Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Annu Rev Immunol ; 35: 1-30, 2017 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27912315

RESUMEN

Genome technologies have defined a complex genetic architecture in major infectious, inflammatory, and autoimmune disorders. High density marker arrays and Immunochips have powered genome-wide association studies (GWAS) that have mapped nearly 450 genetic risk loci in 22 major inflammatory diseases, including a core of common genes that play a central role in pathological inflammation. Whole-exome and whole-genome sequencing have identified more than 265 genes in which mutations cause primary immunodeficiencies and rare forms of severe inflammatory bowel disease. Combined analysis of inflammatory disease GWAS and primary immunodeficiencies point to shared proteins and pathways that are required for immune cell development and protection against infections and are also associated with pathological inflammation. Finally, sequencing of chromatin immunoprecipitates containing specific transcription factors, with parallel RNA sequencing, has charted epigenetic regulation of gene expression by proinflammatory transcription factors in immune cells, providing complementary information to characterize morbid genes at infectious and inflammatory disease loci.


Asunto(s)
Enfermedades Autoinmunes/genética , Síndromes de Inmunodeficiencia/genética , Infecciones/genética , Inflamación/genética , Vacunas/inmunología , Animales , Epigénesis Genética , Exoma/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunidad/genética , Infecciones/inmunología , Riesgo
2.
Nat Immunol ; 18(1): 54-63, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27721430

RESUMEN

Genes and pathways in which inactivation dampens tissue inflammation present new opportunities for understanding the pathogenesis of common human inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. We identified a mutation in the gene encoding the deubiquitination enzyme USP15 (Usp15L749R) that protected mice against both experimental cerebral malaria (ECM) induced by Plasmodium berghei and experimental autoimmune encephalomyelitis (EAE). Combining immunophenotyping and RNA sequencing in brain (ECM) and spinal cord (EAE) revealed that Usp15L749R-associated resistance to neuroinflammation was linked to dampened type I interferon responses in situ. In hematopoietic cells and in resident brain cells, USP15 was coexpressed with, and functionally acted together with the E3 ubiquitin ligase TRIM25 to positively regulate type I interferon responses and to promote pathogenesis during neuroinflammation. The USP15-TRIM25 dyad might be a potential target for intervention in acute or chronic states of neuroinflammation.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Encefalomielitis Autoinmune Experimental/inmunología , Malaria Cerebral/inmunología , Inflamación Neurogénica/inmunología , Factores de Transcripción/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Animales , Proteínas de Unión al ADN/genética , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Células HEK293 , Humanos , Inmunidad Innata , Interferón Tipo I/metabolismo , Malaria Cerebral/tratamiento farmacológico , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Terapia Molecular Dirigida , Glicoproteína Mielina-Oligodendrócito/inmunología , Inflamación Neurogénica/tratamiento farmacológico , Fragmentos de Péptidos/inmunología , Plasmodium berghei/inmunología , Factores de Transcripción/genética , Proteasas Ubiquitina-Específicas/genética
4.
Genes Immun ; 22(1): 12-23, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33824497

RESUMEN

The covalent post-translational modification of proteins by ubiquitination not only influences protein stability and half-life, but also several aspects of protein function including enzymatic activity, sub-cellular localization, and interactions with binding partners. Protein ubiquitination status is determined by the action of large families of ubiquitin ligases and deubiquitinases, whose combined activities regulate many physiological and cellular pathways. The Ubiquitin Specific Protease (USP) family is one of 8 subfamilies of deubiquitinating enzymes composed of more than 50 members. Recent studies have shown that USP15 plays a critical role in regulating many aspects of immune and inflammatory function of leukocytes in response to a broad range of infectious and autoimmune insults and following tissue damage. USP15 regulated pathways reviewed herein include TLR signaling, RIG-I signaling, NF-kB, and IRF3/IRF7-dependent transcription for production of pro-inflammatory cytokines and type I interferons. In addition, USP15 has been found to regulate pathways implicated in tumor onset and progression such as p53, and TGF-ß signaling, but also influences the leukocytes-determined immune and inflammatory microenvironment of tumors to affect progression and outcome. Hereby reviewed are recent studies of USP15 in model cell lines in vitro, and in mutant mice in vivo with reference to available human clinical datasets.


Asunto(s)
Interferón Tipo I , Proteasas Ubiquitina-Específicas , Animales , Ratones , FN-kappa B/metabolismo , Transducción de Señal , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
5.
Trends Immunol ; 37(2): 126-140, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26791050

RESUMEN

Recent advances in genome analysis have provided important insights into the genetic architecture of infectious and inflammatory diseases. The combined analysis of loci detected by genome-wide association studies (GWAS) in 22 inflammatory diseases has revealed a shared genetic core and associated biochemical pathways that play a central role in pathological inflammation. Parallel whole-exome sequencing studies have identified 265 genes mutated in primary immunodeficiencies (PID). Here, we examine the overlap between these two data sets, and find that it consists of genes essential for protection against infections and in which persistent activation causes pathological inflammation. Based on this intersection, we propose that, although strong or inactivating mutations (rare variants) in these genes may cause severe disease (PIDs), their more subtle modulation potentially by common regulatory/coding variants may contribute to chronic inflammation.


Asunto(s)
Enfermedades Autoinmunes/genética , Sitios Genéticos/inmunología , Síndromes de Inmunodeficiencia/genética , Animales , Exoma/inmunología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Mutación/genética , Riesgo
6.
Immunology ; 151(1): 110-121, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28066899

RESUMEN

Several previous studies outlined the importance of the histone H2A deubiquitinase MYSM1 in the regulation of stem cell quiescence and haematopoiesis. In this study we investigated the role of MYSM1 in T-cell development. Using mouse models that allow conditional Mysm1 ablation at late stages of thymic development, we found that MYSM1 is intricately involved in the maintenance, activation and survival of CD8+ T cells. Mysm1 ablation resulted in a twofold reduction in CD8+ T-cell numbers, and also led to a hyperactivated CD8+ T-cell state accompanied by impaired proliferation and increased pro-inflammatory cytokine production after ex vivo stimulation. These phenotypes coincided with an increased apoptosis and preferential up-regulation of p53 tumour suppressor protein in CD8+ T cells. Lastly, we examined a model of experimental cerebral malaria, in which pathology is critically dependent on CD8+ T cells. In the mice conditionally deleted for Mysm1 in the T-cell compartment, CD8+ T-cell numbers remained reduced following infection, both in the periphery and in the brain, and the mice displayed improved survival after parasite challenge. Collectively, our data identify MYSM1 as a novel factor for CD8+ T cells in the immune system, increasing our understanding of the role of histone H2A deubiquitinases in cytotoxic T-cell biology.


Asunto(s)
Linfocitos T CD8-positivos/fisiología , Endopeptidasas/metabolismo , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Citocinas/metabolismo , Citotoxicidad Inmunológica/genética , Endopeptidasas/genética , Mediadores de Inflamación/metabolismo , Activación de Linfocitos/genética , Malaria Cerebral/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Transactivadores , Proteína p53 Supresora de Tumor/genética , Proteasas Ubiquitina-Específicas
7.
PLoS Pathog ; 10(12): e1004511, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473962

RESUMEN

Natural Killer (NK) cells contribute to the control of viral infection by directly killing target cells and mediating cytokine release. In C57BL/6 mice, the Ly49H activating NK cell receptor plays a key role in early resistance to mouse cytomegalovirus (MCMV) infection through specific recognition of the MCMV-encoded MHC class I-like molecule m157 expressed on infected cells. Here we show that transgenic expression of Ly49H failed to provide protection against MCMV infection in the naturally susceptible A/J mouse strain. Characterization of Ly49H(+) NK cells from Ly49h-A transgenic animals showed that they were able to mount a robust cytotoxic response and proliferate to high numbers during the course of infection. However, compared to NK cells from C57BL/6 mice, we observed an intrinsic defect in their ability to produce IFNγ when challenged by either m157-expressing target cells, exogenous cytokines or chemical stimulants. This effect was limited to NK cells as T cells from C57BL/6 and Ly49h-A mice produced comparable cytokine levels. Using a panel of recombinant congenic strains derived from A/J and C57BL/6 progenitors, we mapped the genetic basis of defective IFNγ production to a single 6.6 Mb genetic interval overlapping the Ifng gene on chromosome 10. Inspection of the genetic interval failed to reveal molecular differences between A/J and several mouse strains showing normal IFNγ production. The chromosome 10 locus is independent of MAPK signalling or decreased mRNA stability and linked to MCMV susceptibility. This study highlights the existence of a previously uncovered NK cell-specific cis-regulatory mechanism of Ifnγ transcript expression potentially relevant to NK cell function in health and disease.


Asunto(s)
Infecciones por Citomegalovirus/genética , Citomegalovirus , Sitios Genéticos , Predisposición Genética a la Enfermedad , Interferón gamma/genética , Animales , Cromosomas de los Mamíferos , Infecciones por Citomegalovirus/inmunología , Regulación Viral de la Expresión Génica/genética , Regulación Viral de la Expresión Génica/inmunología , Interferón gamma/inmunología , Ratones , Ratones Noqueados , Subfamilia A de Receptores Similares a Lectina de Células NK , Estabilidad del ARN/genética , Estabilidad del ARN/inmunología , Proteínas Virales/genética , Proteínas Virales/inmunología
8.
Infect Immun ; 83(2): 759-68, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25452553

RESUMEN

We identify an N-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Themis(I23N) homozygous mice show reduced CD4(+) and CD8(+) T lymphocyte numbers. ECM resistance in P. berghei ANKA-infected Themis(I23N) mice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMIS(I23N) protein expression is absent from mutant mice, concurrent with the decreased THEMIS(I23N) stability observed in vitro. Biochemical studies in vitro and functional complementation in vivo in Themis(I23N/+):Lck(-/+) doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses in Themis(I23N) mice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells. Themis(I23N) mice can be used to study the newly discovered association of THEMIS (6p22.33) with inflammatory bowel disease and multiple sclerosis.


Asunto(s)
Proteína Tirosina Quinasa p56(lck) Específica de Linfocito/genética , Malaria Cerebral/inmunología , Plasmodium berghei/inmunología , Proteínas/genética , Tuberculosis Pulmonar/inmunología , Animales , Barrera Hematoencefálica , Encéfalo/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Enfermedad Celíaca/genética , Etilnitrosourea , Expresión Génica , Inflamación/inmunología , Péptidos y Proteínas de Señalización Intercelular , Malaria Cerebral/parasitología , Malaria Cerebral/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Parasitemia/patología , Proteínas/inmunología , Tuberculosis Pulmonar/microbiología
9.
Commun Biol ; 7(1): 77, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200184

RESUMEN

CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.


Asunto(s)
Colitis , Enfermedades Neuroinflamatorias , Animales , Humanos , Ratones , Fenómenos Fisiológicos Celulares , Colitis/genética , Citoesqueleto , Células Dendríticas , Factores de Intercambio de Guanina Nucleótido Rho/genética
10.
Nat Commun ; 15(1): 5266, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902237

RESUMEN

Functionally characterizing the genetic alterations that drive pancreatic cancer is a prerequisite for precision medicine. Here, we perform somatic CRISPR/Cas9 mutagenesis screens to assess the transforming potential of 125 recurrently mutated pancreatic cancer genes, which revealed USP15 and SCAF1 as pancreatic tumor suppressors. Mechanistically, we find that USP15 functions in a haploinsufficient manner and that loss of USP15 or SCAF1 leads to reduced inflammatory TNFα, TGF-ß and IL6 responses and increased sensitivity to PARP inhibition and Gemcitabine. Furthermore, we find that loss of SCAF1 leads to the formation of a truncated, inactive USP15 isoform at the expense of full-length USP15, functionally coupling SCAF1 and USP15. Notably, USP15 and SCAF1 alterations are observed in 31% of pancreatic cancer patients. Our results highlight the utility of in vivo CRISPR screens to integrate human cancer genomics and mouse modeling for the discovery of cancer driver genes with potential prognostic and therapeutic implications.


Asunto(s)
Sistemas CRISPR-Cas , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Línea Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Gemcitabina , Regulación Neoplásica de la Expresión Génica , Mutación , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
11.
Transfus Med Rev ; 37(3): 150748, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37827586

RESUMEN

Biphosphoglycerate mutase (BPGM) is a tri-functional enzyme expressed exclusively in erythroid cells and tissues that is responsible for the production of 2,3-biphosphoglycerate (2,3-BPG) through the Rapoport-Luebering shunt. The 2,3-BPG is required for efficient glycolysis and ATP production under anaerobic conditions, but is also a critical allosteric regulator of hemoglobin (Hb), acting to regulate oxygen release in peripheral tissues. In humans, BPGM deficiency is very rare, and is associated with reduced levels of erythrocytic 2,3-BPG and ATP, left shifted Hb-O2 dissociation curve, low P50, elevated Hb and constitutive erythrocytosis. BPGM deficiency in mice recapitulates the erythroid defects seen in human patients. A recent report has shown that BPGM deficiency in mice affords striking protection against both severe malaria anemia and cerebral malaria. These findings are reminiscent of studies of another erythrocyte specific glycolytic enzyme, Pyruvate Kinase (PKLR), which mutational inactivation protects humans and mice against malaria through impairment of glycolysis and ATP production in erythrocytes. BPGM, and PKLR join glucose-6-phosphate dehydrogenase (G6PD) and other erythrocyte variants as modulating response to malaria. Recent studies reviewed suggest glycolysis in general, and BPGM in particular, as a novel pharmacological target for therapeutic intervention in malaria.


Asunto(s)
Transferasas Intramoleculares , Malaria , Humanos , Ratones , Animales , Eritrocitos , Hemoglobinas , Oxígeno , Malaria/tratamiento farmacológico , Adenosina Trifosfato
12.
Sci Rep ; 11(1): 15073, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34302001

RESUMEN

The estrogen-related receptor alpha (ERRα) is a primary regulator of mitochondrial energy metabolism, function and dynamics, and has been implicated in autophagy and immune regulation. ERRα is abundantly expressed in the intestine and in cells of the immune system. However, its role in inflammatory bowel disease (IBD) remains unknown. Here, we report a protective role of ERRα in the intestine. We found that mice deficient in ERRα were susceptible to experimental colitis, exhibiting increased colon inflammation and tissue damage. This phenotype was mediated by impaired compensatory proliferation of intestinal epithelial cells (IEC) following injury, enhanced IEC apoptosis and necrosis and reduced mucus-producing goblet cell counts. Longitudinal analysis of the microbiota demonstrated that loss of ERRα lead to a reduction in microbiome α-diversity and depletion of healthy gut bacterial constituents. Mechanistically, ERRα mediated its protective effects by acting within the radio-resistant compartment of the intestine. It promoted disease tolerance through transcriptional control of key genes involved in intestinal tissue homeostasis and repair. These findings provide new insights on the role of ERRα in the gut and extends our current knowledge of nuclear receptors implicated in IBD.


Asunto(s)
Colitis/genética , Metabolismo Energético/genética , Enfermedades Inflamatorias del Intestino/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Receptores de Estrógenos/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Colitis/inducido químicamente , Colitis/metabolismo , Colitis/patología , Colon/metabolismo , Colon/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Homeostasis/genética , Humanos , Inflamación/inducido químicamente , Inflamación/genética , Inflamación/patología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Microbiota/genética , Necrosis/genética , Necrosis/metabolismo , Necrosis/patología , Receptor Relacionado con Estrógeno ERRalfa
13.
J Leukoc Biol ; 108(6): 1787-1802, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32480428

RESUMEN

The Coiled Coil Domain Containing Protein 88B (CCDC88B) gene is associated with susceptibility to several inflammatory diseases in humans and its inactivation in mice protects against acute neuroinflammation and models of intestinal colitis. We report that mice lacking functional CCDC88B (Ccdc88bMut ) are defective in several dendritic cells (DCs)-dependent inflammatory and immune reactions in vivo. In these mice, an inflammatory stimulus (LPS) fails to induce the recruitment of DCs into the draining lymph nodes (LNs). In addition, OVA-pulsed Ccdc88bMut DCs injected in the footpad do not induce recruitment and activation of antigen-specific CD4+ and CD8+ T cells in their draining LN. Experiments in vitro indicate that this defect is independent of the ability of mutant DCs to capture and present peptide antigen to T cells. Rather, kinetic analyses in vivo of wild-type and Ccdc88bMut DCs indicate a reduced migration capacity in the absence of the CCDC88B protein expression. Moreover, using time-lapse light microscopy imaging, we show that Ccdc88bMut DCs have an intrinsic motility defect. Furthermore, in vivo studies reveal that these reduced migratory properties lead to dampened contact hypersensitivity reactions in Ccdc88b mutant mice. These findings establish a critical role of CCDC88B in regulating movement and migration of DCs. Thus, regulatory variants impacting Ccdc88b expression in myeloid cells may cause variable degrees of DC-dependent inflammatory response in situ, providing a rationale for the genetic association of CCDC88B with several inflammatory and autoimmune diseases in humans.


Asunto(s)
Presentación de Antígeno , Proteínas Portadoras/inmunología , Movimiento Celular/inmunología , Células Dendríticas/inmunología , Regulación de la Expresión Génica/inmunología , Animales , Proteínas Portadoras/genética , Movimiento Celular/genética , Células Dendríticas/citología , Inflamación/genética , Inflamación/inmunología , Inflamación/patología , Ratones , Ratones Transgénicos
14.
Cell Rep ; 32(12): 108170, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966787

RESUMEN

The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (BpgmL166P) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria. The malaria protection seen in BpgmL166P mutant mice is associated with reduced blood parasitemia levels, milder clinical symptoms, and increased survival. The protective effect of BpgmL166P involves a dual mechanism that enhances the host's stress erythroid response to Plasmodium-driven RBC loss and simultaneously alters the intracellular milieu of the RBCs, including increased oxyhemoglobin and reduced energy metabolism, reducing Plasmodium maturation, and replication. Overall, our study highlights the importance of BPGM as a regulator of hemoglobin/oxyhemoglobin in malaria pathogenesis and suggests a new potential malaria therapeutic target.


Asunto(s)
Anemia/etiología , Anemia/prevención & control , Bisfosfoglicerato Mutasa/deficiencia , Malaria Cerebral/enzimología , Malaria Cerebral/prevención & control , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Bisfosfoglicerato Mutasa/química , Bisfosfoglicerato Mutasa/genética , Bisfosfoglicerato Mutasa/metabolismo , Estabilidad de Enzimas , Eritrocitos/enzimología , Eritrocitos/parasitología , Eritropoyesis , Matriz Extracelular/metabolismo , Femenino , Células HEK293 , Humanos , Malaria Cerebral/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Mutación/genética , Parásitos/crecimiento & desarrollo , Plasmodium/crecimiento & desarrollo , Policitemia
15.
Sci Rep ; 9(1): 18897, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31827213

RESUMEN

The mechanisms linking chronic inflammation of the gut (IBD) and increased colorectal cancer susceptibility are poorly understood. IBD risk is influenced by genetic factors, including the IBD5 locus (human 5q31), that harbors the IRF1 gene. A cause-to-effect relationship between chronic inflammation and colorectal cancer, and a possible role of IRF1 were studied in Irf1-/- mice in a model of colitis-associated colorectal cancer (CA-CRC) induced by azoxymethane and dextran sulfate. Loss of Irf1 causes hyper-susceptibility to CA-CRC, with early onset and increased number of tumors leading to rapid lethality. Transcript profiling (RNA-seq) and immunostaining of colons shows heightened inflammation and enhanced enterocyte proliferation in Irf1-/- mutants, prior to appearance of tumors. Considerable infiltration of leukocytes is seen in Irf1-/- colons at this early stage, and is composed primarily of proinflammatory Gr1+ Cd11b+ myeloid cells and other granulocytes, as well as CD4+ lymphoid cells. Differential susceptibility to CA-CRC of Irf1-/- vs. B6 controls is fully transferable through hematopoietic cells as observed in bone marrow chimera studies. Transcript signatures seen in Irf1-/- mice in response to AOM/DSS are enriched in clinical specimens from patients with IBD and with colorectal cancer. In addition, IRF1 expression in the colon is significantly decreased in late stage colorectal cancer (stages 3, 4) and is associated with poorer prognosis. This suggests that partial or complete loss of IRF1 expression alters the type, number, and function of immune cells in situ during chronic inflammation, possibly via the creation of a tumor-promoting environment.


Asunto(s)
Colitis/metabolismo , Neoplasias Colorrectales/metabolismo , Factor 1 Regulador del Interferón/metabolismo , Animales , Colitis/complicaciones , Colitis/genética , Colitis/patología , Colon/metabolismo , Colon/patología , Neoplasias Colorrectales/etiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Factor 1 Regulador del Interferón/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Noqueados
16.
Structure ; 27(4): 590-605.e5, 2019 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-30713027

RESUMEN

The multi-domain deubiquitinase USP15 regulates diverse eukaryotic processes and has been implicated in numerous diseases. We developed ubiquitin variants (UbVs) that targeted either the catalytic domain or each of three adaptor domains in USP15, including the N-terminal DUSP domain. We also designed a linear dimer (diUbV), which targeted the DUSP and catalytic domains, and exhibited enhanced specificity and more potent inhibition of catalytic activity than either UbV alone. In cells, the UbVs inhibited the deubiquitination of two USP15 substrates, SMURF2 and TRIM25, and the diUbV inhibited the effects of USP15 on the transforming growth factor ß pathway. Structural analyses revealed that three distinct UbVs bound to the catalytic domain and locked the active site in a closed, inactive conformation, and one UbV formed an unusual strand-swapped dimer and bound two DUSP domains simultaneously. These inhibitors will enable the study of USP15 function in oncology, neurology, immunology, and inflammation.


Asunto(s)
Factores de Transcripción/química , Factor de Crecimiento Transformador beta1/química , Proteínas de Motivos Tripartitos/química , Ubiquitina-Proteína Ligasas/química , Proteasas Ubiquitina-Específicas/química , Ubiquitina/química , Secuencia de Aminoácidos , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Proteínas de Motivos Tripartitos/genética , Proteínas de Motivos Tripartitos/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteasas Ubiquitina-Específicas/antagonistas & inhibidores , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitinación
17.
Nat Commun ; 8(1): 932, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29030607

RESUMEN

Inflammatory bowel disease (IBD) involves interaction between host genetic factors and environmental triggers. CCDC88B maps within one IBD risk locus on human chromosome 11q13. Here we show that CCDC88B protein increases in the colon during intestinal injury, concomitant with an influx of CCDC88B+lymphoid and myeloid cells. Loss of Ccdc88b protects against DSS-induced colitis, with fewer pathological lesions and reduced intestinal inflammation in Ccdc88b-deficient mice. In a T cell transfer model of colitis, Ccdc88b mutant CD4+ T cells do not induce colitis in immunocompromised hosts. Expression of human CCDC88B RNA and protein is higher in IBD patient colons than in control colon tissue. In human CD14+ myeloid cells, CCDC88B is regulated by cis-acting variants. In a cohort of patients with Crohn's disease, CCDC88B expression correlates positively with disease risk. These findings suggest that CCDC88B has a critical function in colon inflammation and the pathogenesis of IBD.Hook-related protein family member CCDC88b is encoded by a locus that has been associated with inflammatory bowel disease. Here the authors show that Ccdc88b inactivation in T cells prevents colitis in a transfer model, and detect high colonic levels of CCDC88b in patients with Crohn disease or ulcerative colitis, identifying that expression correlates with disease risk.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Colitis/patología , Enfermedades Inflamatorias del Intestino/patología , Animales , Colitis/inducido químicamente , Colitis/metabolismo , Colon/metabolismo , Colon/patología , Enfermedad de Crohn/metabolismo , Enfermedad de Crohn/patología , Sulfato de Dextran/toxicidad , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Enfermedades Inflamatorias del Intestino/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Células Mieloides/metabolismo , Células Mieloides/patología , Polimorfismo de Nucleótido Simple , Linfocitos T/metabolismo , Linfocitos T/patología
18.
J Exp Med ; 211(13): 2519-35, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25403443

RESUMEN

We used a genome-wide screen in mutagenized mice to identify genes which inactivation protects against lethal neuroinflammation during experimental cerebral malaria (ECM). We identified an ECM-protective mutation in coiled-coil domain containing protein 88b (Ccdc88b), a poorly annotated gene that is found expressed specifically in spleen, bone marrow, lymph nodes, and thymus. The CCDC88B protein is abundantly expressed in immune cells, including both CD4(+) and CD8(+) T lymphocytes, and in myeloid cells, and loss of CCDC88B protein expression has pleiotropic effects on T lymphocyte functions, including impaired maturation in vivo, significantly reduced activation, reduced cell division as well as impaired cytokine production (IFN-γ and TNF) in response to T cell receptor engagement, or to nonspecific stimuli in vitro, and during the course of P. berghei infection in vivo. This identifies CCDC88B as a novel and important regulator of T cell function. The human CCDC88B gene maps to the 11q13 locus that is associated with susceptibility to several inflammatory and auto-immune disorders. Our findings strongly suggest that CCDC88B is the morbid gene underlying the pleiotropic effect of the 11q13 locus on inflammation.


Asunto(s)
Proteínas Portadoras/genética , Diferenciación Celular , Inflamación/inmunología , Inflamación/patología , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Secuencia de Bases , Proteínas Portadoras/metabolismo , Cromosomas Humanos Par 11/genética , Resistencia a la Enfermedad/inmunología , Etilnitrosourea , Femenino , Regulación de la Expresión Génica , Estudios de Asociación Genética , Sistema Hematopoyético/metabolismo , Humanos , Activación de Linfocitos/inmunología , Malaria Cerebral/genética , Malaria Cerebral/inmunología , Malaria Cerebral/parasitología , Malaria Cerebral/prevención & control , Masculino , Ratones Endogámicos C57BL , Ratones Mutantes , Datos de Secuencia Molecular , Mutación/genética , Células Mieloides/metabolismo , Especificidad de Órganos/genética , Plasmodium berghei , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo
20.
Am J Pathol ; 166(1): 275-86, 2005 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-15632019

RESUMEN

Human polycystic lipomembraneous osteodysplasia with sclerosing leukoencephalopathy, also known as Nasu-Hakola disease, has been described to be associated with mutations affecting the immunoreceptor tyrosine-based activation motif-bearing KARAP/DAP12 immunoreceptor gene. Patients present bone fragilities and severe neurological alterations leading to presenile dementia. Here we investigated whether the absence of KARAP/DAP12-mediated signals in loss-of-function (KDelta75) mice also leads to bone and central nervous system pathological features. Histological analysis of adult KDelta75 mice brains revealed a diffuse hypomyelination predominating in anterior brain regions. As this was not accompanied by oligodendrocyte degeneration or microglial cell activation it suggests a developmental defect of myelin formation. Interestingly, in postnatal KDelta75 mice, we observed a dramatic reduction in microglial cell numbers similar to in vitro microglial cell differentiation impairment. Our results raise the intriguing possibility that defective microglial cell differentiation might be responsible for abnormal myelin development. Histomorphometry revealed that bone remodeling is also altered, because of a resorption defect, associated with a severe block of in vitro osteoclast differentiation. In addition, we show that, among monocytic lineages, KARAP/DAP12 specifically controls microglial and osteoclast differentiation. Our results confirm that KARAP/DAP12-mediated signals play an important role in the regulation of both brain and bone homeostasis. Yet, important differences exist between the symptoms observed in Nasu-Hakola patients and KDelta75 mice.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/deficiencia , Enfermedades Óseas/genética , Daño Encefálico Crónico/genética , Microglía/patología , Osteoclastos/patología , Receptores Inmunológicos/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Enfermedades Óseas/patología , Daño Encefálico Crónico/patología , Ratones , Ratones Noqueados , Receptores Inmunológicos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA