phospholipases. Six of the seven PPIns species have been found in the nucleus, including the nuclear envelope, the nucleoplasm and the nucleolus. The identification and characterisation of PPIns interactor and effector proteins in the nucleus have led to increasing interest in the role of PPIns in nuclear signalling. However, the regulation and functions of PPIns in the nucleus are complex and are still being elucidated. This review summarises our current understanding of the localisation, biogenesis and physiological functions of the different PPIns species in the nucleus.


Asunto(s)
Núcleo Celular , Fosfatidilinositoles , Fosfatidilinositoles/metabolismo , Núcleo Celular/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Nucléolo Celular/metabolismo , Membrana Nuclear/metabolismo
16.
Mol Cell Proteomics ; 9(12): 2719-28, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20923971

RESUMEN

Recent data indicate that some PKC isoforms are translocated to the nucleus, in response to certain stimuli, where they play an important role in nuclear signaling events. To identify novel interacting proteins of conventional PKC (cPKC) at the nuclear level during myogenesis and to find new PKC isozyme-specific phosphosubstrates, we performed a proteomics analysis of immunoprecipitated nuclear samples from mouse myoblast C2C12 cells following insulin administration. Using a phospho(Ser)-PKC substrate antibody, specific interacting proteins were identified by LC-MS/MS spectrometry. A total of 16 proteins with the exact and complete motif recognized by the phospho-cPKC substrate antibody were identified; among these, particular interest was given to eukaryotic elongation factor 1α (eEF1A). Nuclear eEF1A was focalized in the nucleoli, and its expression was observed to increase following insulin treatment. Of the cPKC isoforms, only PKCßI was demonstrated to be expressed in the nucleus of C2C12 myocytes and to co-immunoprecipitate with eEF1A. In-depth analysis using site-directed mutagenesis revealed that PKCßI could phosphorylate Ser5³ of the eEF1A2 isoform and that the association between eEF1A2 and PKCßI was dependent on the phosphorylation status of eEF1A2.


Asunto(s)
Núcleo Celular/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Músculos/efectos de los fármacos , Proteína Quinasa C/metabolismo , Serina/metabolismo , Animales , Secuencia de Bases , Línea Celular , Cromatografía Liquida , Cartilla de ADN , Electroforesis en Gel de Poliacrilamida , Ratones , Músculos/citología , Músculos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Reacción en Cadena de la Polimerasa , Proteína Quinasa C beta , Especificidad por Sustrato , Espectrometría de Masas en Tándem , Transcripción Genética
17.
Biomolecules ; 12(3)2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35327539

RESUMEN

Renal failure is a worldwide disease with a continuously increasing prevalence and involving a rising need for long-term treatment, mainly by haemodialysis. Arteriovenous fistula (AVF) is the favourite type of vascular access for haemodialysis; however, the lasting success of this therapy depends on its maturation, which is directly influenced by many concomitant processes such as vein wall thickening or inflammation. Understanding the molecular mechanisms that drive AVF maturation and failure can highlight new or combinatorial drugs for more personalized therapy. In this review we analysed the relevance of critical enzymes such as PI3K, AKT and mTOR in processes such as wall thickening remodelling, immune system activation and inflammation reduction. We focused on these enzymes due to their involvement in the modulation of numerous cellular activities such as proliferation, differentiation and motility, and their impairment is related to many diseases such as cancer, metabolic syndrome and neurodegenerative disorders. In addition, these enzymes are highly druggable targets, with several inhibitors already being used in patient treatment for cancer and with encouraging results for AVF. Finally, we delineate how these enzymes may be targeted to control specific aspects of AVF in an effort to propose a more specialized therapy with fewer side effects.


Asunto(s)
Fístula Arteriovenosa , Derivación Arteriovenosa Quirúrgica , Fallo Renal Crónico , Fístula Arteriovenosa/etiología , Derivación Arteriovenosa Quirúrgica/efectos adversos , Derivación Arteriovenosa Quirúrgica/métodos , Femenino , Humanos , Inflamación/etiología , Fallo Renal Crónico/terapia , Masculino , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Serina-Treonina Quinasas TOR
18.
J Cell Physiol ; 226(1): 14-20, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20658523

RESUMEN

Nuclear inositide signaling is nowadays a well-established issue and a growing field of investigation, even though the very first evidence came out at the end of the 1980's. The understanding of its biological role is supported by the recent acquisitions dealing with pathology and namely hematological malignancies. Here, we review this issue highlighting the main achievements in the last years.


Asunto(s)
Núcleo Celular/fisiología , Síndromes Mielodisplásicos/fisiopatología , Fosfatidilinositoles/metabolismo , Transducción de Señal/fisiología , Animales , Transporte Biológico , Regulación de la Expresión Génica
19.
Crit Rev Eukaryot Gene Expr ; 21(3): 291-301, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22111715

RESUMEN

Inositol lipids are key regulators of several cellular functions. The identification of an independent nuclear polyphosphoinositides signaling machinery has led the way to find new roles for these molecules. PI-PLC-ß1 is the most extensively studied PLC isoform in the nuclear compartment and a key player in the regulation of nuclear lipid signaling. Nuclear PI-PLC-ß1 is involved in cell cycle progression and differentiation in response to growth factor stimulation. A growing body of evidence has demonstrated that nuclear phosphoinositides are also involved in cancer cell generation, proliferation, and resistance to apoptosis. Evidence on ex vivo human cancer cells from patients with myelodysplastic syndromes (MDS) confirmed these observations, suggesting the involvement of PI-PLC-ß1 both in the pathogenesis of the disease and in the progression of MDS to acute myeloid leukemia. These studies have offered new targets for the development of novel therapeutic strategies as well as new prognostic tools.


Asunto(s)
Neoplasias/metabolismo , Fosfolipasas de Tipo C/metabolismo , Ciclo Celular , Núcleo Celular/metabolismo , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/genética
20.
Front Oncol ; 11: 678824, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34109125

RESUMEN

Polyphosphoinositides (PPIns) and their modulating enzymes are involved in regulating many important cellular functions including proliferation, differentiation or gene expression, and their deregulation is involved in human diseases such as metabolic syndromes, neurodegenerative disorders and cancer, including Acute Myeloid Leukemia (AML). Given that PPIns regulating enzymes are highly druggable targets, several studies have recently highlighted the potential of targeting them in AML. For instance many inhibitors targeting the PI3K pathway are in various stages of clinical development and more recently other novel enzymes such as PIP4K2A have been implicated as AML targets. PPIns have distinct subcellular organelle profiles, in part driven by the specific localisation of enzymes that metabolise them. In particular, in the nucleus, PPIns are regulated in response to various extracellular and intracellular pathways and interact with specific nuclear proteins to control epigenetic cell state. While AML does not normally manifest with as many mutations as other cancers, it does appear in large part to be a disease of dysregulation of epigenetic signalling and many novel therapeutics are aimed at reprogramming AML cells toward a differentiated cell state or to one that is responsive to alternative successful but limited AML therapies such as ATRA. Here, we propose that by combining bioinformatic analysis with inhibition of PPIns pathways, especially within the nucleus, we might discover new combination therapies aimed at reprogramming transcriptional output to attenuate uncontrolled AML cell growth. Furthermore, we outline how different part of a PPIns signalling unit might be targeted to control selective outputs that might engender more specific and therefore less toxic inhibitory outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA