Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 143(6): 991-1004, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21145464

RESUMEN

To understand relationships between phosphorylation-based signaling pathways, we analyzed 150 deletion mutants of protein kinases and phosphatases in S. cerevisiae using DNA microarrays. Downstream changes in gene expression were treated as a phenotypic readout. Double mutants with synthetic genetic interactions were included to investigate genetic buffering relationships such as redundancy. Three types of genetic buffering relationships are identified: mixed epistasis, complete redundancy, and quantitative redundancy. In mixed epistasis, the most common buffering relationship, different gene sets respond in different epistatic ways. Mixed epistasis arises from pairs of regulators that have only partial overlap in function and that are coupled by additional regulatory links such as repression of one by the other. Such regulatory modules confer the ability to control different combinations of processes depending on condition or context. These properties likely contribute to the evolutionary maintenance of paralogs and indicate a way in which signaling pathways connect for multiprocess control.


Asunto(s)
Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Epistasis Genética , Perfilación de la Expresión Génica , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Fosforilación , Fosfotransferasas/genética , Fosfotransferasas/metabolismo
2.
Mol Plant Microbe Interact ; 34(2): 141-156, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33103963

RESUMEN

Fusarium wilt of spinach, caused by Fusarium oxysporum f. sp. spinaciae, is an important disease during warm conditions in production regions with acid soils, yet little is known about what confers pathogenicity to spinach in F. oxysporum f. sp. spinaciae genetically. To identify candidate fungal genes that contribute to spinach Fusarium wilt, each of 69 geographically diverse F. oxysporum isolates was tested for pathogenicity on each of three spinach inbreds. Thirty-nine isolates identified as F. oxysporum f. sp. spinaciae caused quantitative differences in disease severity among the inbreds that revealed two distinct pathogenicity groups of F. oxysporum f. sp. spinaciae. Putative effector gene profiles, predicted from whole-genome sequences generated for nine F. oxysporum f. sp. spinaciae isolates and five nonpathogenic, spinach-associated F. oxysporum (NPS) isolates, distinguished the F. oxysporum f. sp. spinaciae isolates from the NPS isolates, and separated the F. oxysporum f. sp. spinaciae isolates into two groups. Five of the putative effector genes appeared to be unique to F. oxysporum f. sp. spinaciae, as they were not found in 222 other publicly available genome assemblies of F. oxysporum, implicating potential involvement of these genes in pathogenicity to spinach. In addition, two combinations of the 14 known Secreted in Xylem (SIX) genes that have been affiliated with host pathogenicity in other formae speciales of F. oxysporum were identified in genome assemblies of the nine F. oxysporum f. sp. spinaciae isolates, either SIX8 and SIX9 or SIX4, SIX8, and SIX14. Characterization of these putative effector genes should aid in understanding mechanisms of pathogenicity in F. oxysporum f. sp. spinaciae, developing molecular tools for rapid detection and quantification of F. oxysporum f. sp. spinaciae, and breeding for resistance to Fusarium wilt in spinach.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Fusarium , Enfermedades de las Plantas , Fusarium/genética , Fusarium/patogenicidad , Enfermedades de las Plantas/microbiología , Especificidad de la Especie , Virulencia/genética
4.
PLoS Genet ; 14(1): e1007157, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29357355

RESUMEN

Increased ambient temperature is inhibitory to plant immunity including auto-immunity. SNC1-dependent auto-immunity is, for example, fully suppressed at 28°C. We found that the Arabidopsis sumoylation mutant siz1 displays SNC1-dependent auto-immunity at 22°C but also at 28°C, which was EDS1 dependent at both temperatures. This siz1 auto-immune phenotype provided enhanced resistance to Pseudomonas at both temperatures. Moreover, the rosette size of siz1 recovered only weakly at 28°C, while this temperature fully rescues the growth defects of other SNC1-dependent auto-immune mutants. This thermo-insensitivity of siz1 correlated with a compromised thermosensory growth response, which was independent of the immune regulators PAD4 or SNC1. Our data reveal that this high temperature induced growth response strongly depends on COP1, while SIZ1 controls the amplitude of this growth response. This latter notion is supported by transcriptomics data, i.e. SIZ1 controls the amplitude and timing of high temperature transcriptional changes including a subset of the PIF4/BZR1 gene targets. Combined our data signify that SIZ1 suppresses an SNC1-dependent resistance response at both normal and high temperatures. At the same time, SIZ1 amplifies the dark and high temperature growth response, likely via COP1 and upstream of gene regulation by PIF4 and BRZ1.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Ligasas/fisiología , Inmunidad de la Planta/genética , Temperatura , Ubiquitina-Proteína Ligasas/fisiología , Aclimatación/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Temperatura Corporal/genética , Regulación de la Expresión Génica de las Plantas , Ligasas/genética , Fenotipo , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Ubiquitina-Proteína Ligasas/genética
5.
Environ Microbiol ; 22(12): 4985-5004, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32452643

RESUMEN

In Fusarium oxysporum f.sp. lycopersici, all effector genes reported so far - also called SIX genes - are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer strains.


Asunto(s)
Cromosomas Fúngicos/genética , Fusarium/genética , Fusarium/patogenicidad , Deleción Cromosómica , Proteínas Fluorescentes Verdes/genética , Proteínas Luminiscentes/genética , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Virulencia/genética , Proteína Fluorescente Roja
6.
PLoS Genet ; 12(11): e1006401, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27855160

RESUMEN

Proteins secreted by pathogens during host colonization largely determine the outcome of pathogen-host interactions and are commonly called 'effectors'. In fungal plant pathogens, coordinated transcriptional up-regulation of effector genes is a key feature of pathogenesis and effectors are often encoded in genomic regions with distinct repeat content, histone code and rate of evolution. In the tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol), effector genes reside on one of four accessory chromosomes, known as the 'pathogenicity' chromosome, which can be exchanged between strains through horizontal transfer. The three other accessory chromosomes in the Fol reference strain may also be important for virulence towards tomato. Expression of effector genes in Fol is highly up-regulated upon infection and requires Sge1, a transcription factor encoded on the core genome. Interestingly, the pathogenicity chromosome itself contains 13 predicted transcription factor genes and for all except one, there is a homolog on the core genome. We determined DNA binding specificity for nine transcription factors using oligonucleotide arrays. The binding sites for homologous transcription factors were highly similar, suggesting that extensive neofunctionalization of DNA binding specificity has not occurred. Several DNA binding sites are enriched on accessory chromosomes, and expression of FTF1, its core homolog FTF2 and SGE1 from a constitutive promoter can induce expression of effector genes. The DNA binding sites of only these three transcription factors are enriched among genes up-regulated during infection. We further show that Ftf1, Ftf2 and Sge1 can activate transcription from their binding sites in yeast. RNAseq analysis revealed that in strains with constitutive expression of FTF1, FTF2 or SGE1, expression of a similar set of plant-responsive genes on the pathogenicity chromosome is induced, including most effector genes. We conclude that the Fol pathogenicity chromosome may be partially transcriptionally autonomous, but there are also extensive transcriptional connections between core and accessory chromosomes.


Asunto(s)
Proteínas de Unión al ADN/genética , Fusarium/genética , Enfermedades de las Plantas/genética , Factores de Transcripción/genética , Cromosomas Fúngicos , Proteínas de Unión al ADN/metabolismo , Fusarium/crecimiento & desarrollo , Fusarium/patogenicidad , Regulación Fúngica de la Expresión Génica , Transferencia de Gen Horizontal/genética , Genoma Fúngico , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno/genética , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Filogenia , Enfermedades de las Plantas/microbiología , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
7.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913420

RESUMEN

Race 1 isolates of Fusarium oxysporum f. sp. lycopersici (FOL) are characterized by the presence of AVR1 in their genomes. The product of this gene, Avr1, triggers resistance in tomato cultivars carrying resistance gene I In FOL race 2 and race 3 isolates, AVR1 is absent, and hence they are virulent on tomato cultivars carrying I In this study, we analyzed an approximately 100-kb genomic fragment containing the AVR1 locus of FOL race 1 isolate 004 (FOL004) and compared it to the sequenced genome of FOL race 2 isolate 4287 (FOL4287). A genomic fragment of 31 kb containing AVR1 was found to be missing in FOL4287. Further analysis suggests that race 2 evolved from race 1 by deletion of this 31-kb fragment due to a recombination event between two transposable elements bordering the fragment. A worldwide collection of 71 FOL isolates representing races 1, 2, and 3, all known vegetative compatibility groups (VCGs), and five continents was subjected to PCR analysis of the AVR1 locus, including the two bordering transposable elements. Based on phylogenetic analysis using the EF1-α gene, five evolutionary lineages for FOL that correlate well with VCGs were identified. More importantly, we show that FOL races evolved in a stepwise manner within each VCG by the loss of function of avirulence genes in a number of alternative ways. IMPORTANCE: Plant-pathogenic microorganisms frequently mutate to overcome disease resistance genes that have been introduced in crops. For the fungus Fusarium oxysporum f. sp. lycopersici, the causal agent of Fusarium wilt in tomato, we have identified the nature of the mutations that have led to the overcoming of the I and I-2 resistance genes in all five known clonal lineages, which include a newly discovered lineage. Five different deletion events, at least several of which are caused by recombination between transposable elements, have led to loss of AVR1 and overcoming of I Two new events affecting AVR2 that led to overcoming of I-2 have been identified. We propose a reconstruction of the evolution of races in FOL, in which the same mutations in AVR2 and AVR3 have occurred in different lineages and the FOL pathogenicity chromosome has been transferred to new lineages several times.


Asunto(s)
Resistencia a la Enfermedad/genética , Proteínas Fúngicas/genética , Fusarium/genética , Eliminación de Secuencia/genética , Solanum lycopersicum/microbiología , Secuencia de Bases/genética , Elementos Transponibles de ADN/genética , Fusarium/clasificación , Fusarium/aislamiento & purificación , Genoma Fúngico/genética , Enfermedades de las Plantas/microbiología
8.
Environ Microbiol ; 18(11): 3702-3713, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26941045

RESUMEN

Horizontal transfer of supernumerary or lineage-specific (LS) chromosomes has been described in a number of plant pathogenic filamentous fungi. So far it was not known whether transfer is restricted to chromosomes of certain size or properties, or whether 'core' chromosomes can also undergo horizontal transfer. We combined a directed and a non-biased approach to determine whether such restrictions exist. Selection genes were integrated into the genome of a strain of Fusarium oxysporum pathogenic on tomato, either targeted to specific chromosomes by homologous recombination or integrated randomly into the genome. By testing these strains for transfer of the marker to another strain we could confirm transfer of a previously described mobile pathogenicity chromosome. Surprisingly, we also identified strains in which (parts of) core chromosomes were transferred. Whole genome sequencing revealed that this was accompanied by the loss of the homologous region from the recipient strain. Remarkably, transfer of the mobile pathogenicity chromosome always accompanied this exchange of core chromosomes.


Asunto(s)
Cromosomas Fúngicos/genética , Fusarium/clasificación , Fusarium/genética , Transferencia de Gen Horizontal , Enfermedades de las Plantas/microbiología , Cromosomas Fúngicos/metabolismo , Fusarium/metabolismo , Solanum lycopersicum/microbiología
9.
Environ Microbiol ; 18(11): 4087-4102, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27387256

RESUMEN

Formae speciales (ff.spp.) of the fungus Fusarium oxysporum are often polyphyletic within the species complex, making it impossible to identify them on the basis of conserved genes. However, sequences that determine host-specific pathogenicity may be expected to be similar between strains within the same forma specialis. Whole genome sequencing was performed on strains from five different ff.spp. (cucumerinum, niveum, melonis, radicis-cucumerinum and lycopersici). In each genome, genes for putative effectors were identified based on small size, secretion signal, and vicinity to a "miniature impala" transposable element. The candidate effector genes of all genomes were collected and the presence/absence patterns in each individual genome were clustered. Members of the same forma specialis turned out to group together, with cucurbit-infecting strains forming a supercluster separate from other ff.spp. Moreover, strains from different clonal lineages within the same forma specialis harbour identical effector gene sequences, supporting horizontal transfer of genetic material. These data offer new insight into the genetic basis of host specificity in the F. oxysporum species complex and show that (putative) effectors can be used to predict host specificity in F. oxysporum.


Asunto(s)
Fusarium/aislamiento & purificación , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Plantas/microbiología , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/clasificación , Fusarium/genética , Especificidad del Huésped
10.
Fungal Genet Biol ; 95: 49-57, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27531696

RESUMEN

Heterokaryon formation is an essential step in asexual recombination in Fusarium oxysporum. Filamentous fungi have an elaborate nonself recognition machinery to prevent formation and proliferation of heterokaryotic cells, called heterokaryon incompatibility (HI). In F. oxysporum the regulation of this machinery is not well understood. In Neurospora crassa, Vib-1, a putative transcription factor of the p53-like Ndt80 family of transcription factors, has been identified as global regulator of HI. In this study we investigated the role of the F. oxysporum homolog of Vib-1, called Suf, in vegetative hyphal and conidial anastomosis tube (CAT) fusion and HI. We identified a novel function for an Ndt80 homolog as a nutrient-dependent regulator of anastomosis. Strains carrying the SUF deletion mutation display a hyper-fusion phenotype during vegetative growth as well as germling development. In addition, conidial paring of incompatible SUF deletion strains led to more heterokaryon formation, which is independent of suppression of HI. Our data provides further proof for the divergence in the functions of different members Ndt80 family. We propose that Ndt80 homologs mediate responses to nutrient quality and quantity, with specific responses varying between species.


Asunto(s)
Proteínas Fúngicas/fisiología , Fusarium/metabolismo , Fusarium/fisiología , Factores de Transcripción/fisiología , Agrobacterium/genética , Fusión Celular , Proteínas Fúngicas/genética , Fusarium/enzimología , Fusarium/genética , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Hifa/citología , Hifa/metabolismo , Neurospora crassa/genética , Fenotipo , Filogenia , Eliminación de Secuencia , Esporas Fúngicas/citología , Esporas Fúngicas/metabolismo , Factores de Transcripción/genética
11.
J Exp Bot ; 67(8): 2127-38, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26873976

RESUMEN

Natural variation among Arabidopsis accessions is an important genetic resource to identify mechanisms underlying plant development and stress tolerance. To evaluate the natural variation in salinity stress tolerance, two large-scale experiments were performed on two populations consisting of 160 Arabidopsis accessions each. Multiple traits, including projected rosette area, and fresh and dry weight were collected as an estimate for salinity tolerance. Our results reveal a correlation between rosette size under salt stress conditions and developmental differences between the accessions grown in control conditions, suggesting that in general larger plants were more salt tolerant. This correlation was less pronounced when plants were grown under severe salt stress conditions. Subsequent genome wide association study (GWAS) revealed associations with novel candidate genes for salinity tolerance such as LRR-KISS (At4g08850),flowering locus KH-domain containing protein and a DUF1639-containing protein Accessions with high LRR-KISS expression developed larger rosettes under salt stress conditions. Further characterization of allelic variation in candidate genes identified in this study will provide more insight into mechanisms of salt stress tolerance due to enhanced shoot growth.


Asunto(s)
Alelos , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ecotipo , Variación Genética , Hojas de la Planta/anatomía & histología , Cloruro de Sodio/farmacología , Estrés Fisiológico/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Genes de Plantas , Estudio de Asociación del Genoma Completo , Patrón de Herencia/genética , Familia de Multigenes , Fenotipo , Hojas de la Planta/efectos de los fármacos , Proteínas Serina-Treonina Quinasas , Receptores de Superficie Celular , Tolerancia a la Sal/genética , Estrés Fisiológico/efectos de los fármacos
12.
Mol Plant Pathol ; 24(8): 914-931, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37128172

RESUMEN

Fungal effectors (small-secreted proteins) have long been considered as species or even subpopulation-specific. The increasing availability of high-quality fungal genomes and annotations has allowed the identification of trans-species or trans-genera families of effectors. Two avirulence effectors, AvrLm10A and AvrLm10B, of Leptosphaeria maculans, the fungus causing stem canker of oilseed rape, are members of such a large family of effectors. AvrLm10A and AvrLm10B are neighbouring genes, organized in divergent transcriptional orientation. Sequence searches within the L. maculans genome showed that AvrLm10A/AvrLm10B belong to a multigene family comprising five pairs of genes with a similar tail-to-tail organization. The two genes, in a pair, always had the same expression pattern and two expression profiles were distinguished, associated with the biotrophic colonization of cotyledons and/or petioles and stems. Of the two protein pairs further investigated, AvrLm10A_like1/AvrLm10B_like1 and AvrLm10A_like2/AvrLm10B_like2, the second one had the ability to physically interact, similarly to what was previously described for the AvrLm10A/AvrLm10B pair, and cross-interactions were also detected for two pairs. AvrLm10A homologues were identified in more than 30 Dothideomycete and Sordariomycete plant-pathogenic fungi. One of them, SIX5, is an effector from Fusarium oxysporum f. sp. lycopersici physically interacting with the avirulence effector Avr2. We found that AvrLm10A/SIX5 homologues were associated with at least eight distinct putative effector families, suggesting that AvrLm10A/SIX5 is able to cooperate with different effectors. These results point to a general role of the AvrLm10A/SIX5 proteins as "cooperating proteins", able to interact with diverse families of effectors whose encoding gene is co-regulated with the neighbouring AvrLm10A homologue.


Asunto(s)
Ascomicetos , Brassica napus , Fusarium , Ascomicetos/genética , Fusarium/genética , Proteínas/genética , Brassica napus/microbiología , Familia de Multigenes , Enfermedades de las Plantas/microbiología
13.
BMC Evol Biol ; 12: 99, 2012 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-22732003

RESUMEN

BACKGROUND: The study of biological networks and how they have evolved is fundamental to our understanding of the cell. By investigating how proteins of different ages are connected in the protein interaction network, one can infer how that network has expanded in evolution, without the need for explicit reconstruction of ancestral networks. Studies that implement this approach show that proteins are often connected to proteins of a similar age, suggesting a simultaneous emergence of interacting proteins. There are several theories explaining this phenomenon, but despite the importance of gene duplication in genome evolution, none consider protein family dynamics as a contributing factor. RESULTS: In an S. cerevisiae protein interaction network we investigate to what extent edges that arise from duplication events contribute to the observed tendency to interact with proteins of a similar age. We find that part of this tendency is explained by interactions between paralogs. Age is usually defined on the level of protein families, rather than individual proteins, hence paralogs have the same age. The major contribution however, is from interaction partners that are shared between paralogs. These interactions have most likely been conserved after a duplication event. To investigate to what extent a nearly neutral process of network growth can explain these results, we adjust a well-studied network growth model to incorporate protein families. Our model shows that the number of edges between paralogs can be amplified by subsequent duplication events, thus explaining the overrepresentation of interparalog edges in the data. The fact that interaction partners shared by paralogs are often of the same age as the paralogs does not arise naturally from our model and needs further investigation. CONCLUSION: We amend previous theories that explain why proteins of a similar age prefer to interact by demonstrating that this observation can be partially explained by gene duplication events. There is an ongoing debate on whether the protein interaction network is predominantly shaped by duplication and subfunctionalization or whether network rewiring is most important. Our analyses of S. cerevisiae protein interaction networks demonstrate that duplications have influenced at least one property of the protein interaction network: how proteins of different ages are connected.


Asunto(s)
Duplicación de Gen , Modelos Genéticos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Evolución Molecular , Mapas de Interacción de Proteínas , Saccharomyces cerevisiae/metabolismo
14.
Front Plant Sci ; 13: 1012688, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36340405

RESUMEN

The fungus Fusarium oxysporum is infamous for its devastating effects on economically important crops worldwide. F. oxysporum isolates are grouped into formae speciales based on their ability to cause disease on different hosts. Assigning F. oxysporum strains to formae speciales using non-experimental procedures has proven to be challenging due to their genetic heterogeneity and polyphyletic nature. However, genetically diverse isolates of the same forma specialis encode similar repertoires of effectors, proteins that are secreted by the fungus and contribute to the establishment of compatibility with the host. Based on this observation, we previously designed the F. oxysporum Effector Clustering (FoEC) pipeline which is able to classify F. oxysporum strains by forma specialis based on hierarchical clustering of the presence of predicted putative effector sequences, solely using genome assemblies as input. Here we present the updated FoEC2 pipeline which is more user friendly, customizable and, due to multithreading, has improved scalability. It is designed as a Snakemake pipeline and incorporates a new interactive visualization app. We showcase FoEC2 by clustering 537 publicly available F. oxysporum genomes and further analysis of putative effector families as multiple sequence alignments. We confirm classification of isolates into formae speciales and are able to further identify their subtypes. The pipeline is available on github: https://github.com/pvdam3/FoEC2.

15.
Mol Plant Pathol ; 22(1): 108-116, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33146465

RESUMEN

Fusarium oxysoporum f. sp. radicis-cucumerinum (Forc) is able to cause disease in cucumber, melon, and watermelon, while F. oxysporum f. sp. melonis (Fom) can only infect melon plants. Earlier research showed that mobile chromosomes in Forc and Fom determine the difference in host range between Forc and Fom. By closely comparing these pathogenicity chromosomes combined with RNA-sequencing data, we selected 11 candidate genes that we tested for involvement in the difference in host range between Forc and Fom. One of these candidates is a putative effector gene on the Fom pathogenicity chromosome that has nonidentical homologs on the Forc pathogenicity chromosome. Four independent Forc transformants with this gene from Fom showed strongly reduced or no pathogenicity towards cucumber, while retaining pathogenicity towards melon and watermelon. This suggests that the protein encoded by this gene is recognized by an immune receptor in cucumber plants. This is the first time that a single gene has been demonstrated to determine a difference in host specificity between formae speciales of F. oxysporum.


Asunto(s)
Citrullus/microbiología , Cucumis sativus/microbiología , Cucurbitaceae/microbiología , Proteínas Fúngicas/metabolismo , Fusarium/genética , Especificidad del Huésped/genética , Enfermedades de las Plantas/microbiología , Citrullus/inmunología , Cucumis sativus/inmunología , Cucurbitaceae/inmunología , Proteínas Fúngicas/genética , Fusarium/patogenicidad , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta
16.
Front Plant Sci ; 12: 761740, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34912358

RESUMEN

The fungus Fusarium oxysporum (Fo) is widely known for causing wilt disease in over 100 different plant species. Endophytic interactions of Fo with plants are much more common, and strains pathogenic on one plant species can even be beneficial endophytes on another species. However, endophytic and beneficial interactions have been much less investigated at the molecular level, and the genetic basis that underlies endophytic versus pathogenic behavior is unknown. To investigate this, 44 Fo strains from non-cultivated Australian soils, grass roots from Spain, and tomato stems from United States were characterized genotypically by whole genome sequencing, and phenotypically by examining their ability to symptomlessly colonize tomato plants and to confer resistance against Fusarium Wilt. Comparison of the genomes of the validated endophytic Fo strains with those of 102 pathogenic strains revealed that both groups have similar genomes sizes, with similar amount of accessory DNA. However, although endophytic strains can harbor homologs of known effector genes, they have typically fewer effector gene candidates and associated non-autonomous transposons (mimps) than pathogenic strains. A pathogenic 'lifestyle' is associated with extended effector gene catalogs and a set of "host specific" effectors. No candidate effector genes unique to endophytic strains isolated from the same plant species were found, implying little or no host-specific adaptation. As plant-beneficial interactions were observed to be common for the tested Fo isolates, the propensity for endophytism and the ability to confer biocontrol appears to be a predominant feature of this organism. These findings allow prediction of the lifestyle of a Fo strain based on its genome sequence as a potential pathogen or as a harmless or even beneficial endophyte by determining its effectorome and mimp number.

17.
Viruses ; 13(11)2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34834996

RESUMEN

The tripartite genome of the negative-stranded RNA virus Tomato spotted wilt orthotospovirus (TSWV) is assembled, together with two viral proteins, the nucleocapsid protein and the RNA-dependent RNA polymerase, into infectious ribonucleoprotein complexes (RNPs). These two viral proteins are, together, essential for viral replication and transcription, yet our knowledge on the host factors supporting these two processes remains limited. To fill this knowledge gap, the protein composition of viral RNPs collected from TSWV-infected Nicotiana benthamiana plants, and of those collected from a reconstituted TSWV replicon system in the yeast Saccharomyces cerevisiae, was analysed. RNPs obtained from infected plant material were enriched for plant proteins implicated in (i) sugar and phosphate transport and (ii) responses to cellular stress. In contrast, the yeast-derived viral RNPs primarily contained proteins implicated in RNA processing and ribosome biogenesis. The latter suggests that, in yeast, the translational machinery is recruited to these viral RNPs. To examine whether one of these cellular proteins is important for a TSWV infection, the corresponding N. benthamiana genes were targeted for virus-induced gene silencing, and these plants were subsequently challenged with TSWV. This approach revealed four host factors that are important for systemic spread of TSWV and disease symptom development.


Asunto(s)
Nicotiana/virología , Factor 1 de Elongación Peptídica/metabolismo , Isoformas de Proteínas/metabolismo , Tospovirus/fisiología , Interacciones Microbiota-Huesped/genética , Interacciones Microbiota-Huesped/fisiología , Solanum lycopersicum , Proteínas de la Nucleocápside , Factor 1 de Elongación Peptídica/genética , Enfermedades de las Plantas/virología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Isoformas de Proteínas/genética , Replicón , Ribonucleoproteínas/metabolismo , Tospovirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral
18.
BMC Bioinformatics ; 11: 86, 2010 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-20152020

RESUMEN

BACKGROUND: Homology is a crucial concept in comparative genomics. The algorithm probably most widely used for homology detection in comparative genomics, is BLAST. Usually a stringent score cutoff is applied to distinguish putative homologs from possible false positive hits. As a consequence, some BLAST hits are discarded that are in fact homologous. RESULTS: Analogous to the use of the genomics context in genome alignments, we test whether conserved functional context can be used to select candidate homologs from insignificant BLAST hits. We make a co-complex network alignment between complex subunits in yeast and human and find that proteins with an insignificant BLAST hit that are part of homologous complexes, are likely to be homologous themselves. Further analysis of the distant homologs we recovered using the co-complex network alignment, shows that a large majority of these distant homologs are in fact ancient paralogs. CONCLUSIONS: Our results show that, even though evolution takes place at the sequence and genome level, co-complex networks can be used as circumstantial evidence to improve confidence in the homology of distantly related sequences.


Asunto(s)
Genómica/métodos , Proteínas/química , Alineación de Secuencia/métodos , Algoritmos , Bases de Datos Factuales
19.
PLoS Comput Biol ; 5(1): e1000276, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19180181

RESUMEN

Although functionally related proteins can be reliably predicted from phylogenetic profiles, many functional modules do not seem to evolve cohesively according to case studies and systematic analyses in prokaryotes. In this study we quantify the extent of evolutionary cohesiveness of functional modules in eukaryotes and probe the biological and methodological factors influencing our estimates. We have collected various datasets of protein complexes and pathways in Saccheromyces cerevisiae. We define orthologous groups on 34 eukaryotic genomes and measure the extent of cohesive evolution of sets of orthologous groups of which members constitute a known complex or pathway. Within this framework it appears that most functional modules evolve flexibly rather than cohesively. Even after correcting for uncertain module definitions and potentially problematic orthologous groups, only 46% of pathways and complexes evolve more cohesively than random modules. This flexibility seems partly coupled to the nature of the functional module because biochemical pathways are generally more cohesively evolving than complexes.


Asunto(s)
Biología Computacional/métodos , Células Eucariotas/fisiología , Evolución Molecular , Redes y Vías Metabólicas/fisiología , Proteínas/fisiología , Bases de Datos de Proteínas , Modelos Genéticos , Filogenia , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología
20.
Mol Plant Pathol ; 21(6): 761-776, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32246740

RESUMEN

Fusarium oxysporum f. sp. radicis-cucumerinum (Forc) causes severe root rot and wilt in several cucurbit species, including cucumber, melon, and watermelon. Previously, a pathogenicity chromosome, chrRC , was identified in Forc. Strains that were previously nonpathogenic could infect multiple cucurbit species after obtaining this chromosome via horizontal chromosome transfer (HCT). In contrast, F. oxysporum f. sp. melonis (Fom) can only cause disease on melon plants, even though Fom contains contigs that are largely syntenic with chrRC . The aim of this study was to identify the genetic basis underlying the difference in host range between Fom and Forc. First, colonization of different cucurbit species between Forc and Fom strains showed that although Fom did not reach the upper part of cucumber or watermelon plants, it did enter the root xylem. Second, to select candidate genomic regions associated with differences in host range, high-quality genome assemblies of Fom001, Fom005, and Forc016 were compared. One of the Fom contigs that is largely syntenic and highly similar in sequence to chrRC contains the effector gene SIX6. After HCT of the SIX6-containing chromosome from Fom strains to a nonpathogenic strain, the recipient (HCT) strains caused disease on melon plants, but not on cucumber or watermelon plants. These results provide strong evidence that the differences in host range between Fom and Forc are caused by differences between transferred chromosomes of Fom and chrRC , thus narrowing down the search for genes allowing or preventing infection of cucumber and watermelon to genes located on these chromosomes.


Asunto(s)
Cromosomas Fúngicos/genética , Cucumis sativus/microbiología , Cucurbitaceae/microbiología , Fusarium/genética , Especificidad del Huésped , Enfermedades de las Plantas/microbiología , Fusarium/patogenicidad , Fusarium/fisiología , Virulencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA