Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Revista
País de afiliación
Intervalo de año de publicación
1.
Animal ; 18(8): 101241, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39096597

RESUMEN

Skeleton bones, distinguished by trabecular and cortical bone tissue content, exhibit varied growth and composition, in response to modified dietary calcium and phosphorus levels. The study investigated how gilts adapt their individual bone and bone region mineralisation kinetics in response to changing intake of Ca and P. A total of 24 gilts were fed according to a two-phase (Depletion (D) 60-95 and Repletion (R) 95-140 kg BW, respectively). During the D phase, gilts were fed either 60% (D60) or 100% (D100) of the estimated P requirement. Subsequently, during the R phase, half of the gilts from each D diet were fed either 100% (R100) or 160% (R160) of the estimated P requirement according to a 2 × 2 factorial arrangement. Bone mineral content (BMC) was assessed in the whole body, individual bones (femur and lumbar spine L2-L4), and bone regions (head, front legs, trunk, pelvis, femur, and hind legs) every 2 weeks using dual-energy X-ray absorptiometry (DXA). At 95 kg BW, gilts fed D60 showed reduced BMC and BMC/BW ratio in all studied sites compared to those fed D100 (P < 0.001). During the depletion phase, the allometric BW-dependent regressions slopes for BMC of D100 gilts remained close to 1 for all sites and did not differ from each other. In contrast, the slopes were lower in D60 gilts (P < 0.05), with an 18% reduction in the whole body, except for the front and hind legs, femur, and pelvis, which exhibited higher reductions (P < 0.05). At 140 kg BW, BMC and BMC/BW ratio of all studied sites were similar in gilts previously fed D60 and D100, but higher in R160 than in R100 gilts (P < 0.05), except for front and hind legs. During the repletion phase, the allometric BW dependent regressions slopes for BMC were lower (P < 0.05) in R100 than in R160 gilts (for whole body -10%; P < 0.01) except for front and hind legs, femur, and pelvis. In conclusion, bone demineralisation and recovery followed similar trends for all measured body sites. However, the lumbar spine region was most sensitive whereas the hind legs were least sensitive. These data suggest that using bone regions such as the head and forelegs that can be collected easily at the slaughterhouse may be a viable alternative to whole body DXA measurement.


Asunto(s)
Alimentación Animal , Densidad Ósea , Huesos , Calcio de la Dieta , Fósforo Dietético , Animales , Femenino , Calcio de la Dieta/metabolismo , Calcio de la Dieta/administración & dosificación , Densidad Ósea/efectos de los fármacos , Fósforo Dietético/administración & dosificación , Fósforo Dietético/metabolismo , Alimentación Animal/análisis , Porcinos/fisiología , Porcinos/crecimiento & desarrollo , Absorciometría de Fotón/veterinaria , Dieta/veterinaria , Calcificación Fisiológica/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales , Fósforo/metabolismo , Sus scrofa/crecimiento & desarrollo , Sus scrofa/fisiología
2.
Animal ; 16(5): 100512, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35468506

RESUMEN

This study investigated the ability of replacement gilts to adapt their calcium and phosphorus utilization and their kinetics in bone mineralization to compensate for modified intake of these nutrients by applying a novel Ca and P depletion and repletion strategy. A total of 24 gilts were fed according to a two-phase feeding program. In the first phase, gilts (60-95 kg BW) were fed ad libitum a depletion diet providing either 60% (D60; 1.2 g digestible P/kg) or 100% (D100; 2.1 g digestible P/kg) of the estimated P requirement. In the second phase, gilts (95-140 kg BW) were fed restrictively (aim: 700-750 g/d BW gain) a repletion diet. Half of the gilts from each depletion diet were randomly assigned to either a control diet or a high-P diet (R100 and R160; with 2.1 and 3.5 g digestible P/kg, respectively) according to a 2 × 2 factorial design, resulting in four treatments: D60-R100, D60-R160, D100-R100 and D100-R160. Dual-energy X-ray absorptiometry was used to measure whole-body bone mineral content (BMC), bone mineral density (BMD) and lean and fat tissue mass on each gilt at 2-week intervals. The depletion and repletion diets, fed for 5 and 8 weeks, respectively, did not influence growth performance. The D60 gilts had a reduced BMC and BMD from the second week onwards and ended (95 kg BW) with 9% lower values than D100 gilts (P < 0.001). During repletion, D60 gilts completely recovered the deficit in bone mineralization from the second and fourth week onwards, when fed R160 (D60-R160 vs D100-R160) or R100 (D60-R100 vs D100-R100) diets, respectively (treatment × time interaction, P < 0.001); thus, the depletion diets did not affect these values at 140 kg BW. These results illustrate the rapid homeostatic counter-regulation capacity of dietary Ca and P, and they show the high potential to limit dietary digestible P concentration by completely excluding the use of mineral phosphates during the depletion phase, representative of the fattening period, without causing any detrimental effects to gilts at mating. The gilts were able to recover their BMC deficit between their selection at 95 kg BW and first mating at 140 kg BW by increasing their dietary Ca and P efficiency. Finally, excess dietary digestible P, requiring increased amounts of mineral phosphates, further increased the gilts' BMC.


Asunto(s)
Fósforo Dietético , Fósforo , Alimentación Animal/análisis , Animales , Composición Corporal , Calcificación Fisiológica , Calcio/metabolismo , Calcio de la Dieta , Dieta/veterinaria , Femenino , Minerales , Fosfatos , Sus scrofa/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA