Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Pharmacol Rev ; 75(6): 1233-1318, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37586884

RESUMEN

The NR superfamily comprises 48 transcription factors in humans that control a plethora of gene network programs involved in a wide range of physiologic processes. This review will summarize and discuss recent progress in NR biology and drug development derived from integrating various approaches, including biophysical techniques, structural studies, and translational investigation. We also highlight how defective NR signaling results in various diseases and disorders and how NRs can be targeted for therapeutic intervention via modulation via binding to synthetic lipophilic ligands. Furthermore, we also review recent studies that improved our understanding of NR structure and signaling. SIGNIFICANCE STATEMENT: Nuclear receptors (NRs) are ligand-regulated transcription factors that are critical regulators of myriad physiological processes. NRs serve as receptors for an array of drugs, and in this review, we provide an update on recent research into the roles of these drug targets.


Asunto(s)
Farmacología Clínica , Humanos , Receptores Citoplasmáticos y Nucleares/metabolismo , Factores de Transcripción/metabolismo , Proteínas Portadoras , Ligandos
2.
Mo Med ; 118(5): 466-472, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34658442

RESUMEN

The leading cause blindness is the loss of retinal ganglion cells which connect the retina to the brain. Degenerative retinal diseases include retinal dystrophy, macular degeneration and diabetic retinopathy, which are currently incurable as the mammalian retina has no intrinsic regenerative capacity. By utilizing insight gained from retinal regeneration in simpler species we define an approach that may unlock regenerative programs in the mammalian retina that potentially facilitate the clinical restoration of retinal function.


Asunto(s)
Degeneración Retiniana , Humanos , Degeneración Retiniana/terapia
3.
Cell Commun Signal ; 17(1): 151, 2019 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-31744502

RESUMEN

Following publication of the original article [1], it was reported that Fig. 1c was not entirely readable due to overlapping Fig. 1d. The publishers apologise for this error.

4.
Cell Commun Signal ; 17(1): 131, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31638999

RESUMEN

BACKGROUND: Metabolic reprogramming is one of the hallmarks of cancer which favours rapid energy production, biosynthetic capabilities and therapy resistance. In our previous study, we showed bitter melon extract (BME) prevents carcinogen induced mouse oral cancer. RNA sequence analysis from mouse tongue revealed a significant modulation in "Metabolic Process" by altering glycolysis and lipid metabolic pathways in BME fed group as compared to cancer group. In present study, we evaluated the effect of BME on glycolysis and lipid metabolism pathways in human oral cancer cells. METHODS: Cal27 and JHU022 cells were treated with BME. RNA and protein expression were analysed for modulation of glycolytic and lipogenesis genes by quantitative real-time PCR, western blot analyses and immunofluorescence. Lactate and pyruvate level was determined by GC/MS. Extracellular acidification and glycolytic rate were measured using the Seahorse XF analyser. Shotgun lipidomics in Cal27 and JHU022 cell lines following BME treatment was performed by ESI/ MS. ROS was measured by FACS. RESULTS: Treatment with BME on oral cancer cell lines significantly reduced mRNA and protein expression levels of key glycolytic genes SLC2A1 (GLUT-1), PFKP, LDHA, PKM and PDK3. Pyruvate and lactate levels and glycolysis rate were reduced in oral cancer cells following BME treatment. In lipogenesis pathway, we observed a significant reduction of genes involves in fatty acid biogenesis, ACLY, ACC1 and FASN, at the mRNA and protein levels following BME treatment. Further, BME treatment significantly reduced phosphatidylcholine, phosphatidylethanolamine, and plasmenylethanolamine, and reduced iPLA2 activity. Additionally, BME treatment inhibited lipid raft marker flotillin expression and altered its subcellular localization. ER-stress associated CHOP expression and generation of mitochondrial reactive oxygen species were induced by BME, which facilitated apoptosis. CONCLUSION: Our study revealed that bitter melon extract inhibits glycolysis and lipid metabolism and induces ER and oxidative stress-mediated cell death in oral cancer. Thus, BME-mediated metabolic reprogramming of oral cancer cells will have important preventive and therapeutic implications along with conventional therapies.


Asunto(s)
Antineoplásicos/farmacología , Glucólisis/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Momordica charantia/química , Neoplasias de la Boca/patología , Extractos Vegetales/farmacología , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias de la Boca/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción CHOP/metabolismo
5.
Phys Biol ; 14(4): 045002, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28586319

RESUMEN

Muscle is primarily known for its mechanical roles in locomotion, maintenance of posture, and regulation of cardiac and respiratory function. There are numerous medical conditions that adversely affect muscle, myopathies that disrupt muscle development, regeneration and protein turnover to detrimental effect. Skeletal muscle is also a vital secretory organ that regulates thermogenesis, inflammatory signaling and directs context specific global metabolic changes in energy substrate preference on a daily basis. Myopathies differ in the causative factors that drive them but share common features including severe reduction in quality of life and significantly increased mortality all due irrefutably to the loss of muscle mass. Thus far clinically viable approaches for preserving muscle proteins and stimulating new muscle growth without unwanted side effects or limited efficacy has been elusive. Over the last few decades, evidence has emerged through in vitro and in vivo studies that suggest the nuclear receptors REV-ERB and ROR might modulate pathways involved in myogenesis and mitochondrial biogenesis. Hinting that REV-ERB and ROR might be targeted to treat myopathies. However there is still a need for substantial investigation into the roles of these nuclear receptors in in vivo rodent models of degenerative muscle diseases and acute injury. Although exciting, REV-ERB and ROR have somewhat confounding roles in muscle physiology and therefore more studies utilizing in vivo models of skeletal muscle myopathies are needed. In this review we highlight the molecular forces driving some of the major degenerative muscular diseases and showcase two promising molecular targets that may have the potential to treat myopathies: ROR and REV-ERB.


Asunto(s)
Terapia Molecular Dirigida/métodos , Músculo Esquelético/fisiología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/terapia , Receptores Citoplasmáticos y Nucleares/metabolismo , Animales , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Enfermedades Musculares/fisiopatología , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Proteínas Represoras/metabolismo , Transducción de Señal
6.
J Biomed Mater Res B Appl Biomater ; 112(7): e35438, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38923755

RESUMEN

Volumetric muscle loss (VML) injury causes irreversible deficits in muscle mass and function, often resulting in permanent disability. The current standard of care is physical therapy, but it is limited in mitigating functional deficits. We have previously optimized a rehabilitation technique using electrically stimulated eccentric contraction training (EST) that improved muscle mass, strength, and size in VML-injured rats. A biosponge scaffold composed of extracellular matrix proteins has previously enhanced muscle function postVML. This study aimed to determine whether combining a regenerative therapy (i.e., biosponge) with a novel rehabilitation technique (i.e., EST) could enhance recovery in a rat model of VML. A VML defect was created by removing ~20% of muscle mass from the tibialis anterior muscle in adult male Lewis rats. Experimental groups included VML-injured rats treated with biosponge with EST or biosponge alone (n = 6/group). EST was implemented 2 weeks postinjury at 150 Hz and was continued for 4 weeks. A linear increase in eccentric torque over 4 weeks showed the adaptability of the VML-injured muscle to EST. Combining biosponge with EST improved peak isometric torque by ~52% compared with biosponge treatment alone at 6 weeks postinjury. Application of EST increased MyoD gene expression and the percentage of large (>2000 µm2) type 2B myofibers but reduced fibrotic tissue deposition in VML-injured muscles. Together, these changes may provide the basis for improved torque production. This study demonstrates the potential for combined regenerative and rehabilitative therapy to improve muscle recovery following VML.


Asunto(s)
Músculo Esquelético , Ratas Endogámicas Lew , Animales , Masculino , Ratas , Músculo Esquelético/lesiones , Músculo Esquelético/metabolismo , Regeneración , Modelos Animales de Enfermedad , Terapia por Estimulación Eléctrica , Contracción Muscular , Enfermedades Musculares/patología , Enfermedades Musculares/rehabilitación
7.
Mol Pharmacol ; 79(3): 508-19, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21127131

RESUMEN

We have characterized previously a class of aryl hydrocarbon receptor (AHR) ligand termed selective AHR modulators (SAhRMs). SAhRMs exhibit anti-inflammatory properties, including suppression of cytokine-mediated acute phase genes (e.g., Saa1), through dissociation of non-dioxin-response element (DRE) AHR activity from DRE-dependent xenobiotic gene expression. The partial AHR agonist α-naphthoflavone (αNF) mediates the suppressive, non-DRE dependent effects on SAA1 expression and partial DRE-mediated CYP1A1 induction. These observations suggest that αNF may be structurally modified to a derivative exhibiting only SAhRM activity. A screen of αNF derivatives identifies 3',4'-dimethoxy-αNF (DiMNF) as a candidate SAhRM. Competitive ligand binding validates DiMNF as an AHR ligand, and DRE-dependent reporter assays with quantitative mRNA analysis of AHR target genes reveal minimal agonist activity associated with AHR binding. Consistent with loss of agonist activity, DiMNF fails to promote AHR binding to DRE probes as determined through electromobility shift assay. Importantly, mRNA analysis indicates that DiMNF retains the suppressive capacity of αNF regarding cytokine-mediated SAA1 expression in Huh7 cells. Interestingly, predictive docking modeling suggests that DiMNF adopts a unique orientation within the AHR ligand binding pocket relative to αNF and may facilitate the rational design of additional SAhRMs. Microarray studies with a non-DRE binding but otherwise functional AHR mutant identified complement factor C3 as a potential SAhRM target. We confirmed this observation in Huh7 cells using 10 µM DiMNF, which significantly repressed C3 mRNA and protein. These data expand the classes of AHR ligands exerting DRE-independent anti-inflammatory SAhRM activity, suggesting SAhRMs may have application in the amelioration of inflammatory disorders.


Asunto(s)
Benzoflavonas/farmacología , Complemento C3/biosíntesis , Citocinas/fisiología , Receptores de Hidrocarburo de Aril/efectos de los fármacos , Reacción de Fase Aguda/metabolismo , Línea Celular , Complemento C3/genética , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ligandos , Etiquetas de Fotoafinidad/metabolismo , Unión Proteica/efectos de los fármacos , Receptores de Hidrocarburo de Aril/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína Amiloide A Sérica/metabolismo
8.
PLoS One ; 16(3): e0249316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33770118

RESUMEN

Alcoholic liver disease (ALD) is responsible for an average of 50.4% and 44.2%of liver disease deaths among males and females respectively. Driven by alcohol misuse, ALD is often reversible by cessation of consumption. However, abstinence programs can have limited success at curtailing abuse, and the loss of life. ALD, therefore, remains a significant clinical challenge. There is a need for effective treatments that prevent or reverse alcohol-induced liver damage to complement or supplant behavioral interventions. Metabolic syndrome, which is disproportionally prevalent in ALD patients, accelerates the progression of ALD and increases liver disease mortality. Current rodent models of ALD unfortunately do not account for the contribution of the western diet to ALD pathology. To address this, we have developed a rodent model of ALD that integrates the impact of the western diet and alcohol; the WASH-diet model. We show here that the WASH diet, either chronically or in small time-restricted bouts, accelerated ALD pathology with severe steatohepatitis, elevated inflammation and increased fibrosis compared to mice receiving chronic alcohol alone. We also validated our WASH-diet model as an in vivo system for testing the efficacy of experimental ALD treatments. The efficacy of the inverse-agonist SR9238, previously shown to inhibit both non-alcohol and alcohol-induced steatohepatitis progression, was conserved in our WASH-diet model. These findings suggested that the WASH-diet may be useful for in vivo pre-clinical assessment of novel therapies.


Asunto(s)
Cirrosis Hepática/complicaciones , Hepatopatías Alcohólicas/complicaciones , Animales , Dieta Occidental , Femenino , Masculino , Ratones , Modelos Biológicos , Factores de Tiempo
9.
Cell Rep ; 34(8): 108768, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33626346

RESUMEN

Mucoepidermoid carcinoma (MEC) is a life-threatening salivary gland cancer that is driven primarily by a transcriptional coactivator fusion composed of cyclic AMP-regulated transcriptional coactivator 1 (CRTC1) and mastermind-like 2 (MAML2). The mechanisms by which the chimeric CRTC1/MAML2 (C1/M2) oncoprotein rewires gene expression programs that promote tumorigenesis remain poorly understood. Here, we show that C1/M2 induces transcriptional activation of the non-canonical peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) splice variant PGC-1α4, which regulates peroxisome proliferator-activated receptor gamma (PPARγ)-mediated insulin-like growth factor 1 (IGF-1) expression. This mitogenic transcriptional circuitry is consistent across cell lines and primary tumors. C1/M2-positive tumors exhibit IGF-1 pathway activation, and small-molecule drug screens reveal that tumor cells harboring the fusion gene are selectively sensitive to IGF-1 receptor (IGF-1R) inhibition. Furthermore, this dependence on autocrine regulation of IGF-1 transcription renders MEC cells susceptible to PPARγ inhibition with inverse agonists. These results yield insights into the aberrant coregulatory functions of C1/M2 and identify a specific vulnerability that can be exploited for precision therapy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Mucoepidermoide/tratamiento farmacológico , Factor I del Crecimiento Similar a la Insulina/metabolismo , PPAR gamma/antagonistas & inhibidores , Neoplasias de las Glándulas Salivales/tratamiento farmacológico , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Animales , Comunicación Autocrina , Carcinoma Mucoepidermoide/genética , Carcinoma Mucoepidermoide/metabolismo , Carcinoma Mucoepidermoide/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica , Fusión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Masculino , Ratones Desnudos , Persona de Mediana Edad , Terapia Molecular Dirigida , PPAR gamma/genética , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Isoformas de Proteínas , Receptor IGF Tipo 1/antagonistas & inhibidores , Receptor IGF Tipo 1/metabolismo , Neoplasias de las Glándulas Salivales/genética , Neoplasias de las Glándulas Salivales/metabolismo , Neoplasias de las Glándulas Salivales/patología , Transducción de Señal , Transactivadores/genética , Factores de Transcripción/genética , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Biochemistry ; 49(2): 393-400, 2010 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-20000589

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor involved in the regulation of multiple cellular pathways, such as xenobiotic metabolism and Th17 cell differentiation. Identification of key physiologically relevant ligands that regulate AHR function remains to be accomplished. Screening of indole metabolites has identified indoxyl 3-sulfate (I3S) as a potent endogenous ligand that selectively activates the human AHR at nanomolar concentrations in primary human hepatocytes, regulating transcription of multiple genes, including CYP1A1, CYP1A2, CYP1B1, UGT1A1, UGT1A6, IL6, and SAA1. Furthermore, I3S exhibits an approximately 500-fold greater potency in terms of transcriptional activation of the human AHR relative to the mouse AHR in cell lines. Structure-function studies reveal that the sulfate group is an important determinant for efficient AHR activation. This is the first phase II enzymatic product identified that can significantly activate the AHR, and ligand competition binding assays indicate that I3S is a direct AHR ligand. I3S failed to activate either CAR or PXR. The physiological importance of I3S lies in the fact that it is a key uremic toxin that accumulates to high micromolar concentrations in kidney dialysis patients, but its mechanism of action is unknown. I3S represents the first identified relatively high potency endogenous AHR ligand that plays a key role in human disease progression. These studies provide evidence that the production of I3S can lead to AHR activation and altered drug metabolism. Our results also suggest that prolonged activation of the AHR by I3S may contribute to toxicity observed in kidney dialysis patients and thus represent a possible therapeutic target.


Asunto(s)
Hepatocitos/fisiología , Indicán/toxicidad , Receptores de Hidrocarburo de Aril/agonistas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Línea Celular , Línea Celular Tumoral , ADN Complementario/genética , Regulación de la Expresión Génica , Silenciador del Gen , Genes Reporteros , Células Hep G2 , Humanos , Indicán/química , Indicán/farmacología , Ligandos , Plásmidos , Reacción en Cadena de la Polimerasa , ARN/genética , ARN/aislamiento & purificación , ARN Neoplásico/genética , ARN Neoplásico/aislamiento & purificación , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transfección
11.
Mol Pharmacol ; 77(2): 247-54, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19903824

RESUMEN

The concept of selective receptor modulators has been established for the nuclear steroid hormone receptors. Such selective modulators have been used therapeutically with great success in the treatment of cancer. However, this concept has not been examined with regard to the aryl hydrocarbon receptor (AHR) because of the latent toxicity commonly associated with AHR activation. AHR-mediated toxicity is primarily derived from AHR binding to its dioxin response element (DRE) and driving expression of CYP1 family members, which have the capacity to metabolize procarcinogens to genotoxic carcinogens. Recent evidence using a non-DRE binding AHR mutant has established the DRE-independent suppression of inflammatory markers by the AHR. We wished to determine whether such DRE-independent repression with wild-type AHR could be dissociated from canonical DRE-dependent transactivation in a ligand-dependent manner and, in doing so, prove the concept of a selective AHR modulator (SAhRM). Here, we identify the selective estrogen receptor (ER) modulator Way-169916 as a dually selective modulator, binding both ER and AHR. Inflammatory gene expression associated with the cytokine-inducible acute-phase response (e.g., SAA1 and CRP) are diminished by Way-169916 in an AHR-dependent manner. Furthermore, activation of AHR by Way-169916 fails to stimulate canonical DRE-driven AHR-mediated CYP1A1 expression, thus eliminating the potential for AHR-mediated genotoxic stress. Such anti-inflammatory activity in the absence of DRE-mediated expression fulfills the major criteria of an SAhRM, which suggests that selective modulation of AHR is possible and renders the AHR a therapeutically viable drug target for the amelioration of inflammatory disease.


Asunto(s)
Pirazoles/química , Pirazoles/metabolismo , Receptores de Hidrocarburo de Aril/metabolismo , Animales , Unión Competitiva/fisiología , Línea Celular Tumoral , Receptor alfa de Estrógeno/metabolismo , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dibenzodioxinas Policloradas/química , Dibenzodioxinas Policloradas/metabolismo , Dibenzodioxinas Policloradas/farmacología , Pirazoles/farmacología , Receptores de Hidrocarburo de Aril/agonistas
12.
J Pharmacol Exp Ther ; 332(1): 135-44, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19828881

RESUMEN

The aryl hydrocarbon receptor (AHR) is regarded as an important homeostatic transcriptional regulator within physiological and pathophysiological processes, including xenobiotic metabolism, endocrine function, immunity, and cancer. Agonist activation of the AHR is considered deleterious based on toxicological evidence obtained with environmental pollutants, which mediate toxic effects through AHR. However, a multitude of plant-derived constituents, e.g., polyphenols that exhibit beneficial properties, have also been described as ligands for the AHR. It is conceivable that some of the positive aspects of such compounds can be attributed to suppression of AHR activity through antagonism. Therefore, we conducted a dioxin response element reporter-based screen to assess the AHR activity associated with a range of flavonoid compounds. Our screen identified two flavonoids (5-methoxyflavone and 7,4'-dimethoxyisoflavone) with previously unidentified AHR agonist potential. In addition, we have identified and characterized 6,2',4'-trimethoxyflavone (TMF) as an AHR ligand that possesses the characteristics of an antagonist having the capacity to compete with agonists, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene, thus effectively inhibiting AHR-mediated transactivation of a heterologous reporter and endogenous targets, e.g., CYP1A1, independent of cell lineage or species. Furthermore, TMF displays superior action by virtue of having no partial agonist activity, in contrast to other documented antagonists, e.g., alpha-napthoflavone, which are partial weak agonists. TMF also exhibits no species or promoter dependence with regard to AHR antagonism. TMF therefore represents an improved tool allowing for more precise dissection of AHR function in the absence of any conflicting agonist activity.


Asunto(s)
Flavonas/farmacología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Benzo(a)pireno/farmacología , Unión Competitiva , Western Blotting , Línea Celular Tumoral , Sistema Enzimático del Citocromo P-450/genética , Expresión Génica/efectos de los fármacos , Genes Reporteros , Humanos , Ligandos , Luciferasas/genética , Ratones , Estructura Molecular , Dibenzodioxinas Policloradas/farmacología , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Ensayo de Unión Radioligante , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Transcripción Reversa
13.
Chem Res Toxicol ; 23(5): 955-66, 2010 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-20423157

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that mediates the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin. However, the role of the AHR in normal physiology is still an area of intense investigation. For example, this receptor plays an important role in certain immune responses. We have previously determined that the AHR can mediate repression of acute-phase genes in the liver. For this observation to be therapeutically useful, selective activation of the AHR would likely be necessary. Recently, the selective estrogen receptor ligand WAY-169916 has also been shown to be a selective AHR ligand. WAY-169916 can efficiently repress cytokine-mediated acute-phase gene expression (e.g., SAA1) yet fail to mediate a dioxin response element-driven increase in transcriptional activity. The goals of this study were to structurally modify WAY-169916 to block binding to the estrogen receptor and increase its affinity for the AHR. A number of WAY-169916 derivatives were synthesized and subjected to characterization as AHR ligands. The substitution of a key hydroxy group for a methoxy group ablates binding to the estrogen receptor and increases its affinity for the AHR. The compound 1-allyl-7-trifluoromethyl-1H-indazol-3-yl]-4-methoxyphenol (SGA 360), in particular, exhibited essentially no AHR agonist activity yet was able to repress cytokine-mediated SAA1 gene expression in Huh7 cells. SGA 360 was tested in a 12-O-tetradecanoylphorbol-13-acetate (TPA)-mediated ear inflammatory edema model using C57BL6/J and Ahr(-/-) mice. Our findings indicate that SGA 360 significantly inhibits TPA-mediated ear swelling and induction of a number of inflammatory genes (e.g., Saa3, Cox2, and Il6) in C57BL6/J mice. In contrast, SGA 360 had no effect on TPA-mediated ear swelling or inflammatory gene expression in Ahr(-/-) mice. Collectively, these results indicate that SGA 360 is a selective Ah receptor modulator (SAhRM) that exhibits anti-inflammatory properties in vivo.


Asunto(s)
Compuestos Alílicos/farmacología , Antiinflamatorios/farmacología , Indazoles/farmacología , Pirazoles/química , Receptores de Hidrocarburo de Aril/metabolismo , Compuestos Alílicos/química , Animales , Antiinflamatorios/síntesis química , Antiinflamatorios/química , Ciclooxigenasa 2/metabolismo , Regulación de la Expresión Génica , Células Hep G2 , Humanos , Indazoles/química , Interleucina-6/metabolismo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Otitis/inducido químicamente , Otitis/tratamiento farmacológico , ARN Mensajero/metabolismo , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Acetato de Tetradecanoilforbol/toxicidad
14.
PLoS One ; 15(5): e0227720, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32407314

RESUMEN

Numerous mutational studies have demonstrated that circadian clock proteins regulate behavior and metabolism. Nr1d1(Rev-erbα) is a key regulator of circadian gene expression and a pleiotropic regulator of skeletal muscle homeostasis and lipid metabolism. Loss of Rev-erbα expression induces muscular atrophy, high adiposity, and metabolic syndrome in mice. Here we show that, unlike knockout mice, Nr1d1 heterozygous mice are not susceptible to muscular atrophy and in fact paradoxically possess larger myofiber diameters and improved neuromuscular function, compared to wildtype mice. Heterozygous mice lacked dyslipidemia, a characteristic of Nr1d1 knockout mice and displayed increased whole-body fatty-acid oxidation during periods of inactivity (light cycle). Heterozygous mice also exhibited higher rates of glucose uptake when fasted, and had elevated basal rates of gluconeogenesis compared to wildtype and knockout littermates. Rev-erbα ablation suppressed glycolysis and fatty acid-oxidation in white-adipose tissue (WAT), whereas partial Rev-erbα loss, curiously stimulated these processes. Our investigations revealed that Rev-erbα dose-dependently regulates glucose metabolism and fatty acid oxidation in WAT and muscle.


Asunto(s)
Dislipidemias/genética , Músculo Esquelético/metabolismo , Atrofia Muscular/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Tejido Adiposo Blanco/metabolismo , Adiposidad/genética , Animales , Conducta Animal/fisiología , Relojes Circadianos/genética , Dislipidemias/metabolismo , Dislipidemias/patología , Ácidos Grasos/metabolismo , Gluconeogénesis/genética , Glucosa/metabolismo , Heterocigoto , Humanos , Metabolismo de los Lípidos/genética , Síndrome Metabólico/genética , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Ratones , Ratones Noqueados , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Miofibrillas/genética , Miofibrillas/metabolismo , Miofibrillas/patología , Fotoperiodo
15.
Mol Pharmacol ; 75(6): 1412-20, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19299563

RESUMEN

The aryl hydrocarbon receptor (AHR) is a ligand-inducible transcription factor that displays interspecies differences with the human and mouse AHR C-terminal region sequences sharing only 58% amino acid sequence identity. Compared with the mouse AHR (mAHR), the human AHR (hAHR) displays approximately 10-fold lower relative affinity for prototypical AHR ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin, which has been attributed to the amino acid residue valine 381 (alanine 375 in the mAHR) in the ligand binding domain of the hAHR. We investigated whether the 10-fold difference in ligand-binding affinity between the mAHR and hAHR would be observed with a diverse range of AHR ligands. To test this hypothesis, ligand binding assays were performed using the photo-affinity ligand 2-azido-3-[(125)I]iodo-7,8-dibromodibenzo-p-dioxin and liver cytosol isolated from hepatocyte-specific transgenic hAHR mice and C57BL/6J mice. It is noteworthy that competitive ligand-binding assays revealed that, compared with the mAHR, the hAHR has a higher relative affinity for certain compounds, including indirubin [(2Z)-2,3-biindole-2,3 (1'H,1'H)-dione and quercetin (2-(3,4dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one]. Electrophoretic mobility shift assays revealed that indirubin was more efficient at transforming the hAHR compared with the mAHR. Indirubin was also a more potent inducer of Cyp1a1 expression in transgenic hAHR mouse hepatocytes compared with C57BL/6J mouse hepatocytes. These observations suggest that indirubin is a potent hAHR ligand that is able to selectively bind to and activate the hAHR. These discoveries imply that there may be a significant degree of structural divergence between mAHR and hAHR ligands and highlights the importance of the hAHR transgenic mouse as a model to study the hAHR in vivo.


Asunto(s)
Receptores de Hidrocarburo de Aril/metabolismo , Animales , Bencimidazoles/farmacología , Unión Competitiva , Células COS , Chlorocebus aethiops , Citocromo P-450 CYP1A1/biosíntesis , Dioxinas/farmacología , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Técnicas In Vitro , Indoles/farmacología , Radioisótopos de Yodo , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Animales , Etiquetas de Fotoafinidad , Quercetina/farmacología , Ensayo de Unión Radioligante , Receptores de Hidrocarburo de Aril/agonistas
16.
Lab Invest ; 89(6): 695-707, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19333233

RESUMEN

Repression of the nuclear factor-kappaB (NF-kappaB) pathway has been extensively researched because of its pivotal role in inflammation. We investigated the potential of the aryl hydrocarbon receptor (AHR) to suppress NF-kappaB regulated-gene expression, especially acute-phase genes, such as serum amyloid A (Saa). Using AHR mutants, it was determined that nuclear translocation and heterodimerization with AHR-nuclear translocator are essential, but DNA binding is not involved in AHR-mediated Saa repression. A number of AHR ligands were capable of repressing Saa3 expression. AHR activation leads to a decrease in RELA and C/EBP/beta recruitment to and histone acetylation at Saa3 gene promoter. A battery of acute-phase genes (eg C-reactive protein and haptoglobin) induced by cytokine exposure was repressed by AHR activation in mouse hepatocytes. Dietary exposure to an AHR ligand represses cytokine-induced acute-phase response in the liver. Use of a human liver-derived cell line revealed similar repression of Saa mRNA levels and secreted protein. Repression of AHR expression also enhanced Saa induction in response to cytokines, suggesting that AHR is capable of constitutively repressing Saa gene expression. These results establish a role for AHR in inflammatory signaling within the liver, presenting a new therapeutic opportunity, and signify AHR's ability to function in a DNA-independent manner.


Asunto(s)
Reacción de Fase Aguda/metabolismo , Receptores de Hidrocarburo de Aril/fisiología , Elementos de Respuesta , Acetilación , Transporte Activo de Núcleo Celular , Reacción de Fase Aguda/inmunología , Animales , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Línea Celular , Núcleo Celular/metabolismo , Citocinas/metabolismo , Femenino , Regulación de la Expresión Génica , Hepatocitos/metabolismo , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , FN-kappa B/metabolismo , Multimerización de Proteína , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Proteína Amiloide A Sérica/metabolismo , Transducción de Señal
17.
Sci Rep ; 9(1): 19530, 2019 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-31863071

RESUMEN

Triple-negative breast cancer (TNBC) is a highly aggressive subtype that is untreatable with hormonal or HER2-targeted therapies and is also typically unresponsive to checkpoint-blockade immunotherapy. Within the tumor microenvironment dysregulated immune cell metabolism has emerged as a key mechanism of tumor immune-evasion. We have discovered that the Liver-X-Receptors (LXRα and LXRß), nuclear receptors known to regulate lipid metabolism and tumor-immune interaction, are highly activated in TNBC tumor associated myeloid cells. We therefore theorized that inhibiting LXR would induce immune-mediated TNBC-tumor clearance. Here we show that pharmacological inhibition of LXR activity induces tumor destruction primarily through stimulation of CD8+ T-cell cytotoxic activity and mitochondrial metabolism. Our results imply that LXR inverse agonists may be a promising new class of TNBC immunotherapies.


Asunto(s)
Linfocitos T CD8-positivos/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Antineoplásicos/uso terapéutico , Linfocitos T CD8-positivos/efectos de los fármacos , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Linfocitos T Citotóxicos/metabolismo , Neoplasias de la Mama Triple Negativas/inmunología , Microambiente Tumoral/inmunología , Microambiente Tumoral/fisiología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Arch Biochem Biophys ; 471(2): 215-23, 2008 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-18242161

RESUMEN

The aryl hydrocarbon receptor (AhR) is a ligand inducible transcription factor that exhibits interspecies differences, with the human and mouse AhR C-terminal transactivation domain sharing only 58% amino acid sequence identity. The AhR has a transactivation domain comprised of proline/serine/threonine-rich, glutamine-rich, and acidic amino acid subdomains. A truncated mAhR and hAhR containing only the acidic subdomain displayed widely differing transactivation potentials. Whether the glutamine-rich subdomain of the mouse AhR and the human AhR differentially recruit LXXLL-motif coactivators was investigated. Transiently expressed GAL4 DNA binding domain (GAL4DBD)-LXXLL-motif fusion proteins were used to map the critical LXXLL binding sequence of the hAhR to amino acid residues 663-688. Several LXXLL-motif GAL4DBD fusion proteins dramatically differed in their ability to influence the transactivation potential of the mAhR and hAhR. These findings suggest that the human and mouse AhR may display differential recruitment of coactivators and hence may exhibit divergent regulation of target genes.


Asunto(s)
Secuencias de Aminoácidos , Receptores de Hidrocarburo de Aril/metabolismo , Secuencia de Aminoácidos , Aminoácidos Acídicos/genética , Aminoácidos Acídicos/metabolismo , Animales , Secuencia de Bases , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Glutamina/genética , Glutamina/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Prolina/genética , Prolina/metabolismo , Receptores de Hidrocarburo de Aril/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/genética , Serina/metabolismo , Treonina/genética , Treonina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Activación Transcripcional
19.
ACS Pharmacol Transl Sci ; 1(1): 50-60, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-31696159

RESUMEN

Alcohol abuse is a major cause of liver disease and mortality worldwide and is a significant public health issue. Patients with alcoholic liver disease (ALD) have severe hepatic lipid accumulation, inflammation, and fibrosis. Therapies for ALD are very limited and even abstinence from alcohol consumption does not necessarily protect patients from progression of the disease. We sought to evaluate the efficacy of a liver X receptor (LXR) inverse agonist, SR9238, in an animal model of ALD. SR9238 suppresses hepatic lipogenesis, a pathological hallmark of ALD, and we hypothesized that targeting suppression of hepatic metabolic pathways that are activated in ALD may be an effective treatment for the disease. A chronic ethanol diet with or without a final ethanol binge treatment was used to induce ALD in mice. Mice were administered the liver specific LXR inverse agonist SR9238 for 4 weeks after the mice had been maintained on the ethanol diet for 14 days. Mice developed all the hallmarks of advanced ALD demonstrating significant pathophysiology and hepatotoxicity. SR9238 significantly attenuated liver injury and hepatic steatosis and fibrosis was nearly eliminated in SR9238 treated mice. SR9238 treatment reversed the damage associated with chronic ethanol use returning the liver to near normal morphology. These results indicate that inhibiting LXR activity using the inverse agonist has a hepatoprotective effect in rodent models of ALD; thus, this pharmacological approach may be efficacious for treatment of ALD in humans.

20.
Sci Rep ; 7(1): 17142, 2017 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-29215066

RESUMEN

Duchenne muscular dystrophy (DMD) is a debilitating X-linked disorder that is fatal. DMD patients lack the expression of the structural protein dystrophin caused by mutations within the DMD gene. The absence of functional dystrophin protein results in excessive damage from normal muscle use due to the compromised structural integrity of the dystrophin associated glycoprotein complex. As a result, DMD patients exhibit ongoing cycles of muscle destruction and regeneration that promote inflammation, fibrosis, mitochondrial dysfunction, satellite cell (SC) exhaustion and loss of skeletal and cardiac muscle function. The nuclear receptor REV-ERB suppresses myoblast differentiation and recently we have demonstrated that the REV-ERB antagonist, SR8278, stimulates muscle regeneration after acute injury. Therefore, we decided to explore whether the REV-ERB antagonist SR8278 could slow the progression of muscular dystrophy. In mdx mice SR8278 increased lean mass and muscle function, and decreased muscle fibrosis and muscle protein degradation. Interestingly, we also found that SR8278 increased the SC pool through stimulation of Notch and Wnt signaling. These results suggest that REV-ERB is a potent target for the treatment of DMD.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Fibrosis/prevención & control , Isoquinolinas/farmacología , Músculo Esquelético/citología , Distrofia Muscular Animal/complicaciones , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/antagonistas & inhibidores , Regeneración , Tiofenos/farmacología , Animales , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos mdx , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mioblastos/citología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA