Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Physiol Plant ; 176(4): e14483, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39169536

RESUMEN

Both above- and below-ground parts of plants are constantly challenged with microbes and interact closely with them. Many plant-growth-promoting rhizobacteria, mostly interacting with the plant's root system, enhance the immunity of plants in a process described as induced systemic resistance (ISR). Here, we characterized local induced resistance (IR) triggered by the model PGPR Pseudomonas simiae WCS417r (WCS417) in Arabidopsis thaliana. Hydroponic application of WCS417 to Arabidopsis roots resulted in propagation of WCS417 in/on leaves and the establishment of local IR. WCS417-triggered local IR was dependent on salicylic acid (SA) biosynthesis and signalling and on functional biosynthesis of pipecolic acid and monoterpenes, which are classically associated with systemic acquired resistance (SAR). WCS417-triggered local IR was further associated with a priming of gene expression changes related to SA signalling and SAR. A metabarcoding approach applied to the leaf microbiome revealed a significant local IR-associated enrichment of Flavobacterium sp.. Co-inoculation experiments using WCS417 and At-LSPHERE Flavobacterium sp. Leaf82 suggest that the proliferation of these bacteria is influenced by both microbial and immunity-related, plant-derived factors. Furthermore, application of Flavobacterium Leaf82 to Arabidopsis leaves induced SAR in an NPR1-dependent manner, suggesting that recruitment of this bacterium to the phyllosphere resulted in propagation of IR. Together, the data highlight the importance of plant-microbe-microbe interactions in the phyllosphere and reveal Flavobacterium sp. Leaf82 as a new beneficial promoter of plant health.


Asunto(s)
Arabidopsis , Flavobacterium , Hojas de la Planta , Ácido Salicílico , Arabidopsis/microbiología , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/inmunología , Ácido Salicílico/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Flavobacterium/fisiología , Raíces de Plantas/microbiología , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Pseudomonas/fisiología , Regulación de la Expresión Génica de las Plantas
2.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36861375

RESUMEN

Three strains (H4-D09T, S2-D11 and S9-F39) of a member of the genus Paracoccus attributed to a novel species were isolated from topsoil of temperate grasslands. The genome sequence of the type strain H4-D09T exhibited a complete set of genes required for denitrification as well as methylotrophy. The genome of H4-D09T included genes for two alternative pathways of formaldehyde oxidation. Besides the genes for the canonical glutathione (GSH)-dependent formaldehyde oxidation pathway, all genes for the tetrahydrofolate-formaldehyde oxidation pathway were identified. The strain has the potential to utilize methanol and/or methylamine as a single carbon source as evidenced by the presence of methanol dehydrogenase (mxaFI) and methylamine dehydrogenase (mau) genes. Apart from dissimilatory denitrification genes (narA, nirS, norBC and nosZ), genes for assimilatory nitrate (nasA) and nitrite reductases (nirBD) were also identified. The results of phylogenetic analysis based on 16S rRNA genes coupled with riboprinting revealed that all three strains represented the same species of genus Paracoccus. Core genome phylogeny of the type strain H4-D09T indicated that Paracoccus thiocyanatus and Paracoccus denitrificans are the closest phylogenetic neighbours. The average nucleotide index (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. The major respiratory quinone is Q-10, and the predominant cellular fatty acids are C18 : 1ω7c, C19 : 0cyclo ω7c, and C16 : 0, which correspond to those detected in other members of the genus. The polar lipid profile consists of a diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC), aminolipid (AL), glycolipid (GL) and an unidentified lipid (L).On the basis of our results, we concluded that the investigated isolates represent a novel species of the genus Paracoccus, for which the name Paracoccus methylovorus sp. nov. (type strain H4-D09T=LMG 31941T= DSM 111585T) is proposed.


Asunto(s)
Desnitrificación , Paracoccus , Filogenia , ARN Ribosómico 16S/genética , Ácidos Grasos/química , Análisis de Secuencia de ADN , ADN Bacteriano/genética , Técnicas de Tipificación Bacteriana , Composición de Base , Genómica , Paracoccus/genética , Formaldehído
3.
Artículo en Inglés | MEDLINE | ID: mdl-34016249

RESUMEN

A novel strain was isolated from grassland soil that has the potential to assimilate ammonium by the reduction of nitrate in the presence of oxygen. Whole genome sequence analysis revealed the presence of an assimilatory cytoplasmic nitrate reductase gene nasA and the assimilatory nitrite reductase genes nirBD which are involved in the sequential reduction of nitrate to nitrite and further to ammonium, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represents a member of the genus Pseudomonas. The closest phylogenetic neighbours based on 16S rRNA gene sequence analysis are the type strains of Pseudomonas peli (98.17%) and Pseudomonas guineae (98.03%). In contrast, phylogenomic analysis revealed a close relationship to Pseudomonas alcaligenes. Computation of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours of S1-A32-2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. On the basis of these results, it was concluded that the soil isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas campi sp. nov. (type strain S1-A32-2T=LMG 31521T=DSM 110222T) is proposed.


Asunto(s)
Pradera , Filogenia , Pseudomonas/clasificación , Microbiología del Suelo , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Genes Bacterianos , Alemania , Nitratos/metabolismo , Hibridación de Ácido Nucleico , Pseudomonas/aislamiento & purificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
4.
Int J Syst Evol Microbiol ; 68(4): 1028-1036, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29458671

RESUMEN

A novel slow-growing bacterium, designated strain AW1220T, was isolated from agricultural floodplain soil sampled at Mashare (Kavango region, Namibia) by using a high-throughput cultivation approach. Strain AW1220T was characterized as a Gram-negative, non-motile, rod-shaped bacterium. Occasionally, some cells attained an unusual length of up to 35 µm. The strain showed positive responses for catalase and cytochrome-c oxidase and divided by binary fission and/or budding. The strain had an aerobic chemoorganoheterotrophic metabolism and was also able to grow under micro-oxic conditions. Colonies were small and pink pigmented. Strain AW1220T was found to be a mesophilic, neutrophilic and non-halophilic bacterium. Cells accumulated polyphosphate intracellularly and mainly utilized complex protein substrates for growth. 16S rRNA gene sequence comparisons revealed that strain AW1220T belonged to the class Gemmatimonadetes (=group 1). Its closest relatives were found to be Gemmatimonas aurantiaca T-27T (90.9 % gene sequence similarity), Gemmatimonas phototrophica AP64T (90.8 %) and Longimicrobiumterrae CB-286315T (84.2 %). The genomic G+C content was 73.3 mol%. The major fatty acids were iso-C15 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH, iso-C17 : 1ω9c, iso-C15 : 0 3-OH and C16 : 0. The predominant respiratory quinone was MK-9, albeit minor amounts of MK-8 and MK-10 are also present. The polar lipids comprised major amounts of phosphatidylethanolamine, phosphatidylcholine, diphosphatidylglycerol and one unidentified phosphoglycolipid. On the basis of its polyphasic characterization, strain AW1220T represents a novel genus and species of the class Gemmatimonadetes for which the name Roseisolibacter agri gen. nov., sp. nov. is proposed, with the type strain AW1220T (=DSM 104292T=LMG 29977T).


Asunto(s)
Bacterias/clasificación , Filogenia , Microbiología del Suelo , Agricultura , Bacterias/genética , Bacterias/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Complejo IV de Transporte de Electrones/genética , Ácidos Grasos/química , Namibia , Fosfolípidos/química , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
5.
Int J Syst Evol Microbiol ; 67(6): 1727-1734, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28632115

RESUMEN

A novel slow-growing bacterial strain designated as AW305T was isolated from an agricultural floodplain soil located in Mashare, Kavango region, Namibia. Cells stained Gram-negative, were non-motile, non-spore-forming, coccoid to rod-shaped and did not form a capsule. Colonies were yellow-pigmented, but flexirubin-type pigments were not detected. AW305T had an aerobic chemo-organoheterotrophic metabolism, using a narrow spectrum of carbon sources for growth, with preference for complex protein substrates, organic acids and amino acids. AW305T was able to grow at 15-40 °C, pH 5.3-8.3 and in the presence of up to 0.25 % (w/v) NaCl. 16S rRNA gene sequence comparison showed that AW305T belonged to the genus Flaviaesturariibacter (family Chitinophagaceae). Its closest relatives were Flaviaesturariibacter amylovorans GCR0105T (97.0 %), Flavisolibacter ginsengiterrae Gsoil 492T (93.6 %) and Flavisolibacter ginsengisoli Gsoil 643T (93.2 %). DNA-DNA hybridization experiments corroborated that AW305T represents an independent genomospecies. The genomic DNA G+C content was 57.6 mol%. Major fatty acids were iso-C15 : 1 G, iso-C15 : 0, C16 : 1ω5c, iso-C17 : 0 3-OH and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH). The predominant respiratory quinone was MK-7, albeit minor amounts of MK-6 were also detected. The polar lipids comprised major amounts of phosphatidylethanolamine and minor amounts of two unidentified lipids, an unidentified phospholipid, an unidentified glycolipid and an unidentified aminoglycophospholipid. On the basis of the polyphasic characterization, strain AW305T represents a novel species of the genus Flaviaesturariibacter for which the name Flaviaesturariibacter luteus sp. nov. is proposed, with the type strain AW305T (=DSM 100282T=LMG 29416T).


Asunto(s)
Bacteroidetes/clasificación , Filogenia , Microbiología del Suelo , Agricultura , Técnicas de Tipificación Bacteriana , Bacteroidetes/genética , Bacteroidetes/aislamiento & purificación , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Namibia , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
6.
Int J Syst Evol Microbiol ; 66(2): 652-665, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26582010

RESUMEN

Two Gram-type-positive, non-spore-forming bacteria, strains D16/0/H6T and A22/0/F9_1T, were isolated from Namibian semiarid savannah soils. 16S rRNA gene sequence analysis revealed 96.6 % identity between the two strains and placed them within the order Solirubrobacterales of the class Thermoleophilia. The closest phylogenetic relatives with validly published names were several strains of the genus Solirubrobacter and the species Conexibacter arvalis, with pairwise sequence similarities of ≤ 94.0 %. Cells of strain D16/0/H6T were ovoid to rod-shaped, whereas strain A22/0/F9_1T formed regular rods. Cells of both strains were motile and divided by binary fission. Colonies were pink and white to pale yellowish/brownish, respectively. Strains D16/0/H6T and A22/0/F9_1T were aerobic, chemoheterotrophic mesophiles with broad temperature (13-43 and 17-43 °C, respectively) and pH (pH 4.5-8.5 and 5.0-9.5) ranges for growth. Complex proteinaceous substrates and glucose were the preferred carbon and energy sources. Strain A22/0/F9_1T also grew on various carboxylic acids. For both strains, the peptidoglycan diamino acid was meso-2,6-diaminopimelic acid. The major quinone was MK-8. As a minor compound, MK-7 occurred in strain D16/0/H6T; strain A22/0F9_1T also contained MK-7, MK-7(H2) and MK-8(H2). Major fatty acids of strain D16/0/H6T were 10-methyl C17 : 0, iso-C16 : 0 and C18 : 1ω9c. Strain A22/0F9_1T contained C18 : 1ω9c, C17 : 1ω8c, C17 : 1ω6c and iso-C16 : 0 as major components. The DNA G+C contents of strains D16/0/H6T and A22/0/F9_1T were 72.8 and 74.0 mol%, respectively. Based on these characteristics, the two isolates are assigned to novel species of the new genus Parviterribacter gen. nov., the type species Parviterribacter kavangonensis sp. nov. (type strain D16/0/H6T = DSM 25205T = LMG 26950T) and a second species Parviterribacter multiflagellatus sp. nov. (type strain A22/0/F9_1T = DSM 25204T = LMG 26949T). As the novel genus and species cannot be clearly assigned to an established family within the order Solirubrobacterales, the novel family Parviterribacteraceae fam. nov. is proposed. Emended descriptions of the classes Thermoleophilia and Rubrobacteria and their orders and families are also provided.

7.
Int J Syst Evol Microbiol ; 66(1): 219-229, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26486590

RESUMEN

Three Gram-negative, non-spore-forming, encapsulated bacteria were isolated from a Namibian river-bank soil (strains 277T and 307) and a semiarid savannah soil (strain A2-1cT). 16S rRNA gene sequence analyses placed them within subdivision 1 of the Acidobacteria and revealed 100 % similarity between strains 277T and 307 and 98.2 % similarity between A2-1cT and the former two strains. The closest relatives with validly published names were Telmatobacter bradus, Acidicapsa borealis and Acidicapsa ligni (94.7-95.9 % similarity to the type strains). Cells of all three strains were rod-shaped and motile and divided by binary fission. Ultrastructural analyses revealed a thick cell envelope, resulting mainly from a thick periplasmic space. Colonies of strains 277T and 307 were white to cream and light pink, respectively, while strain A2-1cT displayed a bright pink colour. All three strains were aerobic, chemoheterotrophic mesophiles with a broad temperature range for growth and a moderately acidic pH optimum. Sugars and complex proteinaceous substrates were the preferred carbon and energy sources. A few polysaccharides were degraded. The major quinone in all three strains was MK-8; MK-7 occurred in strain A2-1cT as a minor compound. Major fatty acids were iso-C15 : 0 and iso-C17 : 1ω7c. In addition, iso-C17 : 0 occurred in significant amounts. The DNA G+C contents of strains 277T, 307 and A2-1cT were 59.6, 59.9 and 58.5 mol%, respectively. Based on these characteristics, the three isolates are assigned to two novel species of the novel genus Occallatibacter gen. nov., Occallatibacter riparius sp. nov. [type strain 277T ( = DSM 25168T = LMG 26948T) and reference strain 307 ( = DSM 25169 = LMG 26947)] and Occallatibacter savannae sp. nov. [type strain A2-1cT ( = DSM 25170T = LMG 26946T)]. Together with several other recently described taxa, the novel isolates provide the basis for an emended description of the established family Acidobacteriaceae.


Asunto(s)
Acidobacteria/clasificación , Filogenia , Microbiología del Suelo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , Namibia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
8.
Int J Syst Evol Microbiol ; 66(9): 3355-3366, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27255677

RESUMEN

Three novel strains of the phylum Acidobacteria (Ac_11_E3T, Ac_12_G8T and Ac_16_C4T) were isolated from Namibian semiarid savanna soils by a high-throughput cultivation approach using low-nutrient growth media. 16S rRNA gene sequence analysis placed all three strains in the order Blastocatellales of the class Blastocatellia (Acidobacteria subdivision 4). However, 16S rRNA gene sequence similarities to their closest relative Pyrinomonas methylaliphatogenes K22T were ≤90 %. Cells of strains Ac_11_E3T, Ac_12_G8T and Ac_16_C4T were Gram-staining-negative and non-motile and divided by binary fission. Ac_11_E3T and Ac_16_C4T formed white colonies, while those of Ac_12_G8T were orange-yellowish. All three strains were aerobic chemoorganoheterotrophic mesophiles with a broad pH range for growth. All strains used a very limited spectrum of carbon and energy sources for growth, with a preference for complex proteinaceous substrates. The major respiratory quinone was MK-8. The major shared fatty acid was iso-C15 : 0. The DNA G+C contents of strains Ac_11_E3T, Ac_12_G8T and Ac_16_C4T were 55.9 mol%, 66.9 mol% and 54.7 mol%, respectively. Based on these characteristics, the two novel genera Brevitaleagen. nov. and Arenimicrobiumgen. nov. are proposed, harboring the novel species Brevitaleaaridisoli sp. nov. (Ac_11_E3T=DSM 27934T=LMG 28618T), Brevitalea deliciosa sp. nov. (Ac_16_C4T=DSM 29892T=LMG 28995T) and Arenimicrobium luteum sp. nov. (Ac_12_G8T=DSM 26556T=LMG 29166T), respectively. Since these novel genera are only distantly related to established families, we propose the novel family Pyrinomonadaceaefam. nov. that accommodates the proposed genera and the genus Pyrinomonas(Crowe et al., 2014).


Asunto(s)
Acidobacteria/clasificación , Filogenia , Microbiología del Suelo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Pradera , Namibia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
9.
Int J Syst Evol Microbiol ; 66(2): 968-974, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26637818

RESUMEN

A total of 17 Enterobacter-like isolates were obtained from blood during a septicaemia outbreak in a neonatal unit, Tanzania, that could not be assigned based on phenotypic test to any existing Enterobacter species. Eight representative outbreak isolates were investigated in detail. Fermentation characteristics, biochemical assays and fatty acid profiles for taxonomic analysis were determined and supplemented with information derived from whole genome sequences. Phenotypic and morphological tests revealed that these isolates were Gram-stain-negative, rod-shaped, highly motile and facultatively anaerobic. The fatty acid profile was similar to those of the type strains for all recognized Enterobacter species, with quantitative differences in C17 : 0, C18 : 1ω7c and C17 : 0 cyclo fatty acids. Whole genome sequencing was used to identify taxonomically relevant characteristics, i.e. for 16S rRNA gene sequence analysis, multi-locus sequence analysis (MLSA), in silico DNA-DNA hybridization (isDDH) and average nucleotide identity (ANI). Draft genomes were approximately 4.9 Mb in size with a G+C content of 56.0 mol%. The 16S rRNA gene sequence of these eight isolates showed >97 % similarity to all Enterobacter species, while MLSA clustered them closely with the type strains of Enterobacter xiangfangensis and Enterobacter hormaechei. These eight strains showed less than 70 % isDDH identity with the type strains of Enterobacter species. In addition, less than 95 % ANI to the type strains of Enterobacter species was observed. From these results, it is concluded that these isolates possess sufficient characteristics to differentiate them from all recognized Enterobacter species, and should therefore be considered as representing a novel species. The name Enterobacter bugandensis sp. nov. is proposed with EB-247T ( = DSM 29888T = NCCB 100573T) as the type strain.

10.
Int J Syst Evol Microbiol ; 65(10): 3297-3304, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26297491

RESUMEN

A novel aerobic, chemo-organoheterotrophic bacterium, strain Ac_26_B10T, was isolated from a semiarid savannah soil collected in northern Namibia (Mashare, Kavango region). Based on analysis of its nearly full-length 16S rRNA gene sequence, the isolate belongs to the genus Terriglobus (family Acidobacteriaceae, order Acidobacteriales, class Acidobacteria) and shares 98.3 and 96.9 % 16S rRNA gene sequence similarity with its closest relatives, Terriglobus tenax DRP 35T and T. aquaticus O3SUJ4T. Cells were Gram-negative, coccoid to rod-shaped, non-motile and divided by binary fission. Strain Ac_26_B10T showed weak catalase activity and, in contrast to the other described species of the genus Terriglobus, was oxidase-positive. Compared with the already established species of the genus Terriglobus, the novel strain used a larger range of sugars and sugar alcohols for growth, lacked α-mannosidase activity and exhibited a higher temperature optimum of growth. DNA­DNA hybridization studies with its closest phylogenetic relative, T. tenax DSM 28898T, confirmed that strain Ac_26_B10T represents a distinct genomospecies. Its most abundant fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c) and C16 : 0. Dominant polar lipids were phosphatidylethanolamine and diphosphatidylglycerol. The predominant menaquinone was MK-8; minor amounts of MK-7 and MK-8(H2) were also recorded. The G+C content of the genomic DNA was 58.5 mol%. On the basis of our polyphasic analysis, Ac_26_B10T represents a novel species of the genus Terriglobus, for which the name Terriglobus albidus sp. nov. is proposed. The type strain is Ac_26_B10T ( = DSM 26559T = LMG 27984T).


Asunto(s)
Acidobacteria/clasificación , Pradera , Filogenia , Microbiología del Suelo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , Namibia , Hibridación de Ácido Nucleico , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/química
11.
Environ Microbiol ; 16(3): 658-75, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23802854

RESUMEN

16S rRNA genes and transcripts of Acidobacteria were investigated in 57 grassland and forest soils of three different geographic regions. Acidobacteria contributed 9-31% of bacterial 16S rRNA genes whereas the relative abundances of the respective transcripts were 4-16%. The specific cellular 16S rRNA content (determined as molar ratio of rRNA : rRNA genes) ranged between 3 and 80, indicating a low in situ growth rate. Correlations with flagellate numbers, vascular plant diversity and soil respiration suggest that biotic interactions are important determinants of Acidobacteria 16S rRNA transcript abundances in soils. While the phylogenetic composition of Acidobacteria differed significantly between grassland and forest soils, high throughput denaturing gradient gel electrophoresis and terminal restriction fragment length polymorphism fingerprinting detected 16S rRNA transcripts of most phylotypes in situ. Partial least squares regression suggested that chemical soil conditions such as pH, total nitrogen, C : N ratio, ammonia concentrations and total phosphorus affect the composition of this active fraction of Acidobacteria. Transcript abundance for individual Acidobacteria phylotypes was found to correlate with particular physicochemical (pH, temperature, nitrogen or phosphorus) and, most notably, biological parameters (respiration rates, abundances of ciliates or amoebae, vascular plant diversity), providing culture-independent evidence for a distinct niche specialization of different Acidobacteria even from the same subdivision.


Asunto(s)
Acidobacteria/genética , Acidobacteria/metabolismo , Ecosistema , ARN Ribosómico 16S/genética , Microbiología del Suelo , Árboles/microbiología , Acidobacteria/clasificación , Datos de Secuencia Molecular , Nitrógeno/análisis , Fósforo/análisis , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , Suelo/química
12.
Appl Environ Microbiol ; 80(17): 5207-18, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24928878

RESUMEN

Recently, iso-diabolic acid (13,16-dimethyl octacosanedioic acid) has been identified as a major membrane-spanning lipid of subdivisions 1 and 3 of the Acidobacteria, a highly diverse phylum within the Bacteria. This finding pointed to the Acidobacteria as a potential source for the bacterial glycerol dialkyl glycerol tetraethers that occur ubiquitously in peat, soil, lakes, and hot springs. Here, we examined the lipid composition of seven phylogenetically divergent strains of subdivision 4 of the Acidobacteria, a bacterial group that is commonly encountered in soil. Acid hydrolysis of total cell material released iso-diabolic acid derivatives in substantial quantities (11 to 48% of all fatty acids). In contrast to subdivisions 1 and 3 of the Acidobacteria, 6 out of the 7 species of subdivision 4 (excepting "Candidatus Chloracidobacterium thermophilum") contained iso-diabolic acid ether bound to a glycerol in larger fractional abundance than iso-diabolic acid itself. This is in agreement with the analysis of intact polar lipids (IPLs) by high-performance liquid chromatography-mass spectrometry (HPLC-MS), which showed the dominance of mixed ether-ester glycerides. iso-Diabolic acid-containing IPLs were not identified, because these IPLs are not released with a Bligh-Dyer extraction, as observed before when studying lipid compositions of subdivisions 1 and 3 of the Acidobacteria. The presence of ether bonds in the membrane lipids does not seem to be an adaptation to temperature, because the five mesophilic isolates contained a larger amount of ether lipids than the thermophile "Ca. Chloracidobacterium thermophilum." Furthermore, experiments with Pyrinomonas methylaliphatogenes did not reveal a major influence of growth temperature over the 50 to 69°C range.


Asunto(s)
Acidobacteria/química , Ácidos Dicarboxílicos/análisis , Lípidos/análisis , Acidobacteria/clasificación , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Citosol/química , ADN Bacteriano/química , ADN Bacteriano/genética , Microbiología Ambiental , Ésteres/análisis , Éteres/análisis , Espectrometría de Masas , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
13.
Int J Syst Evol Microbiol ; 64(Pt 6): 1866-1875, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24573163

RESUMEN

Acidobacteria constitute an abundant fraction of the soil microbial community and are currently divided into 26 subdivisions. Most cultivated members of the Acidobacteria are affiliated with subdivision 1, while only a few representatives of subdivisions 3, 4, 8, 10 and 23 have been isolated and described so far. Two novel isolates of subdivision 4 of the Acidobacteria were isolated from subtropical savannah soils and are characterized in the present work. Cells of strains A22_HD_4H(T) and Ac_23_E3(T) were immotile rods that divided by binary fission. Colonies were pink and white, respectively. The novel strains A22_HD_4H(T) and Ac_23_E3(T) were aerobic mesophiles with a broad range of tolerance towards pH (4.0-9.5 and 3.5-10.0, respectively) and temperature (15-44 and 12-47 °C, respectively). Both showed chemo-organoheterotrophic growth on some sugars, the amino sugar N-acetylgalactosamine, a few amino acids, organic acids and various complex protein substrates. Major fatty acids of A22_HD_4H(T) and Ac_23_E3(T) were iso-C(15 : 0), summed feature 1 (C(13 : 0) 3-OH/iso-C(15 : 1) H), summed feature 3 (C(16 : 1)ω7c/C(16 : 1)ω6c) and anteiso-C(17 : 0). The major quinone was MK-8; in addition, MK-7 occurred in small amounts. The DNA G+C contents of A22_HD_4H(T) and Ac_23_E3(T) were 53.2 and 52.6 mol%, respectively. The closest described relative was Blastocatella fastidiosa A2-16(T), with 16S rRNA gene sequence identity of 93.2 and 93.3%, respectively. Strains A22_HD_4H(T) and Ac_23_E3(T) displayed 16S rRNA gene sequence similarity of 97.4% to each other. On the basis of the low DNA-DNA hybridization value, the two isolates represent different species. Based on morphological, physiological and molecular characteristics, the new genus Aridibacter gen. nov. is proposed, with two novel species, the type species Aridibacter famidurans sp. nov. (type strain A22_HD_4H(T) = DSM 26555(T) = LMG 27985(T)) and a second species, Aridibacter kavangonensis sp. nov. (type strain Ac_23_E3(T) = DSM 26558(T) = LMG 27597(T)).


Asunto(s)
Acidobacteria/clasificación , Filogenia , Microbiología del Suelo , Acidobacteria/genética , Acidobacteria/aislamiento & purificación , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Datos de Secuencia Molecular , Namibia , Hibridación de Ácido Nucleico , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
14.
Microorganisms ; 12(2)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38399658

RESUMEN

Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.

15.
Front Immunol ; 15: 1330864, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38375482

RESUMEN

The mucosal immunity is crucial for restricting SARS-CoV-2 at its entry site. Intramuscularly applied vaccines against SARS-CoV-2 stimulate high levels of neutralizing Abs in serum, but the impact of these intramuscular vaccinations on features of mucosal immunity is less clear. Here, we analyzed kinetic and functional properties of anti-SARS-CoV-2 Abs in the saliva after vaccination with BNT162b2. We analyzed a total of 24 healthy donors longitudinally for up to 16 months. We found that specific IgG appeared in the saliva after the second vaccination, declined thereafter and reappeared after the third vaccination. Adjusting serum and saliva for the same IgG concentration revealed a strong correlation between the reactivity in these two compartments. Reactivity to VoCs correlated strongly as seen by ELISAs against RBD variants and by live-virus neutralizing assays against replication-competent viruses. For further functional analysis, we purified IgG and IgA from serum and saliva. In vaccinated donors we found neutralizing activity towards authentic virus in the IgG, but not in the IgA fraction of the saliva. In contrast, IgA with neutralizing activity appeared in the saliva only after breakthrough infection. In serum, we found neutralizing activity in both the IgA and IgG fractions. Together, we show that intramuscular mRNA vaccination transiently induces a mucosal immunity that is mediated by IgG and thus differs from the mucosal immunity after infection. Waning of specific mucosal IgG might be linked to susceptibility for breakthrough infection.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Infección Irruptiva , COVID-19/prevención & control , Vacunas contra la COVID-19 , SARS-CoV-2 , Saliva , Vacunación , Inmunoglobulina A , Inmunoglobulina G
16.
Microbiome ; 11(1): 162, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496039

RESUMEN

BACKGROUND: Darier's disease (DD) is a genodermatosis caused by mutations of the ATP2A2 gene leading to disrupted keratinocyte adhesion. Recurrent episodes of skin inflammation and infections with a typical malodour in DD indicate a role for microbial dysbiosis. Here, for the first time, we investigated the DD skin microbiome using a metabarcoding approach of 115 skin swabs from 14 patients and 14 healthy volunteers. Furthermore, we analyzed its changes in the context of DD malodour and the cutaneous DD transcriptome. RESULTS: We identified a disease-specific cutaneous microbiome with a loss of microbial diversity and of potentially beneficial commensals. Expansion of inflammation-associated microbes such as Staphylococcus aureus and Staphylococcus warneri strongly correlated with disease severity. DD dysbiosis was further characterized by abundant species belonging to Corynebacteria, Staphylococci and Streptococci groups displaying strong associations with malodour intensity. Transcriptome analyses showed marked upregulation of epidermal repair, inflammatory and immune defence pathways reflecting epithelial and immune response mechanisms to DD dysbiotic microbiome. In contrast, barrier genes including claudin-4 and cadherin-4 were downregulated. CONCLUSIONS: These findings allow a better understanding of Darier exacerbations, highlighting the role of cutaneous dysbiosis in DD inflammation and associated malodour. Our data also suggest potential biomarkers and targets of intervention for DD. Video Abstract.


Asunto(s)
Enfermedad de Darier , Humanos , Enfermedad de Darier/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Disbiosis , Piel , Inflamación
17.
Appl Environ Microbiol ; 78(20): 7398-406, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22885760

RESUMEN

In soil, Acidobacteria constitute on average 20% of all bacteria, are highly diverse, and are physiologically active in situ. However, their individual functions and interactions with higher taxa in soil are still unknown. Here, potential effects of land use, soil properties, plant diversity, and soil nanofauna on acidobacterial community composition were studied by cultivation-independent methods in grassland and forest soils from three different regions in Germany. The analysis of 16S rRNA gene clone libraries representing all studied soils revealed that grassland soils were dominated by subgroup Gp6 and forest soils by subgroup Gp1 Acidobacteria. The analysis of a large number of sites (n = 57) by 16S rRNA gene fingerprinting methods (terminal restriction fragment length polymorphism [T-RFLP] and denaturing gradient gel electrophoresis [DGGE]) showed that Acidobacteria diversities differed between grassland and forest soils but also among the three different regions. Edaphic properties, such as pH, organic carbon, total nitrogen, C/N ratio, phosphorus, nitrate, ammonium, soil moisture, soil temperature, and soil respiration, had an impact on community composition as assessed by fingerprinting. However, interrelations with environmental parameters among subgroup terminal restriction fragments (T-RFs) differed significantly, e.g., different Gp1 T-RFs correlated positively or negatively with nitrogen content. Novel significant correlations of Acidobacteria subpopulations (i.e., individual populations within subgroups) with soil nanofauna and vascular plant diversity were revealed only by analysis of clone sequences. Thus, for detecting novel interrelations of environmental parameters with Acidobacteria, individual populations within subgroups have to be considered.


Asunto(s)
Acidobacteria/clasificación , Acidobacteria/aislamiento & purificación , Biota , Microbiología del Suelo , Acidobacteria/genética , Carbono/análisis , Análisis por Conglomerados , Dermatoglifia del ADN , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Alemania , Concentración de Iones de Hidrógeno , Metagenoma , Datos de Secuencia Molecular , Nitrógeno/análisis , Fósforo/análisis , Filogenia , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Suelo/química , Temperatura , Árboles
18.
Microbiol Resour Announc ; 11(4): e0007222, 2022 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-35258326

RESUMEN

Staphylococcus aureus is a widely distributed, opportunistic pathogen and has been linked to the human skin disease atopic dermatitis (AD). Here, we present 44 complete and 4 draft genome sequences of S. aureus strains isolated from the nose and skin of AD patients and healthy controls from a German study cohort.

19.
Appl Environ Microbiol ; 77(12): 4147-54, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21515715

RESUMEN

The distribution of membrane lipids of 17 different strains representing 13 species of subdivisions 1 and 3 of the phylum Acidobacteria, a highly diverse phylum of the Bacteria, were examined by hydrolysis and gas chromatography-mass spectrometry (MS) and by high-performance liquid chromatography-MS of intact polar lipids. Upon both acid and base hydrolyses of total cell material, the uncommon membrane-spanning lipid 13,16-dimethyl octacosanedioic acid (iso-diabolic acid) was released in substantial amounts (22 to 43% of the total fatty acids) from all of the acidobacteria studied. This lipid has previously been encountered only in thermophilic Thermoanaerobacter species but bears a structural resemblance to the alkyl chains of bacterial glycerol dialkyl glycerol tetraethers (GDGTs) that occur ubiquitously in peat and soil and are suspected to be produced by acidobacteria. As reported previously, most species also contained iso-C(15) and C(16:1ω7C) as major fatty acids but the presence of iso-diabolic acid was unnoticed in previous studies, most probably because the complex lipid that contained this moiety was not extractable from the cells; it could only be released by hydrolysis. Direct analysis of intact polar lipids in the Bligh-Dyer extract of three acidobacterial strains, indeed, did not reveal any membrane-spanning lipids containing iso-diabolic acid. In 3 of the 17 strains, ether-bound iso-diabolic acid was detected after hydrolysis of the cells, including one branched GDGT containing iso-diabolic acid-derived alkyl chains. Since the GDGT distribution in soils is much more complex, branched GDGTs in soil likely also originate from other (acido)bacteria capable of biosynthesizing these components.


Asunto(s)
Bacterias/química , Membrana Celular/química , Ácidos Dicarboxílicos/análisis , Cromatografía Liquida , Cromatografía de Gases y Espectrometría de Masas
20.
Microbiome ; 9(1): 123, 2021 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-34039428

RESUMEN

BACKGROUND: The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities. RESULTS: We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 105 CFU and that Benzonase digest is not sufficient to overcome this bias. CONCLUSIONS: The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Video abstract.


Asunto(s)
Bacterias , Metagenómica , Microbiota , Piel/microbiología , Bacterias/genética , ADN/genética , ADN Bacteriano/genética , Endodesoxirribonucleasas , Endorribonucleasas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , ARN Ribosómico 16S/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA